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Abstract

This paper focuses on the MNL and the Mixed Logit models’ ability to correctly estimate a
model. Synthetic data has been formed followed by estimation of MNL and Mixed Logit models
conditional of a variety of shapes of distribution for distributed terms. Model selection based
solely on a combination of MSL estimation, t-test and likelihood ratio test is shown to be
ambiguous. A test for determining the shape of distribution is proposed. Application of the
method retrieved the distribution from data.
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1 Introduction

Models including error components are today at the frontier of application and development in
transport modelling. The name Error Component Models are often used indiscriminately with
Random Coefficients (Parameters) Logit, Models with Stochastic (Distributed) Coefficients
(Preferences), Mixed Logit Models, Logit Kernel Models or lately Hybrid Choice Models, for
models where additional stochastic terms are included in the traditional (linear) utility function.
The use of Mixed Logit models (or Hybrid Logit) has grown rapidly during the past five years as
research has demonstrated the applicability of the model and especially the software/purpose
specific code has become available. Three examples of this are Alogitdec (RAND Europe,
commercial), GAUSS code at http://elsa.berkeley.edu/train/software.html (freeware) or the self-
contained BioGeme at http://roso.epfl.ch/biogeme (freeware).

The method of simulated likelihood (MSL) is generally applied for estimation of mixed logit
models, though alternatives exists, e.g. the Method of Simulated Moments, see e.g. Train (2003).
Estimation by means of MSL is optimisation of the model’s utility coefficients and distribution
related parameters conditional on the a priori assumed shape of distribution for the distributed
terms. Only few of the analyses so far, has dealt with the interesting question of correlation
between these error components.

The question of which priori shape of distribution to apply for the coefficients, has not been
intensively researched. This paper concerns the issue of how to determine which shape of
distribution to employ in a model estimation and which of the model coefficients the distributed
terms should be related to.

By use of synthetic data it is demonstrated that even distributed terms with wrong shape of
distribution assumed for distributed terms may improve model fit. Further, that assuming fewer
distributed terms than is the case does provide an improvement in model fit. Hence, few model
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runs for different assumed shape of distribution does not provide a sufficiently base for
determining the distribution of distributed terms. The paper extents the paper of Serensen and
Nielsen (2002); Serensen (2002) with a more comprehensive test of how to incorporate
distributed terms into traffic models (construction of the utility function) and the use of synthetic
data sets in Serensen (2003a).

2 The mixed model

Estimation of which alternative is preferred over others involves exhaustive evaluation of in
principle all (relevant) alternatives’ utility. Generally, alternatives utility cannot be completely
described, setting out the need for a (distributed) residual. This residual is not in it self
interesting, merely the distribution of the maximum of the residuals over alternatives.
Specifically, for individual j

E.-rj,:' = I:_i'f + F_ii' |:1:|

is used to describe the indirect utility for alternative i. Peitz (1995) derived the indirect utility
function from a direct utility function consistent with RUM.

The most common of models, the multinomial logit model (MNL), is obtained by assuming
the residuals are [ID Gumbel (Extreme Value, type I). The attractiveness of the model is easily

seen from the formulation of the choice probabilities, P(i) = exp(V3)/ Ej exp(V;) where 1, j
are alternatives. A consequence of the model is the independence between alternatives property
(ITA).

Traditionally, for model estimations it has been assumed that individual behaviour is identical
across a population. One simple step away from this way of thinking, is segmentation of a
population by e.g. trip purpose, into smaller samples each consistent in behaviour and generally
different between samples. The idea of segmentation can be extended to one sample per
individual, where the difference between the samples is described by a (continuous/discrete)
distribution. Such models are labelled "Mixed Logit’, 'Random Coefficients/ Parameters Logit’
(RCL/ RPL), ’Error Components Logit’, Mixed MultiNomial Logit (MMNL), Models with a
logit (Probit) Kernel or as a member of the rigorous "Hybrid Logit’ class'.

Briefly formulated the construction of the utility function is altered from Uji = Vji +vj, where
e.g. Vji =Y BX respective vj represents the explained respective the unexplained variation in the
utility function for choice of alternative i by individual j, to

Usi = Vii + 15 + €5 (2)

This corresponds to partitioning of the unexplained variation (the v)into a systematic
(describable) j, and an unsystematic part “i.

