
 

1

 
 

TRAVEL TIME RELIABILITY ON FREEWAYS  
 

J.W.C. van Lint, H. Tu, H. J. van Zuylen  
Transportation and Planning Department, Faculty of Civil Engineering and Geosciences, Delft 
University of Technology, Stevinweg 1, P.O. Box 5048, 2600 GA Delft, The Netherlands, tel. 

+31 15 2785061, fax +31 15 2783179,  
H.vanLint@citg.tudelft.nl, H.tu@citg.tudelft.nl, H.J.vanZuylen@citg.tudelft.nl 

 
Abstract 

In contemporary transportation planning route travel times are considered key indicators on 
the reliability of a road network. Mean and variance of travel times do not provide much insight 
in the travel time reliability since these metrics tend to obscure rare but relevant high travel times 
under specific circumstances. We therefore introduce two metrics, based on just three 
characteristic percentiles (10

th
, 50

th
 and 90

th
), which indicate both congestion as well as possible 

onset (dissolve) of congestion. High values of either metrics indicate high travel time 
unreliability. We subsequently propose a simple neural network model to predict these percentile 
values and hence unreliability based on time-of-day (TOD), and day-of-week (DOW).  

The conclusion for traffic managers is twofold. The metrics can be used to identify not only 
the unreliability of travel times for a given DOW/TOD period, but also identify DOW/TOD 
periods in which it is likely that congestion sets in (or dissolves. Practically, this means 
identifying the uncertainty of start, end and hence length of morning and afternoon peak hours. 
Secondly, the neural network based model can serve as a long-term travel time prediction tool, 
but also as a travel time unreliability prediction tool, using the two metrics presented above on 
the model outcomes.  
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1. Introduction  

In contemporary transportation planning route travel times are considered key indicators on 
the reliability of a road network (Lo, 2002, Cassir et al., 2001). In the Oxford Dictionary reliable 
is defined as "consistently good in quality or performance, and able to be trusted", and reliability 
as "the quality of being reliable". Although many different definitions for travel time reliability in 
a transportation network or corridor are proposed (refer to for example (Bell and Cassir, 2000)), 
in general travel time reliability relates to properties of the (day-to-day) travel time distribution as 
a function of time of day (TOD), day of the week (DOW), Month of the Year (MOY), and 
external factors such as weather, incidents and road works. The wider (longer-tailed) the travel 
time distribution, the more unreliable travel time on a freeway network or corridor is considered. 
As we will show, the travel time distribution is sometimes sharply skewed, implying that 
descriptive statistics such as mean and variance (standard deviation) are not very useful in 
reconstructing the travel time distribution nor as indicators of reliability. Rather, we should focus 
on median and percentile values (Bates et al., 2002, Bates, 2001) which provide us with more 
robust estimates of how likely a specific travel time is given certain circumstances (e.g. TOD, 
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and DOW values), and provide us with easier means to reconstruct the travel time distribution.  
In this paper, we explore and aim to predict the distribution of travel times on a densely used 

freeway corridor, which is part of the northern beltway around the metropolitan area of 
Rotterdam (The Netherlands). Although no measured travel times (on a large scale) are available, 
the corridor is equipped with inductive loops about every 500 meters measuring average speeds 
on a minute basis. A large database of corridor travel times can subsequently be estimated using a 
speed based travel time estimation algorithm, such as the PLSB trajectory algorithm proposed in 
(Lint and Zijpp, 2003). With this travel time database we can subsequently look at TOD and 
DOW trends in travel times and calibrate models to predict the distribution of travel times. The 
neural network based model we present in this paper could for example be applied in integrated 
route planning applications on traffic information websites and commercial route planning 
software.   

The article is organized as follows. In the first section characteristics of the day-to-day 
distribution of travel time is investigated and characteristic metrics describing this distribution are 
proposed. In the section thereafter we present a neural network based model for predicting the 
travel time distribution for a given TOD and DOW based on characteristic percentiles. In the 
final sections we present some results of the model and offer conclusions and further research 
directions   
 

2. Characteristics of the day-to-day travel time distribution  

In the introduction we discussed the day-to-day travel time distribution, capturing the 
variability of travel times for a particular day-of-the-week (say a Monday) within a particular 
departure time period (for example between 9:00 and 9:15). However, within a single departure 
time period k (in this case 15 minutes) travel times vehicles will experience are also distributed, 
due to differences between drivers and the complex spatio-temporal dynamics of freeway traffic 
flow within these periods. In (Lint, 2004a) it is found that within small departure time periods (of 
1 minute) this distribution is approximately normal and stationary with respect to both mean and 
variance, however, in larger departure time periods we may expect this no longer holds.  

