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Abstract 
The traffic control task on motorway and urban networks is complicated because it has to 

deal with the highly complex interplays between control measures applicable to multiple user 
groups and different user classes in different types of networks. To handle this complexity, it 
is essential to have a model-based approach that is able to give an insight into those processes 
and provide the relevant control measures. In the scope of this research, the macroscopic 
modeling is focused. Several macroscopic traffic models have been implemented and applied 
to freeways and urban networks. The common deficiency of these models is that they fail to 
represent the dynamics of mixed traffic on multilane motorways, therefore, fail to deal with 
the multiplicity of control objectives and user-classes. To overcome this, a new type of model 
needs to be implemented for operational anticipatory traffic information, guidance, and 
control by applying mathematical optimal control explicitly. The aim of this paper is to 
present a macroscopic model that is able to take into account explicitly the dynamics of traffic 
at on and off ramps by modeling lane-changing processes within these zones. Simulation and 
calibration results with real data from the freeway A1 in The Netherlands show a good 
agreement. 
 
Keywords: Multiclass traffic theory; Multilane gas-kinetic models; Macroscopic traffic 

models 
Topic Area: C3 Traffic Control 
 
1. Introduction 

Researches on multilane traffic and heterogeneous traffic on freeway have recently become 
more attractive for the purpose of using multi-agent control measures and optimizing traffic 
control of multiclass traffic users. These strategies may allow traffic planners to use the 
existing infrastructure more efficiently. Examples of those control measures are dynamic 
truck overtaking prohibitions, uninterrupted passage for buses by ramp metering at on and off 
ramps, dynamic lane allocation control. 

The significant contributions to these research topics are the works by Helbing (1997), 
Shvetsov and Helbing (1998), Helbing et al. (2001), Hoogendoorn and Bovy (1999), 
Hoogendoorn (1999), etc. Most of these models are developed from the principle of the 
multilane gas-kinetic model for mixed traffic on multilane roadways. These types of model 
describe the evolution of the phase-space density of vehicles on a freeway in which the left 
hand side of the differential partial equations describes the continuous dynamics of the phase-
space density function due to the motions of traffic flow and the right hand side describes the 
discontinuous changes of this function due to the events such as lane-changing, 
acceleration/deceleration, etc. However, the lane-changing maneuver at on and off ramps has 
not been taken into account explicitly so far. In this paper, we manage to capture the 
interactions of traffic at on and off ramps by determining the so-called mandatory lane-
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changing rate from on ramps to the adjacent main lane (or from main lane to off ramps). 
Finally, the macroscopic traffic model is derived by the so-called method of moments. 

Our paper is organized as follows. Section 2 reviews multilane and multiclass traffic flow 
model. In section 3, we derive the multilane multiclass macroscopic traffic flow model at on 
and off ramps based on the method of moments. Section 4 describes some simulation and 
calibration results with real data obtained from freeway A1 in The Netherlands. Finally, we 
conclude the paper with some further research directions in section 5.      
 
2. Multilane and multiclass macroscopic traffic flow models 

The multilane and multiclass (ML MC) macroscopic traffic model is developed based on 
the gas-kinetic theory. It consist of the following set of partial differential equations (Helbing 
et al., 2001) describing the time-space evolution of macroscopic traffic variables of class u 
(u∈U) on lane i (i∈I), such as flow rate , , ( , )u i u iq q x t= , mean speed , , ( , )u i u iV V x t= and density 

, , ( , )u i u ir r x t=  
 
• Conservation of vehicle equation 
  

{
( ) ( ), ,

, ' , , ' , , , , ' , ' , ,
1 ' 1 ' 1

convection immediate lane_changing spontaneous lane_changing

U
u i u i

u i u s i u i u s i u i u i u i u i
s i i i i

r q
P P r r

t x = = ± = ±

∂ ∂
+ = Ψ − Ψ + ∆ −∆

∂ ∂ ∑ ∑ ∑
1444442444443 144424443

 (1)  