In Random Coefficients Logit (RCL) nj is formulated as a mean zero random variate £
multiplied by an attribute, potentially one for each attribute, while the unsystematic part ('lE:') is
(again) assumed Gumbel distributed though not identical to v. Hence, the formulation is as

follows (the second equality requires the deterministic part of utility to be linear in at least the
“distributed’ coefficients)

! Consistencies and differences between the model variants including a map of model relations are described in
Serensen (2003a, 2004). To the authors knowledge the first application with transportation modelling (market
shares) references (Boyd and Mellman, 1980; Cardell and Dunbar, 1980) or the technical documentation of the work
at EPRI, from 1977.

? Lineasr in coefficients utility functions is not necessary for the extension to mixed models.
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where the distribution of & is interpreted as difference in preferences between individuals. Each
2

of the &j are either assumed to follow a stochastic distribution with mean zero and variance o; or

are identical 0 (fixed coefficients). Traditionally distributions suggested are the normal
(McFadden and Train, 2000) and the lognormal (BenAkiva et al., 1993)* (Train, 1999), though
2

other distributions have been suggested which include the ¥ (Nunes et al., 2001), the uniform
(Revelt and Train, 2000), the triangular (Revelt and Train, 2000; Train, 2001) and the Rayleigh

(Sitkamaki and Layton, 2001). Covariance between the stochastic elements £ s allowed; though
most applications have been limited to the normal distribution. The unsystematic parts are 1ID.

Typically, has been specified as a vector, that is, the random effects are assumed (statistically)
independent, which again implies that a person with a higher than average value of travel time is
not any more likely than any other person to have a higher than average value of e.g. waiting
time. Few examples of applications including as a matrix (at least one nonzero offdiagonal
element) are (Nielsen et al., 2001; Serensen and Nielsen, 2001; Serensen, 2002; Hensher and
Reyes, 2000).

3 MSL and a priori shape of distribution

The common way to estimate a mixed model is essentially, to simulate weights for ’ordinary’
choice probabilities and then maximise the weighted likelihood function. The method is labelled
Maximum Simulated Likelihood (MSL) and involves one integral (=29, 20 for each added
dimension of stochastic term(s), plus the one inherited from the residual term.

The likelihood is an extended version of the ordinary likelihood for a ’fixed coefficients
model’, given by

L=LBX)=D") ginn(P). (4)
i i

where B are coefficients and gin is 1 if alternative i is chosen, 0 otherwise; Pi is the probability
for choice of alternative under some probability model e.g. MNL.

Adding further distributed terms to the utility, corresponds to letting be distributed f(818)
where 0 is the parametrisation of the distribution. Let Br refer to the rth of R draws from J(51¢)

and Pi(Br )the probability for choice of alternative given the drawn value Br . Averaging over
successive draws from f(/¢) , gives

1 P .
R:E;Zj:g?ﬁmf’ﬂﬁ ). (5)
The simulated loglikelihood is then given by
SL=5SL(#X) = Z Z Gin In Py, (6)
L

* In this application the distributed term was the ratio of two coefficients (the VOT) rather than the coefficient itself.
The idea was to reformulate the utility function such that U = @ + 2t +&; = ale + nt] + ;| where distribution
was allowed for n, hereby circumventing finding the distribution of the ratio of two stochastic distributed variables.
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and the estimator for the coefficients is the 6*, for which SL obtains the maximum value®. As the
maximum likelihood estimation is conditional on the formulation of the probability function Pi,
the simulated maximum likelihood estimation is conditional on the formulation of the probability
function Pi and the functional form assumed for the distribution.

Given a specification of the utility that includes distribution of stochastic terms, the likelihood
function can be formulated and solved by Maximum Simulated Likelihood (MSL).

One criticism of the MSL is that it only optimises parameter values of the a priori specified
distribution. In practice it is possible to estimate mixed models based on erroneous shapes of
distribution, yet obtain significant parameter estimates!

In figure 1 below, it is illustrated why *wrong’ shapes of distributions perform better in terms
of likelihoodvalues than fixed coefficient models. The histogram illustrates the case where
individuals ’true’ B coefficient is distributed. Ordinary ’fixed coefficient models’ are attempting
to model this by a degenerate distribution, the dark red line. Further four examples of shapes; to
symmetrical (normal and triangular) and two positively skewed (sign specific or not) are
included. Common for the distributions are their ability to very well describe the variation around
the mode; however, the normal and nonsign specific distributions poorly describes the variation
below A, whereas the triangular distribution poorly describes the variation above B.
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Figure 1: Examples of different shapes of distributions a priori assumed to describe variance in
individual preferences.

