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Abstract 

In the last thirty years, there has been a considerable increase worldwide in the use of 
disaggregate models. These range from the seminal work of McFadden and Ben Akiva 
(Domencich, McFadden, 1975; McFadden, 2000; Ben-Akiva, Lerman, 1985) to more 
recent advances involving the use of mixed multinomial models (Bhat, 1997, 2000) whose 
application has been facilitated by the availability of a number of software packages. 
However, despite this undeniable progress, the disaggregate approach still requires a 
number of hypotheses and, in particular, a complex estimation process (Bonnel, 2002). 
Consequently, the aggregate approach is still widely used in many countries, in particular 
France where there has been little development of disaggregate modal choice models (there 
have been few really significant studies for urban areas: Abraham et al., 1961; CETUR, 
1985; Daly, 1985; CETE de Lyon et al., 1986; Bouyaux, 1988; Hivert et al., 1988; RATP, 
Cambridge Systematics, 1982; Rousseau, Saut, 1997; CERTU, 1998b). Although the 
development of aggregate modal choice models is fairly simple as far as formalisation is 
concerned, the same cannot really be said to apply for their estimation. The samples in the 
travel surveys that are used for these estimations are generally too small for the needs of 
aggregate models. It is therefore usually necessary to conduct zonal aggregations which 
result in a high degree of uncertainty about the quality of the estimations. In response to 
this situation this paper proposes an estimation method which allows very small-scale 
zoning to be retained. The paper starts with a description of the estimation problem for 
aggregate models (Section 1) and then describes the model we have developed (Section 2). 
We then present an application of this method for estimating an aggregate modal choice 
model for the Lyon conurbation. This empirical analysis allows us to study the benefits of 
our method in comparison with more conventional methods (Section 3). 
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1. The problem of estimating aggregate models 

We shall present the logit functional form first (Ortuzar, Willumsen, 2001), as this is 
usually used for aggregate models (Section 1) and then consider the problem of calibration 
(Section 2). 

 
1.1. Logit or logistical regression models 

The theoretical basis for logit models is derived from neo-classical microeconomic 
theory and a probabilistic approach towards utility, whose deterministic component alone 
is defined. This functional form is nevertheless usually justified on empirical grounds. 
Analysis of modal split data shows that an S-shaped curve very closely fits the survey data. 

Put simply, neo-classical microeconomic theory assumes that individuals are rational, 
and this rationality leads them to select the alternative with the greatest utility (Henderson, 
Quandt, 1980). In our deterministic (and aggregate) approach utility is expressed by: 
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where iV  is the utility of a good; 
 

kiX  are the various random variables used to estimate utility; 

kiβ  is the coefficient of the variable kiX . 
 
Let us consider the simplest case of a choice between two transport modes, the car and 

public transport. The individual will select the mode with the highest utility. He will 
therefore select the car if: 

 
PTPC VV ≥ , therefore if 0≥− PTPC VV  (2) 

PCV  denotes the utility of the private car and PTV  the utility of public transport. 
 
A deterministic utilisation of the model based on the average utility of the car and 

public transport leads to an all-or-nothing choice (0 or 100%) on each origin-destination 
pair. This obviously disagrees with the available empirical data which generally has an S-
shaped distribution (Figure 1). To cope with this it is necessary to adopt a probabilistic 
approach. The aggregate approach causes us to consider an average individual travelling 
between a zone i and a zone j who is faced with a choice of transport mode. The next stage 
is to compute an average utility for our average individual for each of the modes in the 
light of his or her socio-economic characteristics. Of course, our average individual is 
fictional and in reality individuals’ characteristics are distributed around his or hers. We 
can therefore use the probabilistic approach to constant utility developed by Luce and 
Suppes (1965), who were responsible for the theoretical justification of the use of the 
logistic functional form in discrete choice processes. 

Below we shall restate, in simplified form, the presentation of this by Ben-Akiva and 
Lerman (1985). Let nCiP  be the probability of individual n selecting the alternative i 
from the set nC  of the alternatives available to him or her. This probability must obviously 
satisfy a number of properties: 

 
nn Ci,1CiP0 ∈∀≤≤  (3) 

 
which is the equality for the deterministic case. 
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Figure 1: The general S-shaped modal split curve 

 
For each subsample nn CC~ ⊆ , the probability of nC~  in nC , is given by: 
 

∑
∈

=

nC~i
nnn CiPCC~P  (5) 

 
From which we can deduce the conditional probability of i in nC~ : 
 

nn

n
nn

CC~P

CiP
CC~iP =⊆  (6) 

 
on condition that at least one of the conditional probabilities of an alternative that belongs 
to nC~  is not nill such that nn CC~P  is not nill. 

 
Luce (1959) constructed the simplest model that is based on a probabilistic constant 

utility approach, according to Ben-Akiva and Lerman (1985). It is based on the following 
hypothesis known as the “choice axiom”: The “choice axiom” stipulates that for any 
alternative that belongs to the subset nC~  in the set nC  such that nn CC~i ⊆∈ , we have: 

 
nnn C~iPCC~iP =⊆  (7) 

 
“In other words, if some alternatives are removed from a choice set, the relative choice 

probabilities from the reduced choice set are unchanged” (Ben-Akiva, Lerman, 1985). 
 