• Momentum dynamics 

{
( ) ( ), , , ,

, ' , , ' , , , , ' , ' , ,
1 ' 1 ' 1

convection immediate lane-changing spontaneous lane-changingacceleration

e U
u i u i u i u i

u i u s i u i u s i u i u i u i u i
s i i i iu

q E q q
P P q q

t x τ = = ± = ±

∂ ∂ −
+ = + Φ − Φ + ∆ −∆

∂ ∂ ∑ ∑ ∑
1444442444443 14442444314243

 (2) 

  
While the left hand side (LHS) of equation (1) and equation (2) describes the continuous 

changes of traffic variables at location x and time instant t due to the convection term that 
reflects the movement of the vehicles flowing in or out of very small cell [x, x+dx) during 
time interval [t, t+dt), the right hand side (RHS) describes the discontinuous changes of traffic 
variables that consist of the following terms: 

Acceleration term, reflecting the tendency of drivers to accelerate to desired speed 
Immediate lane changing, reflecting the fact that the faster vehicles catch up with the 

slower ones and have to change their lane to avoid collisions. 
Spontaneous lane changing, describing the tendency of drivers to use a particular lane. 
In equations (1) and (2), ,u iP denotes the expected probability of vehicle class u to be able to 

change from current lane i to either adjacent lanes i±1. ( )2
, , , ,u i u i u i u iE r V⎡ ⎤= +Θ

⎣ ⎦
is the traffic 

energy, where ,u iΘ is speed variance, defined as ( )( )2
, , ,u i u i u ir VαΘ = , and , , ,

e e
u i u i u iq r V= , where 

,
e

u iV denotes the equilibrium speed , determined by the expression below: 

( )0
, , , , ,

1
1

U
e

u i u i u i u s i
s

V V P
=

= − − Π∑   (3)   

In equation (3), 0
,u iV denotes the free speed of vehicle class u on lane i.  

The so-called pre-factor density dependent function α is calculated as: 
1,

,0( ) 1 exp
cr u u

u u u i i
i i i u

i

r rr
r

α α δα
δ

−
⎡ ⎤⎛ ⎞−

= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  (4) 
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In expression (4), ,0u
iα , u

iδα , u
irδ are the lane and class specific model parameters, and 

,cr u
ir denotes the lane and class specific critical density, being estimated. 

The functions , , , , , ,, , u s i u s i u s iΨ Φ Π  in equations (1), (2) and (3) are the so-called Boltzmann 
factors functions, which describe the influence of interactions on traffic dynamics. Here, , ,u s iΨ  
determines the lane changing term due to interactions in conservation equations, 

, ,u s iΦ determines the lane changing term due to interaction in momentum dynamics equation, 
and , ,u s iΠ  determines the braking term reflecting the fact that the faster vehicles cannot 
overtake or change their lane and have to slow down. These functions are determined as 
follows: 

( ) ( ), , , , , , , , , , , , ,( )u s i u i u i s i u s i u s i u s i u s ir r r S V V Vχ φ δ δ ϕ δ⎡ ⎤′ ′Ψ = +⎣ ⎦  (5) 

( ) ( ), , ,
, , , , , , , , , , , , ,

, ,, , , ,

( ) u i u i u i
u s i u i u i s i u s i u s i u s i u s i

u s iu s i u s i

V V
r r r S V V V

SS S
χ φ δ δ ϕ δ

⎡ ⎤⎛ ⎞Θ
⎢ ⎥′ ′ ⎜ ⎟Φ = + +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (6) 

( ) ( )( ) ( )2

, , , , , , , , , , , , , , ,( ) 1u s i u i u i s i u s i u s i u s i u s i u s ir r r S V V V Vχ δ φ δ δ ϕ δ⎡ ⎤′ ′Π = + +⎢ ⎥⎣ ⎦
 (7) 

Where , ,
, ,

, ,

u j s j
u s j

u s j

V V
V

S
δ

′−
= denotes the so-called normalized speed difference factor between 

interacting vehicle class u and class s on lane i with , , , ,u s j u j s jS ′= Θ +Θ  

The standard Gaussian distribution function ( ), ,u s jVφ δ and error function ( ), ,u s jVϕ δ in 
expressions (5), (6) and (7)  are calculated as below: 

( )
( )