A natural question follows; should we choose between various shapes or merely rely on
choosing between fixed or distributed coefficients? As the following section shows, we cannot us
MSL estimation to provide information on whether the applied shape is the best suited for the
task.

4 Synthetic data

For illustration of the estimation issue, several different synthetic data sets have been generated
and tested. This paper will focus on only one data set described by two attributes each multiplied
by a distributed coefficient. The data set consisted of 9,762 records, where all were formed as
choice between three alternatives available for all ’individuals’. The alternative with the highest
random utility U was chosen; where utility was modelled by two descriptive variables multiplied

* Hajivassiliou and Ruud (1994) derive properties of the asymptotic distribution, e.g. that the MSL estimator is
consistent if the number of draws for each observation rises with the number of observations.
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by a coefficient in linear specification, two alternative specific constants and a Gumbel
distributed residual added. The utility of alternative j was described as

U, = ASC; + (8y + &)Xy + (Bo + &™P)X 5 + €5, (7)

&'Sh“P* . . .. . .
L is zero for ’fixed coefficient’ or follows any other shape of distribution, ¢ is the Gumbel
distributed residual and ASC3 is zero for identification. The data Xjk was generated by
independent normal distributions with different seeds, means and variances such that
X, ~ N(10,3%) and X, ~ N{7.2%)

Table 1: Actual coefficients moments of coefficients and ASC’s

| | Mean Median Variance Slewness Kurtosis
ASC; | 1.50 150 N - -
ASC 0.50 0.50 - - -

First coefficient | -1.02 -1.01 0.22 -0.20 -0.28
Second coefficient | -3.20 -3.00 1.07 -2.93 19.74

The first coefficient was assumed normal distributed, whereas the second was assumed
(negatively skewed) lognormal. Mean values and variances were different for the two distributed
terms, further the distributed coefficients were assumed independent. The mean value for the first
coefficient is the prespecified value for Bl =-1, the variance for the first coefficient the

prespecified value for 61 =0.5 .
The mean value for the second coefficient 2 can be calculated from E(B2 +&)= E(B2)+ E(&),
Where EI:S:I = C‘:K]_:IEIZ,_,I\ DK].:I[.G-E.]? ]'Dg‘f ! ‘n"rl:t;*gzzl = ‘W-LD*D?:I

second coefficient is -2-1.42 =-3.42.

As the data was simulated and subsequently some records have been removed due to sign
change of either the B coefficients or the explanatory variable(s), estimated moments are listed
below in table 1. As can be seen the moments (mean and variance) are close to the specified
values. Further, it was validated that the effect of the distributed terms was large enough to detect
a change of chosen alternative’ .

The ’true’ coefficient values for the NLN data is given in table 1. The actual mean (the mean
of the generated values) is 3.29, that is, these are rather close and the difference is in part due to
the random generation and in part to that records with wrong sign of attributes or coefficients are
removed. Also, the distribution of the lognormal coefficient is ’wider’ than the normal
coefficient, as the variation is 1.07 compared to the 0.22 for the normal.

. Hereby, the mean value of the

5 Estimation methods

The paper takes advantage of different estimations techniques. First, the MNL model is
estimated by ordinary maximum likelihood using both Alogit and Biogeme software. Secondly,
mixed models were estimated based on different a priori assumptions of shapes of distributions.
These models were estimated twice, by means of Alogit (pseudo random draws) and biogeme
(Halton sequences).

* The data construction and model testing is further described in Serensen (2003a).
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The current version of Biogeme (version 07, beta version) enables the modeller to specify
generalised utilities, where nonlinear expressions and distributed terms are possible. The
distributed term is specified as a normal distributed term. However, transformations of this

2
distributed terms is enabled whereby e.g. the Lognormal, iy are possible distributions by use of
simple transforms; other distributions may be obtained by use of inverse transformation. Hereby,
a random variable X drawn from a uniform distribution U can be ’transformed’ to follow a

distribution with (invertible) cumulative density function B by B 1(X). The inverse transform is
further described in e.g. Ross (1997). If other than the normal distributions are required some
recalculation of the parameter estimates is required before genuine mean and variance estimates
for the distribution are obtained.