From Equations 6 and 7 we can deduce the following: 
 

nnnn CC~P*C~iPCiP =  for all cases where nn CC~i ⊆∈  (8) 

 
from this axiom we can deduce the Independence from Irrelevant Alternatives property 

also known as IIA, which is familiar to logit model users: 
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Luce (1959) has shown that in the case where this axiom is satisfied, the probability of 

alternative i being selected can be written very simply. To begin with, we shall restrict 
ourselves to a set Cn which contains only two alternatives i and j: 
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as µ is a constant it is generally integrated within the formulation of utility. The equation 
then becomes: 
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This is the equation for the logistic distribution. This theoretical justification is usually 

ignored in favour of the empirical observation of survey data combined with an analytical 
simplification. Empirical observation gives an S-shaped curve that resembles the logistic 
distribution. Likewise, the logistic functional form, by the IIA property, results in a very 
simple equation even in the case of a very large number of alternatives. It is simply a 
generalisation of equation 11: 
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The IIA property results in a very simple analytical form, which is the strength of the 

logit formulation in comparison with the others. But this property is also the model’s 
weakness, as it results in the well-known blue bus/red bus paradox (Ben Akiva, Lerman, 
1985). This property is actually a direct consequence of the hypotheses that are present in 
the “choice axiom”, which resembles a hypothesis of independence between the utility of 
each alternative. This hypothesis is frequently acceptable when there is only a small 
number of alternatives. However, it becomes much less so when there are more 
alternatives, particularly when some of the alternative modes are of the same type (for 
example underground, bus, train, etc.). It was in order to cope with these difficulties that 
nested logit models or other more complex functional forms were developed (Bhat, 1997, 
2000; Bonnel, 2002). 

While the analytical form is extremely simple, estimation is much less straightforward 
because of the small size of the samples that are generally available for estimating origin-
destination matrices. 

 
1.2. Calibration of logit models 

Calibrating a logit model involves estimating the unknown coefficients, i.e. the 
coefficients of the utility function for each transport mode (the coefficients kiβ  if we keep 
the notation used in equation 1). To perform this estimation, data is required to construct 
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origin-destination matrices for each mode. Estimation aims to obtain kiβ  coefficients 
which provide the “best” reproduction of these modal demand matrices, for the selected 
convergence criteria. 

Data from household travel surveys are frequently used to construct these matrices. 
Consequently, both travel data and socio-economic data concerning the individuals are 
available for inclusion in the utility functions. The sample sizes of these surveys are 
nevertheless generally too small to provide matrices in which the data for each origin-
destination pair is sufficiently statistically significant. 

To provide a simple illustration of the problem we shall take the case of the Lyon 
conurbation. A transposition to other cities elsewhere in the world would not pose any 
problems, as the conclusions depend on the number of surveyed trips that are available for 
estimating the demand matrix for each mode. The most recent household travel survey in 
Lyon involved 6,000 households, corresponding to 14,000 respondents and a total of 
53,000 trips. In addition, the models developed for the conurbation are mostly based on a 
division of the conurbation into between 100 and 500 zones. Even if the largest-scale 
zoning is selected, the matrix already contains 10,000 cells. These cells will be filled by 
just 53,000 trips. Furthermore, it is necessary to construct one matrix for each mode that is 
considered. The matrices will therefore contain a large number of empty cells and very few 
cells which contain enough trips to provide an acceptable level of statistical accuracy 
(Figure 2 provides an indication of the confidence interval for the hypothesis of simple 
random selection with no refusals for a mode with an 18% share of the market. These 
hypotheses are obviously more favourable than those that actually pertain for the surveys 
which would therefore give even larger intervals (Richardson et al., 1995)). 
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Figure 2: Simplified estimation of the confidence interval in the case of an 18% modal 
share and simple random selection 

 
Combining household travel survey data with data from other sources, such as traffic 

counts or data provided by public transport operators can improve the quality of trip matrix 
estimation. However, the problem of statistical reliability still remains for many origin-
destination pairs. If the reference matrix is not sufficiently reliable the problem is 
automatically carried through to the estimation of the utility function coefficients for each 
of the modes. Generally, one of two solutions is adopted in an attempt to overcome this 
difficulty. 

The first is to select only those origin-destination pairs whose statistical accuracy is 
judged to be satisfactory. Consequently, the utility function coefficients are only estimated 
for part of the matrix. The main problem with this method is that it eliminates part of the 
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available data. Furthermore, there is no guarantee that the selected origin-destination pairs 
are representative of all the trips. It is even likely that they will not be, for the following 
reasons. The origin-destination pairs with the largest number of trips are usually central or 
radial and there are usually considerably fewer trips for peripheral flows. Calibration will 
therefore be conducted on the basis of flows for which public transport and 
environmentally friendly modes play a greater role. This selection procedure is therefore 
likely to reduce the variance of the initial data set, which will necessarily reduce the quality 
of the estimation. 

The second is to perform zonal aggregation to increase the number of trips on each 
origin-destination pair. The aggregation is generally performed on the basis of 
geoFigureical proximity with the attempt to combine zones whose characteristics do not 
differ excessively. In order to obtain adequately sized samples, the number of zones must 
be reduced dramatically. If we return to the example of Lyon, even if the number of zones 
is reduced to 25 (i.e. 625 O-D pairs) there are still many O-D pairs for which the accuracy 
is very low. The main problem with this aggregation relates to computation of the time and 
cost data for each O-D pair. When the size of the zone increases, it becomes difficult to 
estimate public transport access and regress times at the origin and destination. There are a 
number of possible routes between the origin zone and the destination zone depending on 
the exact location of the origin and destination within the zones. It therefore becomes 
difficult to compute a reasonable value for each explanatory variable. The generally 
adopted solution is to produce a weighted average of the data on the basis of the weight of 
each of the smallest zones that make up the macro zone. However, the size of the zones 
means that the accuracy of this measurement is uncertain as there is considerable variation 
in trip duration for a given origin-destination pair depending on the exact location within 
the origin zone and the destination zone. There has thus been an improvement in the 
accuracy of the flow estimates, but at the cost of a loss of accuracy in the estimation of 
certain explanatory variables which play a role in defining the utility of each mode. 