( )
2

, ,, ,
2

2
2

, , , ,
1 and 

2 2

u s ju s j VV
z

u s j u s j
eV V e dz

δδ

φ δ ϕ δ
π π

−
−

−∞

= = ∫  (8)  

The effective cross section factor χ reflects the increase of the effective number of 
interactions in dense traffic and is calculated by equation (9) 

( )
( )

20

max max 2
( ) 1

( ) 1 /
i i i

i
i i i i

V T rr
r r r

χ
τ α

= +
−

  (9) 

Note that the variables without class index u represent the weighted averages of the 
variables belonging to the different user class, which are calculated, for example, as: 

u
u i

i i
u i

rT T
r

=∑   (10)  

In the MLMC model mentioned above, the so-called mandatory lane changing term that 
reflects the lane changing maneuvers at on/off ramps, lane drop, etc. needs to be taken into 
account explicitly. To this end, the modified model should be able to capture the following 
situations: 

All vehicles must move to the target lane due to the blockage at the end (on-ramp 
acceleration lane) 

The drivers are willing to accept shorter gaps than immediate lane changing and 
spontaneous lane changing, hence, increase the braking process and disturb the traffic flow on 
main lane. 

The vehicles must slow down and stop if there are not sufficient gaps on the main lane 
This implementation will be described in the next section. 
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3. Multilane and multiclass macroscopic traffic flow model at on-off ramps 
This section illustrates the multilane gas-kinetic equation of the phase-space density (PSD) 

for heterogeneous traffic operations at on/off ramps, and then the resulting MLMC 
macroscopic traffic model is described. The equation describing the evolution of the PSD for 
heterogeneous traffic operations at on/off ramps is a generalization of the single gas-kinetic 
equation, which was first introduced by Prigogine et al (1971) and then by Paveri-Fontan 
(1975). Let ρu,i(x,v,t) be the so-called reduced multilane PSD of vehicle class u on lane i. The 
following equation is proposed (Helbing et al, 2001): 

0
, , , , ,

,
, int

convection interaction lane-changingacceleration

u i u i u i u i u i
u i

u i lc

V v
v

t x v t t
ρ ρ ρ ρ

ρ
τ

⎛ ⎞∂ ∂ − ∂ ∂⎛ ⎞ ⎛ ⎞∂
+ + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠123 14243 142431442443

 (11)  

In equation (11), the lane-changing maneuver from on ramps to main lane or from main 
lane to off ramps is defined as mandatory lane-changing, where as the lane-changing within 
main lanes is defined as immediate lane-changing and spontaneous lane-changing. In this 
paper, the former one is focused on.   

Let gu,i(v|x,t) denote the probability speed density function of vehicles class u at (x,t) on 
lane i and ru,i(x,t) denotes the density of vehicle class u at (x,t) on lane i, the following 
relations are defined: 

, , , , ,0
( , ) ( , , )  and ( , , ) ( , ) ( | , )

def def

u i u i u i u i u ir x t x v t dv x v t r x t g v x tρ ρ
∞

= =∫  (12)  

Let us consider a merging process from lane 0 to lane 1 (Figure 1). The decision to make a 
lane change is based on the distance hr between the subject vehicle and the vehicle behind 
(lag-gap) and the distance hf between it and the vehicle in front of it on the main lane (lead-
gap). When both gaps suffice, the lane-changing maneuver will be performed; hence, the 
probability that a gap on the adjacent main lane is accepted depends on the joint probability 
distribution of lag-gap and lead-gap on that lane taking into account also the distance from the 
subject vehicle to the end of the on ramp. These gaps suffice if the space between the merging 
vehicle and the one behind it as well as the one in front of it is larger than certain threshold 
values of distance gap. Again, these threshold values should reflect the fact that the drivers 
are willing to accept smaller gaps when approaching closer to the end of the on ramp. 
 