Nonetheless, here we will explore day-to-day variability travel times only, and propose key 
characteristics to reconstruct and predict this distribution. As we may expect that traffic flow 
operations on different days are unrelated1, we can account for the extra within period variability 
separately. In the recommendations section we will propose a method to do this.  

For the analysis below we look at the (estimated) travel times between 6:00 AM and 8:00 PM 
for one whole year (2002) on the 6,5 kilometre eastbound carriageway of the A20 freeway 
between Rotterdam Centre and Rotterdam Alexander polder. This densely used free stretch is 
also part of the northern beltway around the metropolitan area of Rotterdam (The Netherlands). 
Travel times were estimated with the PLSB trajectory algorithm (Lint and Zijpp, 2003) for every 
departure minute between 6:00 AM and 8:00 PM, while the TOD period was chosen as 15 
minutes. Per 15 minute TOD period the median value (50 percentile) of the available 15 travel 
times was taken as the travel time for that particular TOD.   

Figure 1 shows the variability of travel times on the A20 for three DOW values, that is 
Thursdays (Figure 1 top), Fridays (Figure 1 middle) and Saturdays (Figure 1 bottom). In the 
figure 5, 10, 25, 50 (median), 75, 90 and 95 percentiles are shown as a function of time of day 

                                                 
1 For example, the dynamics of a traffic jam building and dissolving on day X is not affected or influenced on 
how a traffic jam builds and dissolves on day Y  
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(TOD). A 75 percentile value of say 10 minutes for TOD 16:00-16:15 reflects the percentage of 
days on which during that TOD a median travel time of 10 minutes or less occurred.   

   
Figure 1: Variability of travel times in 2002 for 15 minute time-of-the-day (TOD) periods 

between 6AM and 8PM on the northern Rotterdam beltway A20 on Thursdays, Fridays and 
Saturdays  
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On Thursdays (which may be classified a typical weekday travel time pattern), a morning and 
afternoon peak are clearly identifiable, while on Fridays in more than half the cases no morning 
peak occurs. On Fridays the afternoon peak starts earlier and lasts longer than on other weekdays. 
On Saturdays, in 75% of the cases no congestion occurred, albeit that there were some serious 
exceptions. In 5% of the cases travel times were three times higher than the normal (no 
congestion) case of 4 minutes.  

As argued in (Bates, 2001) the 90
th

 percentile is a robust statistic representing the upper bound 
of travel times occurring for a particular TOD/DOW. We will therefore use it in the reliability 
metrics we propose below. From Figure 1 it becomes clear that the travel time distribution for 
many DOW/TOD values are skewed to the left, reflecting the fact that in still a considerable 
numbers of cases extreme travel times occurred. As such, the skewedness of the travel time 
distribution for a given DOW/TOD is an indicator for the travel time reliability. The more 
skewed the travel time distribution, the less reliable the travel times. In (Lam and Small, 2001) 
the distance between the 90

th
 and 50

th
 percentile is proposed as indicator of reliability, we 

propose for skewedness the ratio of the distance between the 90
th

 and 50
th

 percentile and the 
distance between the 50

th
 and 10

th
 percentile:  

    (1)  
In which TXX denotes the XX percentile value. In general, the larger λ

skew
 the higher the 

probability of extreme travel times (relative to the median) that may occur. Since metric is a ratio 
it can be interpreted and applied regardless of the absolute magnitude of travel times.  

The width of the travel time distribution is also an indicator for travel time reliability. The 
wider the distribution is (relative to the median), the higher the uncertainty and the lower travel 
time reliability. We propose the following metric  

    (2)  
which is the ratio of the range of travel times in which 80% of the observations around the 

median fall into, and the median travel time. Large values indicate the width of the travel time 
distribution is large relative to its median value.  

Figure 2 shows scatter plots of both λ
var

 (top) and λ
skew

 (bottom)
 
against median travel times 

(in seconds!). From the top graph we see λ
var

 steeply increases with median travel time until some 
threshold value of median travel time (in this case 0.2) is reached, after which this metric remains 
constant or even slightly decrease again. Put simply, for higher median travel time, the travel 
time distribution is also wider and hence our uncertainty is larger. The metric for skew (λ

skew
) 

also steeply increases with median travel time but decreases after reaching a maximum at the 
(approximately) same threshold value as above. In the intermediate conditions between free-
flowing and congested traffic, λ

skew
 is up to ten times larger then in free-flow or congested 

conditions.   
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Figure 2: Scatter plots of two measures of reliability (spread and skew) as a function of 

median travel time. 