The zonal aggregation process prior to calibration must therefore comply with two 
contradictory objectives: 

- the number of zones must be as small as possible in order to increase the number of 
surveyed trips that can be used during estimation and hence the accuracy of the O-D 
matrices for trips conducted by each mode; 

- the zones must be as small as possible in order to produce accurate data for the 
explanatory variables that are included in the utility functions. 

To cope with this contradiction we shall propose another data aggregation method 
which conserves all the information and the smallest-scale zoning. 
 
2. A new calibration method 

This method uses a different process to aggregate O-D pairs in a way that conserves the 
smallest-scale zoning. Because for many O-D pairs the number of trips is too small, it is 
necessary to develop an aggregation procedure which is as accurate as possible. As this 
method is much simpler to implement in the case of a choice between two modes we shall 
limit our presentation to this case. In this two-mode situation, the probability of mode i 
being chosen can be written as follows (equation 11): 
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Modal choice is thus made on the basis of the difference in utility between the two 

modes. It is logical to use this quantity for the aggregation procedure. The principle is 
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straightforward; O-D pairs are aggregated on the basis of their closeness in terms of the 
difference in utility between the two modes. This procedure is justified by the fact that in 
general the statistical precision of the measurement of the difference in utility is much 
higher than that of a market share observation based on household travel survey data. This 
is because, generally, the variables used to compute the difference in utility are either zonal 
variables (the number of trips at zonal level is necessarily greater than at O-D pair level), 
or level of service variables whose accuracy depends on how the network is coded and 
how small the zones are. In practice, therefore, what is required is to achieve the right 
balance between having small-scale zoning for service level data and zones that are 
sufficiently large for the zonal data. 

To apply this method it is necessary to know the values of the utility function 
coefficients. However, these values are obtained during the model calibration phase. To 
remove this contradiction we propose an iterative process whose principal stages are as 
follows: 

- selection of initialisation values for the utility function coefficients for the two 
transport modes in order to initialise the iteration process. These values can, for example, 
be obtained from a previous study or from calibration performed with the classical method 
described in Section 1.2. Selection of these values is not of great importance as application 
of the method has shown that if an adequate number of iterations is performed the 
initialisation values do not affect the final results; 

- the utility of each mode is computed on the basis of the above coefficients, 
followed by the difference in the utility for each O-D pair in the smallest-scale zoning 
system for which explanatory variables with an adequate level of accuracy are available 
(therefore with very limited zonal aggregation or even none at all); 

- the O-D pairs are classified on the basis of increasing utility difference; 
- the O-D pairs are then aggregated. This is done on the basis of closeness of utility 

difference. The method involves taking the O-D pair with the smallest utility difference 
then combining it with the next O-D pair (in order of increasing utility difference). This 
process is continued until the number of surveyed trips in the grouping is greater than a 
threshold value that is decided on the basis of the level of accuracy that is required for trip 
flow estimation. When this threshold is reached the construction of the second grouping is 
commenced, and so on and do forth until each O-D pair has been assigned to a group; 

- for each new class of O-D pairs it is necessary to compute the values of the 
explanatory variables that are included in the utility functions for each mode. This value is 
obtained from the weighted average (with weights assigned on the basis of the number of 
trips made on each O-D pair) of the values for each O-D pair in the class. It is likewise 
necessary to compute the market share of each mode for this class. This is obtained very 
simply by summing the trips by each mode on all the O-D links in the class; 

- a new estimation of the utility function coefficients. 
This process must obviously be repeated many times to achieve satisfactory 

convergence in the estimation of utility function coefficients. This method has been tested 
on the Lyon conurbation in order to check its ability to reach convergence and its 
reliability when compared with empirical data. 
 
3. A Test of the method on the Lyon conurbation 

Before presenting the results of an application of this new calibration method we shall 
describe the model we have tested (Section 3.1) and the data used (Section 3.2). 
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3.1. The modal choice model for the Lyon conurbation 
We have selected a model developed in a previous study by the LET and the SEMALY 

(Lichère, Raux, 1997ab). This model aims to estimate the market split for motorised 
transport between private cars and public transport. It uses a logit functional form, even 
though the utility expression is not entirely additive for the selected explanatory variables: 
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where ijtpt  is the generalised time by public transport between zones i and j; 
 

ijtpc  is the generalised time by private car between zones i and j; 

imot  is the car ownership rate in zone i; 

jd  is the density of zone j, expressed in terms of population + jobs per hectare; 

mk , mptτ , mpcτ  and mδ , are the modal split parameters for purpose m. 
 
This formulation requires some explanation concerning the components of the utility 

functions for the private car and public transport: 
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is the generalised time taken on public transport to travel between zones i and j. It is 
weighted by a time perception factor which depends on the car ownership rate in the origin 
zone. The higher the car ownership rate the less favourably time spent travelling will be 
viewed (and therefore the more it will be increased). mptτ  is the coefficient of this 
variable which must be determined when the logit model is calibrated; 
 

- 
i

ij
m mot

tpc
*pcτ  

 
is the generalised time taken to travel by private car between zones i and j. It is weighted 
by a time perception factor which depends on the level of car ownership in the origin zone. 
The higher the car ownership level the more favourably time spent travelling will be 
viewed (and therefore the more it will be reduced). mpcτ  is the coefficient of this variable 
which must be determined when the logit model is calibrated; 
 

- j*m dδ   
 
is the density of zone j, expressed in terms of population + jobs per hectare. This term 
expresses pressure on parking. It was introduced because accurate parking data is not 
available for the Lyon conurbation. The higher the density of the zone (in terms of 
population and jobs) the higher the pressure on parking. We know from experience that 
this density frequently provides an accurate idea of parking pressure. In another study on 
Lyon in which parking constraint for central zones was introduced as a dummy variable the 
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coefficient ratios were found to be identical to the density ratios (Bonnel, Cabanne, 2000). 
However, while the introduction of this variable is important in order to calibrate the 
model and avoid biasing the coefficients of the other variables, this definition poses 
problems for forecasting. This variable would not allow us to simulate directly a 
modification of parking supply in the zone. At most, it would enable us to simulate 
changes in percentage terms. mδ  is the coefficient of this variable which must be 
determined when the logit model is calibrated. 