     hn-1              hn 
 
Lane 2 
        
Lane 1   n-1           n    n+1 
 
Lane 0 

               lag-gap lead-gap 
xstart           xend 

 
Figure 1 Lane- changing behavior at on ramp 

 
Let hu denote the threshold value of lag-gap and lead-gap for lane-changing manoeuvre, 

respectively. Assuming that the vehicle only reacts to the one in front hu = h0 +Lu+Tuv. Where 
v is the speed of the following vehicle, h0 is the minimal distance reflecting the safety-margin 
acceptance of the drivers on the target lane, Lu and Tu is the length and reaction time of 
vehicle class u, respectively. Since approaching the end of the ramps, all drivers are willing to 
accept really smaller gap, therefore, they disturb traffic on the main lane significantly. 
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Assuming a linear relation of willingness-to-pay of drivers with respect to the remaining 
distance as shown by equation  

0 0u
end

u u
end start

h h h
x x T v T v

x x
α= + +

−
=

−
  (13) 

Now let us assume that the mandatory lane-changing rate is proportional to the number of 
vehicles stemming from on ramp or exiting at off ramp and that all those vehicles are forced 
to change their lane at the end of the ramp (at location xend) as below: 

, , ,

man

u i u i u i

endlc

P v
t x x
ρ ρ∂

=
∂ −

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (14)   

In equation (14) Pu,i denotes the expected lane-changing probability of vehicle class u from 
lane i to lane i+1 (i-1 in case of off ramp).  

Let Au(v|x,t) be the event that a vehicle of class u driving with speed v merges into the 
main lane at (x,t), and Bu be the event that a vehicle is of class u.  

,
1 1

( & ) ( | ) ( )
U U

u i u s u s s
s s

P P A B P A B P B
= =

= =∑ ∑   (15)  

Let ( )1 2, | ,r fP h h h h u s≥ ≥  be the joint probability of lag-gap and lead-gap on the main 
lane between merging vehicle class u and any vehicle of class s.  

( ) , 1 , 1
1 , 1

11
, 1

1

 where 
U

s i s i
s i s iU

si
s i

s

r r
P B r r

rr

+ +
+ +

=+
+

=

= = =∑
∑

  (16)  

The following relation is applied to the lane-changing probability at on ramps: 
( ) ( ) ( ) ( )| ( ), ( ) 1 ( ) 1 ( )u s r s f u s urear leadP A B P h h w h h v F h w F h v= ≥ ≥ = − −⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦ (17)  
In expression (17), F(.) denotes the cumulative gap distribution function and <.> denotes 

the mean value. By definition, for any function φ(x) one gets
0

( ) ( ) ( )x x g x dxφ φ
∞

= ∫ , where 

g(x) is probability density function 
Let flead(h) be the gap density distribution function of the leader and, for simplicity, 

assuming that it is exponentially distributed as equation  

( )( )
1
( )

h
E h

leadf h e
E h

−

=   (18)  

In expression (18), E(h) denotes the mean distance gap, determined by equation  

( )
0 0( ) ( ) 1 s s s s s

s s
E h h hf h dh h L T V r r

∞
= = =

⎛ ⎞− + +⎜ ⎟
⎝ ⎠

∫ ∑ ∑  (19)  

0
( ) ( )By definition 1

h h h
lead leadF h f z dz e−= = −∫   (20)  

Let frear(h) be the lag gap density distribution function and considering two situations. First, 
the nearest following vehicle moves into median lane in order to give way to merging vehicle 
with probability λ then the space for merging is hn+hn-1, and the lag gap distribution is denoted 
by 1 ( )rearf h . This distribution is determined based on the convolution theorem (Morris, 1986). 
Secondly, if the nearest following vehicle is unable to change her lane to the median lane with 
probability (1- λ) then the space for merging remains hn, and the lag gap distribution is 
denoted by 2 ( )rearf h . Based on the renewal process (Cox, 1962) the distribution of lag gap is 
determined as follows: 
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( )1
1 0 0

1

1 ( ) ( ) 11 ( )( )
( ) 2 ( ) 2

h h z

h h
rear

rear
n n

f z f x dxdz e h hF hf h
E h h E h h

−

−

−

−
+−

= = =
+

∫ ∫
 (21) 

2
2 0

1 ( )
1 ( )( )

( ) ( )

h

h hrear
rear

n

f x dx
F hf h e h

E h E h
−

−
−

= = =
∫

  (22)  

( )1 2

0 0

Hence  ( ) ( ) 1 ( ) 1
2

h h
h h h h

rear rear rear
hF h f x dx f x dx e e
h
λλ λ − −= + − = − −∫ ∫  (23) 