Common for the two programs is the need for a random number generator, as an underlying
concept of the simulations performed. Random numbers may be generated by various means,
where probably the most common is pseudorandom numbers. An alternative way to produce the
random numbers is Halton numbers where (negative) correlation is introduced which
significantly reduces the number of draws required, see e.g. Train (2003); Bhat (1997).

6 Estimation results
Results of the MNL model estimation are shown in table 2. Two measures of model fit are

listed, the p2 and the likelihood. Parameter recovery, as an indicator of model fit is only of value,

if the models actual scale is known since only the logit scale times 3 and not itself is estimated.
The MNL model did not correctly estimate the coefficients, as expected, as distributed

coefficients were used to generate the data. However, significance levels of the coefficient

2
estimates (ttest 28 to 60) combined with p =0.53 — indicate that the model does explain a part of
the variation. The loglikelihood value is 4,935. The deviance from the ’true’ values cannot be
explained by scaling as neither of the ratios are recovered.

Table 2: MNL Results for the 2 attribute data sets
| | Est. o t |

tq 1.182 0.0418  28.3
o 1.223 0.0419  29.2
3 -0.394 0.00829 -47.5
{32 -1.060 0.0177 -59.8

L -4935
p? 0.53
Ohs | 9,762

6.1 MSL results

For the synthetic data the correct specified model was estimated by means of the MSL
method. In a practical application of MSL the ’correct’ shape of distribution is not known. One
way to proceed has been to apply a symmetrical (normal) and a skewed distribution and assert
which lead to the best model fit in terms of likelihood value and sound knowledge of the planning
situation at hand. To replicate this modeler behaviour a large number of maliciously specified
models were also estimated. These included assuming

e wrong shape of distribution
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e assume distribution on nondistributed coefficients
e not assume distribution on distributed coefficients

e combinations of the above.
The list of possible distributions to apply is endless, here the author limited the list to
combinations of fixed coefficients (F ), normal distribution (N ), lognormal distribution (LN )and

2 2
the x distribution (y ). For latter two, an explicit sign was added, whereby the number of possible
combinations of distribution and sign added up to a total of 36 combinationsoccurs.For all the
shown models 500 Halton draws® have been used in the estimation, where each model had a run

2
time of 59 hours on a 2GHz PC. Below references to the distributions are structured as y if the

. . e . 2
first coefficient is assumed to follow a normal distribution and the second a negatively skewed

distribution, etc.