Six purposes were selected: work, primary education, secondary education, university 
level education, shopping/services and other purposes. For this application we have 
restricted ourselves to work trips (Ferey, 2002 contains an analysis of all the purposes). 

 
3.2. Data description 

Calibration was conducted using the trip origin-destination matrices for the two modes 
considered in this analysis, namely the private car and public transport. These matrices 
were constructed using data from the most recent household travel survey for the Lyon 
conurbation, which was conducted in 1995 (CETE de Lyon et al., 1995). In the course of 
this survey all the individuals aged 5 years and over from more than 6,000 households 
were questioned about the trips they had made on the day before the survey (Table 1). The 
methodology complied with a specification which is used for all household travel surveys 
conducted in French cities (CERTU, 1998a). The sample was obtained from random 
selection after geoFigureical stratification over 87 areas. 

 
Table 1: Principal data from the Lyon household travel survey 1995 

 Number of 
households  

Number of 
individuals 

Number of trips  Number of work 
trips 

survey sample size 6,001 13,997 53,213 8,123 
weighted sample
size 

536,317 1,195,189 4,659,777 728,818 

 (source: LET based on the Lyon household travel survey) 
 
The generalised time data for public transport was produced by the SEMALY public 

transport assignment model (SEMALY, 2000), which is a shortest path assignment model. 
Modelling was carried out using a description of the public transport network as it was at 
the time of the household travel survey (Ferey, 2002). 

Lastly, the generalised time data for the private car was produced by the CETE de Lyon 
using the DAVIS private car assignment model (PTV-Isis, 2001). Assignment was 
conducted using the Wardrop equilibrium assignment model (Ferey, 2002). 

These two models have to be used because no multimodal model exists for the Lyon 
conurbation. As two different programs are used we cannot be certain that the generalised 
time data for the two modes is completely consistent. This would be detrimental if our aim 
was to calibrate a forecasting model for the Lyon conurbation, but our study only aims to 
test the calibration method. The effect is therefore marginal. It is nevertheless obvious that 
we cannot re-use the calibration values we produce for forecasting purposes. Our use of 
two programs raises another problem, which results from the fact that they do not both use 
the same zoning. We therefore had to construct a passage matrix to move from one zoning 
to the other. Once again this situation would be detrimental if our aim was to estimate 
calibration coefficients, but it is not really for the test which we shall perform. 
Consequently, we have worked with the smallest-scale zoning which is common to both 
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the SEMALY and CETE de LYON programs, and then with more aggregated zonings. The 
available zonings are summarised below: 

- D196: division into 196 zones used for SEMALY’s TERESE program; 
- D87: division into 87 zones used for geoFigureical stratification during selection of 

the sample for the household travel survey; 
- D25: division into 25 zones on the basis of concentric rings and catchment areas 

(Lichère, Raux, 1997ab); 
- D7: division into 7 zones on the basis of concentric rings and an East-West 

separation along the Rhône (the river which crosses the conurbation and which is 
responsible both for physical severance and sociological differentiation). 

By examining the calibration for each of these divisions it will be possible to perceive 
the influence of zonal aggregation on estimation of the coefficients.  

 
3.3. Application of the estimation methods 

As we are considering just two transport modes, the logit equation (equation 13) can be 
written differently: 
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This brings us back to the linear form, which permits the use of linear regression to 

estimate the model instead of maximum likelihood (Ortuzar, Willumsen, 2001). We have 
therefore used linear regression for the various estimations of the modal split model. This 
means that it is possible to calibrate the model using any spreadsheet program. This led us 
to include the two estimation methods presented in Section 1.2 and Section 2 that are 
contained in transportation modelling courseware published by LET, IMTRANS and MVA 
(Bonnel et al., 2002).  

 
3.4. Analysis of results 

We shall begin our presentation with an analysis of the “classical” calibration method 
presented in Section 1.2 in order to illustrate the limits we have already described. We 
shall then describe the results from the new calibration method we are proposing. 

 
3.4.1. “Classical” calibration method 

The first stage of calibration is to select the appropriate zoning for this analysis. This 
requires us to reconcile two contradictory objectives (see Section 1.2): 

- the number of zones must be as small as possible in order to increase the number of 
surveyed trips that are considered for the purposes of estimation and therefore the accuracy 
of the origin-destination matrices for each mode; 

- the size of the zones must be as small as possible in order to produce data which are 
accurate with regard to the explanatory variables included in the utility functions.  

We therefore begin our analysis with the smallest-scale zoning, i.e. 196 zones. Only 
8,123 trips (unweighted samples) were surveyed for the work purpose (Table 1). As there 
are 38,416 origin-destination pairs, it is obvious that most of the flows are nill and that 
very few will have enough trips to allow us to estimate public transport market share with 
acceptable precision. We have to accept a threshold of 10 surveyed trips to obtain a 
sufficient number of origin-destination pairs to be able to perform regression (Table 2). 
However, in this case, the origin-destination pairs only include 9% of all the trips and 
Figure 2 shows that for an 18% market share (which was the proportion given by the Lyon 
household travel survey for the work trip purpose) the accuracy is extremely low (the 
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confidence interval of the percentage at the 95% confidence threshold is between –0.5% 
and 35%).  