Substituting equations (18) and (23) into equation (17) we obtain the expected lane-
changing probability of vehicles class u from on-ramps, irrespective of vehicle types on the 
main lane: 

( ) ( )1 1( ) ( )
, 1 , 1

0 0

| ( ) 1 0.5 ( ) ( )u i s i
i u s

h v h h w h
u i s i s iP A B e g v dv e h w h g w dwλ+ +

∞ ∞
− −

+ += +∫ ∫  

( ) ( )

( ) ( )( )

0 1 1

0 1 1

,0

0 1 , 10

| ( )

1 0.5 ( )

u i u i

s i s i

u s u ii

h L h T v h

h L h T w h
s s i s i

P A B e e g v dv

e e h L T w h g w dw

α

α λ

+ +

+ +

∞− −+

∞− + −
+ +

=

+ + +

∫

∫
 

( ) ( ) ( )

( )

0 1 0 11

1 1

,0

0 1 , 1 1 , 1
0 0

| ( )

1 0.5 ( ) 0.5 ( )

u i s iu i

s i s i

u s u ii

h L h h L hT v h

T w h T w h
s i s i s i s i

P A B e e g v dve

h L h e g w dw T h we g w dw

α

α αλ λα

+ ++

+ +

∞− −+ − +

∞ ∞
− −

+ + + +

=

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦

∫

∫ ∫
 (24) 

Using expansion
0 !

n
x xe

n

∞

=∑ , equation (24) becomes 

( ) ( ) ( ) ( )

( )( ) ( )

( )

0 1 0 11
,

0 0

1
0 1 , 1

0 0

1
1 , 1

0 0

| ( )
!

1 0.5 ( )
!

0.5 ( )
!

u i s i
i u s

n

u ih L h h L h
u i

n

s i
s i s i

n

s i
s i s i

P A B e e
T v h

g v dv
n

T w h
h L h g w dw

n

T w h
T h w g w dw

n

α

α
λ

α
αλ

+ +− −
∞∞

++ +

∞∞
+

+ +

∞∞
+

+ +

=
−

⎡ −
⎢ + +
⎢
⎣

⎤−
⎥+
⎥
⎦

∑∫

∑∫

∑∫

  

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

0 1 0 11
,

0 0

1
0 1 , 1

0 0

11
1 , 1

0 0

| ( )
!

1 0.5 ( )
!

0.5 ( )
!

u i s i
i u s

n

nu ih L h h L h
u i

n

ns i
s i s i

n

ns i
s i s i

P A B e e
T h

v g v dv
n

T h
h L h w g w dw

n

T h
T h w g w dw

n

α

α
λ

α
αλ

+ +− −
∞∞

++ +

∞∞
+

+ +

∞∞
++

+ +

=
−

⎡ −
⎢ + +
⎢
⎣

⎤−
⎥+
⎥
⎦

∑ ∫

∑ ∫

∑ ∫
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( ) ( ) ( ) ( )

( )( ) ( ) ( )

0 1 0 11

,
0

1 1 1
0 1 1, 1 , 1

0 0

|
!

1 0.5 0.5
! !

u i s i
i u s

n

u ih L h h L hn

u i

n n

s i s in n
s i s is i s i

P A B e e
T h

v
n

T h T h
h L h w T h w

n n

α

α α
λ αλ

+ +− −
∞

++ +

∞ ∞
+ + +

+ ++ +

=
−

⎡ ⎤− −
⎢ ⎥+ + +
⎢ ⎥
⎣ ⎦

∑

∑ ∑
(25) 

Let ( )k
kM v V= −  denotes the kth moment and assume that the probability density 

function of speed is a Gaussian distribution, this leads to M2i+1 = 0, i = 1, 2, … Using the 
definition of average values for speed V, variance Θ as follows: v  = V, ( )2v V− = Θ .  