 
Figure 3: Scatter plot of skew against spread of the travel time distribution. 
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More counter-intuitively is the relation between λ
skew

 against λ
var

. Figure 3 (which shows a 
scatter plot of λ

skew
 against λ

var
) illustrates how λ

skew
 steeply (near exponentially) increases with 

λ
var

. As traffic becomes more severely congested (λ
var

 > 0.2) the increase in skew slows down, 
and reaches a maximum (in this case ± 11) between 0.4 ≤ λ

var
 ≤ 0.5. For  λ

var
 > 0.4 we see two 

branches of the figure. One follows the previous trend and remains constant or slightly decreases 
again. The second starts with low values of λ

skew
 (< 0.2) for λ

var
 ≈ 0.4 and increases for λ

var
 > 0.4.  

The explanations to these phenomena are straightforward. In periods just before (after) the 
regular peak periods, most travel time observations are low, that is near free-flow travel time, 
while in a few cases congestion has already set in (still persisted) and high travel times occurred. 
This results in (strongly) left skewed day-to-day distributions2. Figure 4 schematically shows how 
this translates to the results in Figure 3. In case of queue build up / dissolving the travel time 
distribution is strongly skewed to the left, while in case of congestion the travel time distribution 
is skewed to the right (the right branch in Figure 3), reflecting the fact that in most of those time 
periods high travel times occurred, with a few (extreme) exceptions. In free flow conditions the 
travel time distribution is more or less symmetric (far left in Figure 3). To a degree, the skew in 
the transient conditions may also be influenced by the (arbitrary) choice of the TOD period size 
(in our case 15 minutes). Different binning of the data may lead to a slightly different pattern, we 
argue, however, the general pattern stays the same.   
 

 
Figure 4: Schematic representation of the relation between skew and spread of the travel time 

distribution 
 

The conclusion is that three characteristic percentiles provide us with two key indicators for 
the width and shape of the travel time distribution. The first, λ

var
 globally indicates whether in a 

certain DOW/TOD period congestion occurs, while the second, λ
skew

, indicates congestion build 

                                                 
2 Similarly, in within peak hour time periods most travel time observations are high, except on a few days during 
which no congestion occurred, yielding strongly right-skewed day-to-day distributions. 
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up and dissolve. More particularly, high λ
skew

 values indicate whether or not the start or end of 
the peak hour might occur in a particular TOD, which provides for a means to quantify the 
uncertainty in the duration of a peak hour on a particular DOW. In all cases, high values for 
either indicator imply travel times can be classified more unreliable than for low values.  
 

3. Long term travel time prediction model  

In this section we derive a simple model that predicts the three percentiles and inherently the 
reliability metrics proposed above. We may expect that a percentile value can be considered a 
function of time of day (TOD), day of the week (DOW) and the month of the year (MOY). The 
latter reflects seasonal differences (e.g. effect of spring and summer holidays, but also climate 
influences). The general form of this model reads  

    (3)  
in which Ω denotes a vector of parameters to be estimated from our database. As a preliminary 

choice we use a simple feed-forward artificial neural network (ANN)3, which uses as inputs TOD 
and DOW only. We leave out the seasonal component, since we have too few TOD/DOW/MOY 
measurements (per tupelo only 4 or 5 values) to create statistically sound percentiles. The neural 
network model has a sigmoid output layer of size three producing the output vector y shown in 
eq. (4).  

    (4)  
The reason for this particular choice is that this ensures T10 ≤ T50 ≤ T90 (we choose an output 

transfer function which is always positive). Note that the three percentiles can be easily obtained 
with this output vector. For the hidden layer (size H) we choose a hyperbolic tangent transfer 
function. The number of inputs U to that layer equals two (TOD and DOW). Mathematically, this 
ANN model can be written as  

  (5)  
in which y

k
 denotes one of the three model outputs, u

j
 denotes one of the U inputs, and b and w 

the vectors of adjustable parameters of the output and hidden layer respectively. Note both hidden 
and output layer have a bias weight. We use the Levenberg-Marquardt  / Bayesian Regularization 
(LMBR) algorithm described in (Foresee and Hagan, 1997) to train this model. As shown in 
(MacKay, 1995) and (Lint, 2004b) the Bayesian statistics behind this algorithm provide a 
superior and mathematically sound way to prevent ANN over-fitting and, as a bonus, an 
analytical and unified way of calculating confidence intervals around the predictions. We can 
therefore set H initially to the arbitrary size of 15. All input and output data is linearly scaled to 
the interval [0.1,0.9] for better and more stable learning (Hagan and Menhaj, 1994).   
 
                                                 

3 A comprehensive introduction in the field of ANN’s can be found in Bishop, C. M. (1995) Neural Networks for 
Pattern Recognition, Oxford University Press, United Kingdom.  