 
Table 2: Number of origin-destination pairs with a number of trips above a given 

threshold, for the D196 division 
D196, Threshold 30 25 20 15 10 
Number of origin-destination pairs with a number 
of trips above the threshold  

3 4 8 17 48 

These origin-destination pairs as a percentage of 
all surveyed trips for the work trip purpose 

1.3% 1.6% 2.6% 4.6% 9.1% 

(source: LET based on the Lyon household travel survey)  
 
Zonal aggregation is therefore essential. The position is nevertheless identical for the 

87-zone division (Table 3). We therefore propose a new zonal aggregation with a 25-zone 
division (Table 4). Even though the results pose fewer problems than in the case of the 
previous divisions, the number of origin-destination pairs with enough trips is still quite 
small. With a threshold of 40 surveyed trips, which nevertheless leads to a quite a large 
confidence interval ([8,6% - 25,4%] at the 95% threshold), only 52 origin-destination pairs 
have a sufficiently large surveyed number of trips. Furthermore, half of the surveyed trips 
do not belong to these origin-destination pairs. Based on these criteria, the last 7-zone 
division leads to much more satisfactory results (Table 5).  

 
Table 3: Number of origin-destination pairs with a number of trips above a given 

threshold, for the 87-zone division 
D87, Threshold 30 25 20 15 10 
Number of origin-destination pairs with a number 
of trips above the threshold 

13 23 38 59 164 

These origin-destination pairs as a percentage of 
all surveyed trips for the work trip purpose 

7.5% 10.8% 14.7% 18.9% 33.6%

 (source: LET based on the Lyon household travel survey) 

 
Table 4: Number of origin-destination pairs with a number of trips above a given 

threshold, for the 25-zone division 
D25, Threshold 100 80 60 40 20 
Number of origin-destination pairs with a number 
of trips above the threshold 

12 19 29 52 132 

These origin-destination pairs as a percentage of 
all surveyed trips for the work trip purpose 

21.2% 28.8% 37.6% 51.1% 77.3%

 (source: LET based on the Lyon household travel survey) 

 
Table 5: Number of origin-destination pairs with a number of trips above a given 

threshold, for the 7-zone division 
D7, Threshold 100 80 60 40 20 
Number of origin-destination pairs with a number 
of trips above the threshold 

23 23 30 34 40 

These origin-destination pairs as a percentage of 
all surveyed trips for the work trip purpose 

88.6% 88.6% 94.4% 96.8% 99.1%

 (source: LET based on the Lyon household travel survey) 
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The selection of the level of zoning and the desired level of accuracy for the estimation 
of the market share matrix for each mode must therefore involve a compromise between 
four dimensions which are to a considerable extent contradictory: 

- the selected threshold for the number of surveyed trips must be as high as possible 
to guarantee an acceptable level of precision for the market share matrix for each mode; 

- the selected number of regression classes must be as high as possible in order to 
increase the number of degrees of freedom in the regression and very probably the initial 
variance of the data set; 

- the number of zones in the division must be as great as possible in order to ensure 
that the measurement of the explanatory variables for the origin-destination pair is 
sufficiently accurate; 

- the number of trips for the selected origin-destination pairs must be as high as 
possible so as to make the best use of the available data. 

An examination of Tables 2 to 5 shows that it is extremely difficult to reconcile these 
criteria. In addition, the selected origin-destination pairs are mostly central or radial flows. 
Even with the largest-scale 7-zone division, the selected origin-destination pairs contain 
few peripheral flows. The variance of the data set is inevitably reduced as a consequence, 
and with this the quality of the estimation. 

 
Table 6: Results of calibration for different surveyed trip thresholds for the 25-zone 

division 
Coefficient (Student’s t value in brackets) 

Threshold Number of 
O-D pairs R² Density mδ mpcτ  mptτ  constant 

PT’s 
estimated %

40 52 75% -0.0044 
(-4.96) 

-0.038 
(-3.44) 

0.052 
(6.64) 

2.70 
(8.24) 16.71% 

50 37 70% -0.0050 
(-3.76) 

-0.038 
(-2.20) 

0.045 
(4.48) 

2.93 
(6.43) 16.89% 

60 29 72% -0.0063 
(-3.99) 

-0.037 
(-2.14) 

0.030 
(2.33) 

3.47 
(6.25) 17.36% 

70 25 73% -0.0072 
(-4.46) 

-0.054 
(-2.57) 

0.017 
(1.20) 

4.29 
(5.96) 22.25% 

80 19 84% -0.0066 
(-4.82) 

-0.042 
(-2.09) 

0.024 
(2.09) 

3.69 
(5.93) 19.40% 

90 15 70% -0.0046 
(-2.06) 

-0.068 
(-1.85) 

0.027 
(2.19) 

4.16 
(4.14) 23.14% 

100 12 65% -0.0045 
(-1.40) 

-0.080 
(-1.60) 

0.023 
(1.38) 

4.52 
(3.24) 26.24% 

 (source: LET based on the Lyon household travel survey) 
 
For the purposes of calibration therefore, we will select the configurations which seem 

the most appropriate. This leads to the elimination of the 87 and 196-zone divisions in 
favour of the most aggregated divisions. The coefficient estimates for these two divisions 
are set out in Tables 6 and 7. Several problems are apparent from an analysis of the 25-
zone division:  

- above the threshold of 70 surveyed trips, some coefficients are no longer significant 
at the 5% threshold (Student’s t value < 2.1). With the same threshold, the number of 
classes also becomes very low, leading to a small number of degrees of freedom. Lastly, 
the origin-destination pairs retained for regression contain too small a percentage of all the 
trips (Table 4);  
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- for thresholds between 40 and 60 surveyed trips, the estimated proportion is quite 
close to that which was observed, i.e. 17.9%. However, the estimated coefficients exhibit 
quite a high degree of instability with regard to the selected threshold, with the exception 
of the coefficient mpcτ . Furthermore, the percentage of trips which involve the selected 
origin-destination pairs is still quite low (between a third and half of all trips are 
considered for the regression). 