Table 3: MSL Results for a sequence of estimations based on different shapes of distributions.
13 W IR Y 37 —x*
F ASCi| 11% 283 L1337 260 | 1205 274 | 1350 263 | 1182 283 | L1s2 283
ASCy | 122 202 | 1412 279 | 1,364 284 | 1437 273 | 1,223 20,2| 1223 29,2
& 0,304 -475 | -0460 -400 | 0445 -421 | -0467 -384 | -0804 -47.5| -0804 -47,5
B2 -1,080 508 | -1,613 314 | 2521 603 | 0055 27| -1060 -50.8 [ -1060 -5O.8
]
-:Tg 1195 164 | 0736 246| 1105 162| 0000 00| 0000 NaN
L/p® | -49346 1054 |-48553 055 | 48676 055 | 48515 055 | -40846 0,54 | -48846 0,54
N ASTh 1,231 273 1,402 252 1,476 256 1417 25,0 1,231 27,4 1,231 27,3
ASC; | 1282 280 1401 258 | 1450 263 | 1500 260 1282 280| 1282 280
A1 037 -423| 0572 23D | 054 244 | 0544 228 | 0374 423 0374 423
B 1,104 518 | -1,325 -333 | -2,560 -508 | -0.411 -127| -L104 -518| -1,104 -51,8
m 0,26 T 0378 74| 0337 60| 0288 49| -0261 -T5| -0261 -T.5
s 0508 141 | 0400 221 | 0911 112 | 0000 00| 000 NaN
L |-49248 054 |-4851,3 055 | 48568 055 | 48451 055 | -40248 054 | -49248 0,54
IN  ASC; | 123 272 | L3808 254 1360 250 | L4l5 255 | L1220 274| 1220 274
ASCa | 1,285 270 | 1487 260 | 1433 265 | 1406 267 1278 283 | 1278 282
) -1,4%0 -80S | -1,580 -612 | -1,556 -669 | -1460 -1091 | -1,388 -150,3 [ -1,383 -150,3
N 41,106 -513| -1,323 -335| 2,308 -624 | -0417 -133| -1101 -52,5( -1101 -52,5
oy 0268 7A| 0340 86| 0332 01| D288 69| 0282 77| 0282 -7
7 0,600 140 | 0,38 167 | 0808 118 | 0000 0,0 0 NaN
L/? | -40247 054 |-4851,3 055 | 48680 055 | 48416 055 [ -40251 0,54 | -40251 0,54
—LN ASC;| 1,023 27,1 1434 251 1,376 256 | 1410 252 | 1420 240 1411 251
ASC, 1,286 278 1,520 26,0 1,458 262 1,485 262 1,521 25,5 1,492 26,1
& 0,63 600| 00566 453 0472 253 | 0464 210| 075 46,3| 0564 436
Ba -1,107 507 | -1.675 -27.1 | 2,550 500 | 0165  -63 | -1818 250 0704 258
A 0,267 74| 0384 03| 0346 66| -0312 44| 0406 10,1 0234 43
m 0,662 -161| -0400 -22) | -0652 -157 | -06l2 -200| -0070 21,1
C/p® | 40245 054 | 48383 055 [ 48560 055 | 484490 055 | 48522 055 | 48472 055
X2 ASC, | 1= 283 | 1831 267 | 1,214 274 | 1310 264 | 1182 253| 1182 253
ASC; | 1,28 202 | 1406 275 | 1,341 282 | 1447 276 1,223 20,2| 1223 20,2
A1 0304 475 | 0456 -305 | 0434 426 | 0467 307 | 0304 475 | 0304 4TS5
B -1,060  -58.8 -1,246  -3856 2,220 -T58 -0,133 =59 -1,060 -50.8 -1,060 -50.8
m 0.000 00 0 NaN 0 NsN| opoo 00| 0poo 00| 0000 0 00
T2 058 141 | 0371 160 | -0658 -150| 0000 00 0 NaN
L/ |-40346 054 | -4862,0 055 | 48825 054 | -48485 055 | 40346 0,54 [ 49846 0,54
—x¢ ASC, | L= 1283]| L3381 267 L2714 1I74| 1370 1264| L1s2 2830 LIs2 283
ASCa | 1,223 202 | 1406 275 | 1,341 282 | 1447 276 | 1223 2020| 1223 20,2
B 0,304 475 | -0456 -305 | 0,434 425 | -0467 307 | -0394 47,50 -0804 475
B -L060 -BO8 | -1,246 -3%6 | -2,220 -758 | -0,133 59| -1,060 50,84 | -1060 -50.8
o 000 NaN| 0000 NaN| 0000 NeN| 0000 00| 0000 NaN| 0000 NaN
A 0,583 141 | 0,371 160 | -0658 -158 | 0000  0,00| 0000 NaN
Lf? | -49346 054 | -4862,0 055 | 48825 054 | 48485 055 | 40346 054 | -49346 0,54

® Previously the models were estimated using 100 pseudorandom numbers, results are provided in Serensen (2003b).
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In table 3 the results of 35 MSL and the MNL model runs are shown, in a matrix style. Recall,
N-LN is the ’correct’” model. The rows indicate shape of distribution for first coefficient, the
columns for the second.For each model the coefficient estimates (left) and tvalues (right) and

2
below the likelihood and p , are provided.

For interpretation of estimates recall, that the coefficients are structured as  + & and the € is
the distributed term. For the distribution, is the estimate of the std. error for the mean zero normal
distributed term multiplied by the variable. The mean of coefficient is the value.For the LN
distribution, is the estimate of the std.error for the mean zero normal distributed term that was

used to generate the lognormal term. Hence, the variance of the £ s

F 2 % F 2 N r Vo 7 oy . .
exp(o){exp(o®) — 1) and E{£) = 1/exp(0?) s added to the mean of the coefficient due to the

2
skewness of the lognormal distribution. Similarly, for the x term, which was constructed as the
square of a mean zero normal term.

Generally, all models involving the xz distribution did either not have estimates significantly
different from zero, or were clearly dominated by other models.