 

8

4. Results  

We have trained the ANN on the same dataset as described earlier (TOD/DOW percentiles for 
2002). From the training it appeared that over 95% of the parameters were dubbed “effective” 
(MacKay, 1995), which is to be expected in such a relatively small model with only two 
independent variables (TOD and DOW). It also indicates given the data we used and the choice 
of input and output our preliminary choice of H=15 proved just about sufficient. Below we test 
these results against TOD/DOW percentiles calculated for the whole year of 2001. Figure 5 
shows the results of the ANN model of eq. (5) for the same three days as were shown in Figure 1, 
that is on Thursdays, Fridays and Saturdays.  

In the figure, it is clear the ANN provides a smooth approximation of these three characteristic 
percentile time series. We may conclude the model has certainly learned the key differences 
between these travel time profiles on different days.  

• On Thursdays, in more than 50% of the cases both a morning and afternoon peak occurs, the 
first between 8:00 and 9:00 AM, the latter between 15:00 and 18:15 PM  

• The Friday afternoon peak starts earlier and lasts longer than on other weekdays  
• On Saturdays, most of the time no congestion occurs, during the whole afternoon minor 

congestion may occur in less than half the occasions.  
As a more quantitative indication of the performance we finally note that on the test data 

(2001), the following overall performance was obtained. In the ensuing N denotes the total 
number of TOD/DOW values4.  In terms of mean relative error we then find  

 
and in terms of relative standard deviation  

    
In both cases T (TOD,DOW) is a vector (T10, T50, T90). On the average, the model is almost 

unbiased, albeit there is a considerable residual error in its predictions, which is largely due to the 
smooth approximation the model makes.   
 

5. Conclusions  

The conclusions of this study can be roughly subdivided in two parts. First, following the 
generally accepted notion that median and percentile values are more robust statistics than mean 
and variance for quantifying travel time reliability, we derived two characteristic metrics based 
on the median, 10

th
 and 90

th
 percentile of the day-to-day travel time distribution.   

• λ
var

 provides us with the relative width of the travel time distribution (with respect to the 
median) in a certain DOW/TOD period. Large values indicate larger uncertainty and 
hence unreliability.   

• λ
skew

 depicts the skewedness of the distribution. In DOW/TOD periods where congestion 
sets in or dissolves, this metric is large (10-15), while in severely congested conditions the 
metric very small (<<1). In free flow conditions λ

skew
 is approximately one. Large values 

depict high uncertainty and hence unreliability.  
                                                 
4 We used daily profiles from 6:00Am-8:00PM, with 15 minute time periods, yielding N = 56*7=392 (TOD/DOW combinations) 
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The metrics can be used to identify not only the unreliability of travel times for a given 
DOW/TOD period, but also identify DOW/TOD periods in which it is likely that congestion sets 
in (or dissolves. Practically, this means identifying the uncertainty of start, end and hence length 
of morning and afternoon peak hours.  

Secondly, we proposed a simple neural network based model to predict the three percentiles 
and hence the two metrics. On a separate test dataset, the model proved almost unbiased results, 
but produced considerable variance. We argue, however, the predominant reason is that this 
(preliminary) model makes a very smooth prediction, which is on the average correct, but results 
in considerable variance due to the more pronounced variability in the target signal. Even in its 
current form, the model can serve as a long-term travel time prediction tool, but also as a travel 
time unreliability prediction tool, using the two metrics presented above on the model outcomes.   

   
Figure 5: example performance of long term ANN travel time prediction model  
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6. Further research directions  

The validity, robustness and most of all usefulness of the reliability metrics should be further 
investigated in various application domains, ranging for discrete choice modeling (route and 
departure time), to real time Advance Travel Information Systems (ATIS) such as web-based or 
in-car route navigation tools.   

Furthermore, the artificial neural network model we developed here is still simple, capturing 
time-of-day and day-of-week trends only. The model should be augmented with seasonal trends 
(e.g. month of the year or quarter), and could also include for example external factors such as 
weather and large-scale road works. For this a large-scale database containing several years of 
(estimated) travel times and associated external factors on a number of different freeway routes is 
needed.   

Finally, the travel time distribution in a particular TOD/DOW (MOY/…) period could be 
augmented by the within period (here of magnitude 15 minutes) distribution of travel times.  This 
within period distribution reflects differences in individual driver behavior and more importantly, 
the dynamics of freeway traffic. Following the same reasoning as in (Lint, 2004a), we could 
assume that within period variance is independent of day-to-day travel time variance. This is a 
reasonable assumption, since we may expect for example congestion build up on day X be 
unrelated (physically!) to congestion build up on day Y. Assuming statistical independence then 
allows one to super impose day-to-day with within period variance.  
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