These results are considerably more satisfactory for the most aggregated 7-zone division 
(Table 7). The estimated percentage of trips that is made by public transport is in all cases 
close to that observed in the survey (17.9%). The R² value is always high with satisfactory 
Student’s t values for the estimated coefficients. Lastly, the estimated coefficients are 
generally stable, irrespective of the threshold that is employed. These results lead to prefer 
the more aggregated zoning. However, there is some uncertainty about the accuracy of the 
generalised time measurements both for the private car and public transport when such 
large zones are used. The computed average values conceal extremely high disparities.  

 
Table 7: Calibration results for different surveyed trip thresholds for the 7-zone division 

Coefficient (Student’s t value in brackets) 
Threshold Number of 

O-D pairs R² Density mδ mpcτ  mptτ  constant 
PT’s 

estimated %

40 34 85% -0.0041 
(-4.79) 

-0.035 
(-4.64) 

0.064 
(9.33) 

2.05 
(6.62) 17.67% 

50 31 84% -0.0039 
(-4.22) 

-0.038 
(-4.44) 

0.065 
(8.47) 

2.16 
(6.15) 17.50% 

60 30 84% -0.0041 
(-4.38) 

-0.038 
(-4.40) 

0.063 
(8.02) 

2.19 
(6.28) 17.63% 

70 25 87% -0.0039 
(-4.58) 

-0.037 
(-3.99) 

0.065 
(8.30) 

2.04 
(6.13) 18.51% 

80 23 88% -0.0045 
(-4.73) 

-0.031 
(-3.04) 

0.062 
(7.15) 

2.00 
(5.86) 18.14% 

90 23 87% -0.0045 
(-4.56) 

-0.031 
(-2.95) 

0.063 
(7.04) 

1.97 
(5.60) 18.19% 

100 23 87% -0.0044 
(-4.41) 

-0.031 
(-2.88) 

0.064 
(6.93) 

1.95 
(5.38) 18.24% 

 (source: LET based on the Lyon household travel survey) 
 

3.4.2. A calibration method that retains all the data and small-scale zoning  
As in the case of the first method, we have tested the effect of the selected threshold for 

the number of trips. However, this effect is radically different from with the previous 
method as we are no longer eliminating part of the available information but retaining it all 
and creating groups of origin-destination pairs with sufficiently large numbers of surveyed 
trips for the estimation of the market share for each mode to be sufficiently reliable. In the 
same way, we have attempted to test the effect of the choice of zoning. The issue here was 
to know whether the higher degree of uncertainty affecting the measurement of the 
explanatory variables included in the utility functions can have an influence on the 
estimation of the coefficients. The results are set out in Table 8. 
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Table 8: Estimation of coefficients with the calibration method that retains all the data and small-scale zoning 
 Threshold 70 Threshold 80 Threshold 90 Threshold 120 Threshold 150 Threshold 200 

D196 coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ 
constant 3.896 0.510 3.793 0.587 3.783 0.675 3.659 0.774 3.599 0.993 3.256 1.189 

mptτ  0.013 0.009 0.016 0.014 0.017 0.015 0.020 0.020 0.022 0.023 0.022 0.030 
mpcτ  -0.040 0.012 -0.039 0.013 -0.040 0.014 -0.039 0.016 -0.038 0.022 -0.030 0.030 

Density mδ -0.0053 0.0018 -0.0054 0.0020 -0.0054 0.0020 -0.0055 0.0024 -0.0059 0.0029 -0.0060 0.0028 
R² 62.2% 4.7% 65.7% 4.8% 67.8% 5.2% 71.4% 5.7% 75.1% 6.3% 78.0% 6.8%
number of classes 112 99 89 66 53 40
PT’s estimated % 17.0% 17.3% 17.5% 18.0% 18.5% 18.5%
D87 coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ 
constant 3.698 0.540 3.702 0.553 3.709 0.712 3.657 0.795 3.636 0.944 3.579 1.004 

mptτ  0.015 0.011 0.015 0.010 0.017 0.014 0.019 0.016 0.020 0.018 0.021 0.022 
mpcτ  -0.037 0.006 -0.038 0.008 -0.040 0.010 -0.040 0.013 -0.041 0.017 -0.040 0.020 

Density mδ -0.0049 0.0008 -0.0048 0.0009 -0.0048 0.0012 -0.0048 0.0015 -0.0051 0.0020 -0.0052 0.0024 
R² 59.2% 3.2% 61.2% 3.3% 63.0% 3.7% 67.1% 4.5% 71.9% 4.5% 75.1% 5.3%
number of classes 108 95 87 66 52 40
PT’s estimated % 16.2% 16.3% 16.6% 17.1% 17.6% 18.0%
D25 coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ 
constant 3.125 0.231 3.097 0.227 3.128 0.208 3.236 0.239 3.185 0.314 3.225 0.306 

mptτ  0.033 0.005 0.037 0.005 0.037 0.005 0.038 0.005 0.034 0.005 0.033 0.004 
mpcτ  -0.037 0.004 -0.040 0.005 -0.041 0.004 -0.045 0.006 -0.042 0.006 -0.044 0.005 