( )2 2 2
2M v V v V= − = − = Θ  

( )3 3 3
3 3 0M v V v V V= − = − − Θ =  

( ) 2( 1) 0
2

k k k k
k

k kM v V v V V −−
= − = − − Θ =  

Then we end up with the general formula for kv : 

( ) 21
, 2

2
k k kk k

v V V k−−
= + Θ ≥   (26) 

Substituting equation (26) into equation (25), after a lengthy but straightforward algebra 
calculation we end up with the following equation for mandatory lane-changing probability 
from on ramp to the adjacent main lane 

( ) ( ) ( )

( )( ) ( )

( )( )

0 , 1 0 , 1 1
,

2

, 1 , 1

1 1

2

, 1 1
0 1

, 1 1 , 1 1
1 , 1

1
2

1 0.5 1
2

2
0.5

2

u u u i i s s s i i
u i

U
u i u ih L T V h h L T V hs i

s i

s i s i
s i

s i s i s s i i
s i s i

P e e
T h r

r

T h
h L h

T h T V h
T h V

α αα

α
λ

α α
αλ

+ + +− −++ + + ++

= +

+ +
+

+ + + +
+ +

=
⎡ ⎤Θ⎢ ⎥+
⎢ ⎥

⎦⎣
⎧ ⎡ ⎤Θ⎪ ⎢ ⎥+ + + +⎨ ⎢ ⎥⎪ ⎦⎣⎩

⎫⎡ ⎤Θ − ⎪⎢ ⎥+ + ⎬
⎢ ⎥⎪⎦⎣ ⎭

∑

 (27) 

From equation (27) it can be seen that the mandatory lane-changing probability depends on 
a lot of variables such as density on the main lane, the speed of merging traffic and main 
traffic as well as the speed variance, etc. Besides, it is also dependent on the safety margin 
that reflects the willingness of the subject drivers to accept smaller gaps when approaching 
the end of the ramps 

In the case of off ramp, it is easy to show that the probability of diverging flow is 
dependent only on the vehicles in front, therefore we have  

( ) ( )
0 , 1

,

2

, 11
2

u u u i i
u i

u i u ih L T V hP e
T hα α

−− −+ +
=

⎡ ⎤Θ⎢ ⎥+
⎢ ⎥

⎦⎣

  (28) 

To derive the macroscopic equations from equation (11), one needs to determine the right 
hand side (RHS) of equation (11), and multiple both sides with vk (k=0,1) then integrate them 
over the speed v ∈ [0,∝), this is the so-called method of moments. 
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0
,1

, , ,0 0 0
,

, , ,

0 0
int

interaction spontaneous lane-changing madatory la

u ik k k
u i u i u i

u i

spon man
u i u i u ik k k

lc lc

V v
v dv v dv v dv

t x v

v dv v dv v dv
t t t

ρ ρ ρ
τ

ρ ρ ρ

∞ ∞ ∞+

∞ ∞

⎛ ⎞−∂ ∂ ∂
+ + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫
1442443 1442443

0

ne-changing

∞

∫
1442443

 (29)   

In equation (29), the first two terms of LHS have been determined by Hoogendoorn and 
Bovy (1999), Helbing et al (2001). The last term is then determined from equation (27) and 
(28) for traffic at on and off ramps as below: 
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∫ ∫ ∫  (30)  

  
• k = 0  

Equation (30) becomes , ,, , ,

0

,
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u i u iu i u i u i
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• k = 1 (momentum dynamics) 

Equation (30) becomes 
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∫  

The macroscopic ML MC model for traffic flow at merging zones is obtained as below: 
 

• Conservation law 
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 (31) 

• Momentum dynamics 
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i i

E
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 (32)  

where ,
,

u i

end
u i

P
x x−

Γ =  

 
4. Simulation and calibration results 

In this section, we simulate the developed model with data obtained from freeway A1 in 
the Netherlands. A dedicated numerical scheme is chosen for the simulation of the model 
(Ngoduy et al., 2004). The data used in this paper is obtained from the Dutch Ministry of 
Transport, Public Works and Water Management. This data contains the time-dependent 
(every 5 minutes) traffic flow rate and mean speed at each detector on freeway from KM 86.6 
to KM108.6, and a part of this freeway from KM 86.6 to KM 90.0 during time period 14h00 
to 19h00, 22nd  October 2002, when the freeway was seriously congested, is used as shown in 
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Figure 2. The developed model is calibrated using a simple automated calibration procedure 
(e.g. Ngoduy and Hoogendoorn, 2003). In this procedure, a generalization of the simplex 
Nelder-Mead algorithm is applied to minimize the total mean square errors (TMSE) between 
observed speed (flow rate) and estimated model-based speed (flow rate). 