An attempt to replicate a real model building process, by successively adding distribution to
one coefficient at a time would and letting a model be determined as ’better’ provided that all
estimates were significantly different from zero and significant likelihood ratio test for model fit.
Depending on how the process was initiated, different final models would be the case!

To demonstrate this, four different distribution selection paths could be followed. These are

Path 1: FF - F— LN — LN —-LN

Path 2: FF'— NF - N —LN — LN — LN.

Path 3: FF — LNF — LN — LN.

Path 4: FF'— —LNF — —LNN.

Three of the four paths end in the same, though wrong, combination of distributions namely
the LN-LN . The shape for the second coefficient is correctly recovered, possible explanations for
the recovery of a skewed distribution for the first coefficient is mixing up with the positively
skewed extremevalue residual term.

The fourth path, ends up in a -LNN which is ’doublewrong’ as the skewed coefficient is
described by a symmetrical distribution, and the symmetrical is described by a skewed
distribution. The residual terms does not seem to be the one to blame here, due to differences in
sign of the skewness.

The correct combination of distributions is crossed by the second path, although even here a
seemingly better combination can be found (LN - LN ).

However, it is also the case that wrongly specified mixed logit models did improve the
likelihood value significantly compared to the MNL, and especially that the tvalues were high for
these models. The difference between the models and the correct specification could be detected

mainly by the likelihood values, and neither the p2 were virtually identical nor the tvalues which
were in the same range for most parameters across model specifications.

If these results hold in general, there may be a problem with the way model formulations are
formed/ tested, as the likelihood and tvalue is generally used as key statistics. It also appears that
there are some problems estimating the correct values of the alternative specific constants as well
as the coefficients — beyond the impact of the logit scale.

In ’real’ data, the significance of a normal variance term may be caused by some attribute(s)
left unaccounted for (e.g. data was not available), where the contribution from this particular
attribute to explaining the variation, may be described by a normal distributed term. However, in
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the case of synthetic data, the formation of choice is known exactly (by the construction of the
utility function). In principle, some other formation of data may result in the same data set,
estimating close to the same coefficients, though this chance is remote.

7 SODA test for shape of distribution

A question raised by the above numerous model estimations of different model specifications
is could the correct shape of distribution(s) have been determined prior to MSL estimation? In the
following, a method for determination of the shape of distributions prior to the MSL estimation is
described and results are provided. The method for Shape Of Distribution Assessment (SODA)
method, is a tool to assist in determining the shape of distribution prior to a MSL estimation but
is not an alternative to MSL estimation. The method is briefly described interested readers are
referred to Serensen (2003a).

The method was not proposed as an alternative to MSL, rather as a complimentary method, by
which the shape of distribution could be determined prior to the MSL estimation. Hereby, the
MSL estimation would be based on the correct shape of distribution and not, as has been
demonstrated above some a priori assumption of shape of distribution.

The purpose of the proposed method is to obtain an assessment of the shape of the possible
underlying distribution of distributed terms — where there is no priori assumption on shape of
distribution! The method seeks to uncover the empirical distribution of the data by repeated
model estimations within a discrete choice framework. Preferably, a model should be estimated
for each data record and estimates compared to assess the shape of the distribution over
individuals (choice situations). The estimations are performed on smaller subsets of data due to
identifiability of the models, unless for very special rigorous data sets.

Determination of the shape of the distribution was the main purpose, that is, whether the
empirical distribution is unimodal, bell shaped, skewed or any other systematic (describable)
shape. The actual parameters of the distribution(s) can subsequently be determined by MSL
estimation, conditional on the empirical distribution.

For implementation of the SODA method an algorithm has been provided which is given

below with each step described afterwards. ﬂ
Step 1 Initialisation: Determine number of groups & (or elements in each

group, as these figures are inversely related), number of repetitions
(fixed &) R and number of different group sizes T

Step 2 Generate random groups

Step 3 Estimate models (a vector of coefficients) for each group

Step 4 Determine (simultaneous) distribution of coefficients

Step 5 Repeat steps 2 through 4, B times

Step 6 Repeat steps 1 through 5, T times

Step 7 Determine (simultaneous) distribution of coefficients based
on pooled data

The initialisation (step 1) serves to set the stage. One of the keys to the SODA method is the
division of the data sample into groups; the number of groups is inversely related to the number
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of observations in each group. Though, at the same time the number of groups should be as large
as possible to enable the model estimation to detect possible differences between observations
(larger groups tend to pull the coefficient estimates towards the estimates for the model based on
the whole sample).