Density mδ -0.0047 0.0003 -0.0044 0.0003 -0.0043 0.0003 -0.0042 0.0003 -0.0041 0.0003 -0.0039 0.0004 
R² 66.5% 4.3% 70.0% 3.5% 72.3% 3.9% 75.0% 3.6% 80.1% 3.5% 83.7% 2.6%
number of classes 83 76 68 53 44 36
PT’s estimated % 16.5% 16.6% 16.8% 17.0% 17.0% 17.2%
D7 coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ Coefficient σ 
constant 2.388 0.299 2.337 0.239 2.245 0.294 2.096 0.000 2.419 0.035 2.198 0.162 

mptτ  0.059 0.004 0.057 0.004 0.056 0.004 0.057 0.000 0.061 0.002 0.052 0.004 
mpcτ  -0.040 0.006 -0.037 0.005 -0.033 0.004 -0.031 0.000 -0.041 0.002 -0.030 0.004 

Density mδ -0.0041 0.0002 -0.0043 0.0002 -0.0045 0.0002 -0.0045 0.0000 -0.0042 0.0002 -0.0047 0.0001 
R² 85.5% 1.3% 86.1% 2.3% 86.6% 2.1% 84.9% 0.0% 82.2% 1.0% 91.8% 1.3%
number of classes 30 29 27 26 23 21
PT’s estimated % 17.4% 17.4% 17.5% 17.9% 17.3% 17.8%
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Before commenting on the results, a few explanations about this table are necessary. An 
iterative process is employed in order to estimate the coefficients (see Section 2). We 
therefore need to analyze the convergence of this process. We have conducted a large 
number of tests which show that good convergence is achieved after the first iterations, but 
after a few hundred iterations we arrive at an oscillating result with no convergence 
whatsoever (We come back on this question later in the paper). In order to avoid the effect 
which the number of iterations has on the results we have estimated each coefficient by 
averaging the results of the last iterations. The data in Table 8 was obtained after 2,500 
iterations with the coefficient computed for the last 300 iterations. Furthermore, in order to 
analyze convergence the table shows, next to the value of the coefficient, the standard 
deviation for the estimation of the coefficient for the last 300 iterations. The same 
calculation was performed for the R² value. We have not produced Student’s t values for 
the coefficients, but these are all sufficiently high for each of the studied configurations. 

Whatever the division and threshold that are selected, the estimated market share of 
public transport is close to that observed, even though it is systematically slightly lower for 
the lowest thresholds. The second positive factor is that for a given division the value of 
the coefficients change little as the threshold is varied. Estimation of the coefficients is 
therefore only slightly sensitive to the selected threshold, as long as this is large enough 
(for the lowest thresholds the stability is lower, but so is the accuracy of the market share 
estimation). However, differences are apparent when different divisions are selected. 
Although the results for the two smallest-scale divisions are very close, this is not the case 
for the other zonings, in particular the 7-zone division. This may be due to the uncertainty 
generated by the size of the zones. However, the data does not allow us to reach a 
conclusion on this point. It is nevertheless the case that the aim of this method is to retain 
the smallest-scale zoning possible. This method is therefore of much less value when it is 
used with large-scale zoning.  

For the 7-zone division, the results for this method are very close to those obtained with 
the “classical” calibration method, as the number of trips in many matrix cells is greater 
than the threshold value. The regression classes are therefore fairly similar for the two 
methods. 

The last criterion we have used for diagnosis is the standard deviations of the 
coefficients that are estimated in the course of the iterative process. These provide 
information about the method’s convergence. Logically, these standard deviations will be 
higher the smaller the zones. However, we observe that the values for the 87 and 196-zone 
divisions are almost of the same order of magnitude as the coefficients. This result is rather 
disappointing as it indicates that the convergence of the iterative process is poor. 
Therefore, we have tried to analyse this convergence repeating a great number of 
iterations. We can observe a very rapid average convergence of the coefficients. This 
convergence is more rapid as the number of zones or the threshold are smaller. We furnish 
the results for the 196-zone division with a threshold of 150 observed trips (Figure 3). 
After 10 iterations, the evolutions are very small (Figure 4). Similar results are obtained for 
the 3 variables and the constant. 
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Figure 3: Evolution of the standard deviation on all iterations, 196-zone division, 
threshold 150 trips 
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Figure 4: Evolution of the standard deviation on the last 5.000 iterations, variable 

private car ( mvpτ ), 196-zone division, threshold 150 trips 
 
From these results, we have tried to look for periodicity in the results. A great number 

of iterations are necessary, especially for the 196-zone division. As computation 
calculation time are quite long (about 20 seconds per iteration for the 196-zone division), 
the analysis has been limited to the two most significant theresholds (120 ans 150 observed 
trips) in terms of simulated public transport share). For each configuration, we can observe 
a periodicity (table 9, the table can be read as follow: for the 196-zone division and 120 
trips threshold, from iteration 27.188 we have cyclic results, i.e. iteration 37.680 (27.188 + 
10.492) have the same results that iteration 27.188 and so on). The identification of the 
cycle is interesting as it confirms that we can only observe an average convergence and not 
an absolute convergence. It indicates also the number of iterations on which it’s possible to 
calculate the average coefficients of the utility function which are independant of the 
number of iterations. In fact results are very closed when obtained from the last 300 
iterations (as for table 8) or obtained from the number of iterations included in the cycle 
(10.492 for example for the 196-zone division and the 120 trips threshold). In almost all 
cases, differences are less than 1%. Therefore it’s probably better to estimate the coeficient 
on the greater number of iterations than in table 8 to obtain results which are independant 
of the number of iterations which are taken into account (Nevertheless we should keep in 
mind that this precision is illusory as this variation is much less than the uncertainty on 
coefficients estimation. Therefore this variation has little incidence on final results). 
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Table 9: Results periodicity in the coefficient estimation iterative process 
87-zone division Iteration number for which 

begin results periodicity  
Number of iterations within 

the cycle 
Threshold 70 2.491 1.303 
Threshold 80 2.219 5.448 
Threshold 90 1.706 3.024 
Threshold 120 8.863 5.297 
Threshold 150 1.657 4.496 
Threshold 200 330 5.515 
196-zone division   
Threshold 120 27.188 10.492 
Threshold 150 22.983 17.187 