 
 
 
 
 
 
KM 86.6         87.3           87.8        88.2         88.4            88.7        88.9  90.0 
 

Figure 2:  Layout of roadway for simulation 
 
The objective function to be optimized is formulated as total mean square errors: 

}{ 2 2

, ,
1

( ) ( ) ( ) ( )Min
D N

d m d d m d
d t

Z q t q t V t V tµ
=

= ⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦∑∑  (33)  

In equation (33), qd and Vd denote flow and mean speed predicted, qm,d and Vm,d denote 
flow and mean speed measured at detector d, µ is weighting factor (µ = 0.1 in this paper). 

The length of the cells equals to 50 m, while the time-step equals to 1 s. The data used to 
feed the model is given at KM 86.6 and KM 90.0 of freeway and 87.8 of on-ramp (boundary 
conditions) and the objective function is calculated with the data at the remaining detectors.  
Figure 3 shows the input data for simulation. The model parameters to be calibrated are:  

• Free speed V0 
• Jam density rj 
• Critical density rcr 
• The relaxation time τ 
• Reaction time T 
• Variance pre-factors α0, δα0, δr 
 

Calibration results 
The automated calibration process is carried out with data set on 22nd October 2002 

successfully for the developed model. The calibration results are shown in Table 1. These 
parameters are in good agreement with the one found by Helbing et al. (2001).  

The outputs of simulation and calibration process are shown in comparison with real data 
in Figures 4, 5 and 6. 

 
Table 1:  Optimal model parameters 

Free 
speed 
(km/h) 

Jam 
density 

(veh/km) 

Critical 
density 

(veh/km) 

Relaxation 
time 
(sec) 

Reaction 
time 
(sec) 

α0 δα0 δr 
(veh/km) 

Total 
RMSE 

(%) 
110 160 33 12 1.4 0.008 0.05 5.0 12% 

 
It can be seen from figure 4, 5 and 6 that the developed model predicts the phase-space 

evolution of mean speed and density of the sample freeway A1 in good agreement with real 
data. We can also see from figure 6 that the results estimated by the proposed model at the 
bottleneck are very close to the real data. The oscillations in mean speed and density near 
congestion due to flow from on ramp were captured well, which means that the proposed 
model is able to describe accurately the traffic flow dynamics for freeway with on ramps. 
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Figure 3: Data input for simulation and calibration process. 
 

 
      Calibration             Data  

 
Figure 4: Phase-space evolution of speed, model calibration vs. real data 

 
 

 
 

        Calibration         Data 
 

Figure 5: Phase-space evolution of density, model calibration vs. real data 
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Figure 6: Time evolution of speed and density, model calibration vs. real data 
 
5. Conclusions and further research 

In this paper, we have developed a gas-kinetic flow model for mixed traffic at on and off 
ramps and derived the corresponding macroscopic model based on the so-called method of 
moments. In this model the lane changing maneuvers between on/off ramps and freeways 
have been explicitly taken into account by the renewal process. We have found that the lane-
changing probability depends on a lot of factors as density, speed, speed variance and vehicle 
compositions on the target lane.  
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We have also calibrated successfully the developed model using empirical traffic data 
collected in Dutch freeway A1. The resulting model estimations are in good agreement with 
the observed flow and speed, especially the fluctuations of mean speed and density at on 
ramp. It reflects satisfactorily the impact of merging flow on main flow.  

Our current work is to investigate and calibrate/validate the ability of the model to predict 
the evolution of traffic variables in heterogeneous freeways. This is a difficult task due to the 
lack of detail data. We expect that the model be able to describe the interplays between 
vehicle types and their effects on the traffic evolution in main lanes. The further work is to 
take into account the reduction of speed of vehicle on the shoulder lane to create a gap for 
merging vehicle. A cross-comparison of the improved model with a simple assumption of 
traffic interaction at on and off ramp will be made. 
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