 
We have carried out the same analysis for the other trip purposes. This led to very 

similar conclusions to those which we reached for the work trips (Ferey, 2002). We shall 
therefore now state the principal lessons we have drawn from this research in the 
conclusion. 

 
4. Conclusion 

The methods that are usually used to estimate an aggregate modal choice model must 
comply with two contradictory objectives. On the one hand, they must be based on the 
smallest-scale zoning possible in order to produce accurate data for the explanatory 
variables that are included in the utility functions. This is because the estimation of 
generalized times is more reliable and homogeneous for a given origin-destination pair if 
the origin and destination zones are quite small. In addition, the number of surveyed trips 
should be sufficient for each origin-destination pair in order for the market share observed 
for the origin-destination pair to be sufficiently accurate. In practical terms, in view of the 
number of trips generally available, this implies a high degree of zonal aggregation. 

This contradiction is responsible for a number of problems that affect the estimation of 
the coefficients: 

- the selected threshold for the number of surveyed trips must be as high as possible 
to guarantee an acceptable level of precision for the market share matrix for each mode 
This leads to the elimination of all the origin-destination pairs on which the number of trips 
is lower than this threshold. If zoning is conducted on an excessively small scale, a large 
proportion of the available information is therefore eliminated (Tables 2 to 5); 

- the division must contain as many zones as possible to guarantee an acceptable 
level of precision for the measurement of the explanatory variables at origin-destination 
pair level; 

- the selected number of regression classes must be as high as possible in order to 
increase the number of degrees of freedom in the regression and very probably the initial 
variance of the data set. This can be achieved in two ways; the threshold of surveyed trips 
can be reduced, but this also reduced the accuracy of the observed market share matrix, or 
alternatively zonal aggregation can be performed, but this means that the explanatory 
variables are measured less accurately; 

- the number of trips made for the selected origin-destination pairs must be as high as 
possible in order to make the best use of the available data. But this means we have to face 
the same contradiction as above. 

Our application to the Lyon conurbation has revealed the consequences of this 
contradiction (see Tables 2 to 7):  
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- the number of origin-destination pairs for which the surveyed number of trips is 
sufficient is far too small for the 87 and 196-zone divisions. The number of trips is still 
small for the 25-zone division; 

- the calibration coefficients are highly dependent on the selected zoning. They are 
also highly dependent on the selected threshold for the number of surveyed trips, except in 
the case of the most aggregated 7-zone division.  

These results lead us to recommend the use of highly aggregated zoning when the 
“classical” modal choice calibration method is employed. However, the reliability of the 
computed values for the explanatory variables is open to question in the case of the 7-zone 
division. In particular, does the generalized time between two zones in this division 
accurately represent the diversity of the surveyed situations? It was with a view to dealing 
with this problem that we have proposed a new calibration method which allows us both to 
retain the totality of the available information from the surveys and also to work with the 
smallest-scale zoning (the scale of zoning is nevertheless dependent on the reliability of the 
zoning data, which is, however, considerably more reliable than origin-destination data). 
The application of this method has led to the following conclusions: 

- for the two divisions with the largest number of zones, the value of the coefficients 
is little affected by the number of surveyed trips threshold that is adopted for each origin-
destination class. In addition, the estimated market share is close to that which is observed. 
However, in the case of the larger-scale zonings, the results diverge; 

- convergence of the method can only be observed on an average. It is therefore 
necessary to estimate the calibration coefficients by averaging the last iterations. However, 
convergence on an average is achieved very rapid. A few hundred iterations are generally 
sufficient; 

- although the convergence on an average is good, there is a high degree of 
variability between successive iterations. 

These findings do not allow us to conclude with absolute certainty that our calibration 
method is superior from the empirical point of view. We have therefore analyzed the 
results at a more disaggregated level using the matrix obtained with the 7-zone division. 
Once again, we observed that the quality of the results with the new calibration method for 
the 87-zone and 196-zone divisions is similar to that of the 7-zone division with the more 
classical method. We therefore feel that additional investigation for different situations 
would be necessary for us to be able to state categorically that our calibration method is 
superior. However, from empirical point of view, we can identify the following important 
advantages 

- coefficient estimation is not depending on the zone division system when the zone 
division is enough disaggregated; 

- coefficient estimation is not depending on the threshold choice for the number of 
observed trips necessary for each origin-destination. 

Furthermore, from the theoretical point of view its advantages are obvious: 
- it provides the possibility of retaining much smaller-scale zoning which gives much 

more accurate data for explanatory variables; 
- all the information which is available from travel surveys can be retained to 

calibrate the model. 
Nevertheless the main limit of the method is that it’s not possible to produce statistical 

test on the coefficient estimation to identify the quality of the estimation. We can only 
calculate an average R2, and control that t student are acceptable for the coefficient 
estimation of each iteration. But we think that this limit is overcompensated by empirical 
advantages we have listed above. The most important advantage is probably the stability of 
results over zone divisions and thresholds of number of observed trips. 
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