A recommended level for number of repetitions is 10 to 15 (for 100500 groups); this serves to
smooth the revealed distribution.For highernumber of groups, the number of repetitions may be
reduced. The recommended number of different group sizes is 24; which serves to determine
whether the revealed distribution is dependent hereof (neither of the to date tested data set have
shown such dependency).

Data partitioning Model estimation Identification of distribution
1 1 1 1
Group 1 BBy B o By ~ B
) L
J
Group 2 BiBL B .. B2
. B,
G 3 L N »
Data S Bi. 2. B o B Simultanacus

ﬂ'!, distributicn

Group 4 : __/,-" \\\

Sln BB B B o~

Run {repetition)

Figure 2: Method for assessment of distribution

After initialisation step 2 proceeds with grouping (data partitioning) of the data. This
partitioning is performed by random sampling to preserve the properties of the data. Other means
of data partitioning (cluster analysis, proportional to some variable) were not recommended to
use as they would make the consecutive model estimation conditional on the criterion used for
the data partitioning. At this point it should be noted that the initial groups should be neither too
small nor too large. The first case would cause inability to estimate models for each of the groups
while the latter would make the assumption of homogeneity within the groups become more
critical. In general, the number of groups should be maximised with regards to that no group size
is below some threshold. In practice, this is obtained by equal group sizes.

In step 3, estimation of the coefficient for each group follows. The same probability model
(e.g. MNL) and the same specification of the utility function is applied for all groups. If the
tstatistics for some group, indicate that a coefficient should be excluded, this is ignored, as this
would lead to a larger error, than the lack of significance of one coefficient at this stage of the
model will give rise to.

Based on the coefficient estimates histograms are produced for each of the coefficients, in step
4. The objective is to get an intuition on which shape applies to each of the coefficient
distributions; shapes may differ for different coefficients. Based on the graphical evidence, the
list of possible shapes can be narrowed, e.g. the shape is unimodal, flat, thick tailed, etc. When
the shape is determined most attention should be directed to the region around the mode, as the
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method has a tendency to produce outliers (some numerically high coefficient estimates). The
determination of shape, is further aided by the calculation of the first four central moments; the
mean, the variance, the skewness and the kurtosis.

Finally, in step 7 all the coefficient estimates are pooled and a search for distribution is
conducted (identical to that in step 4). The pooling of data implicitly assigns an equal weight to
all the coefficient estimates. The methodis illustrated in figure 2 working from left to right.

8 SODA results

This section describes the results from application of the SODA method to the synthetic data
sets. The charts of distribution of  and -B2 (note, the axis has been reversed) are shown in figure
3 and 4). For both the charts, the horizontal axes are identical, wherefore differences in shape of
distributions and spread can easily be seen. The blue dotted respective the red line are the fitted
normal and lognormal density functions. However, it should be kept in mind that the data was
generated as one normal and one lognormal distributed term, where records with wrong sign of
attributes and/ or coefficients had been removed.

The chart for B1 in figure 3, indicate that the first coefficient is signrestricted which complies
with the data generation. The shape is unimodal with some variation around the mode. The
lognormal curve does not fit the density mode nor the area around the mode particularly well,
hence it is not believed that this is the correct distribution. However, neither the normal curve as
plottet here seems to fit the data, although this is partly due to a restriction in the applied
statistical software. Shifting the blue curve to the left (approximately 0.2 on the axis) enables the
normal curve to fit the mode and the region around.

However, the chart for 2 is more clear. The distribution is unimodal and skewed and the
nonnormality seems obvious. The lognormal density function fits the data very well whereas the
normal curve is not doing a particular fine job. Furthermore, the differences in the shape of
distributions, as well as the difference in the variance levels (var(f2)> var(p)) have both been
recovered.

Jointly, the two shapes of distribution has been identified and can be used a a priori
information for a MSL estimation, as proposed7.
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Figure 3: Distribution of B3

" Readers interested in applications of the SODA method on real data, are referred to Serensen (2003a).
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9 Conclusion

The paper has demonstrated that specification and estimation of a mixed logit model is not a
simple task. The number of alternative specifications of shape of distributed terms grows rapidly
with number of coefficients expected to be distributed and number of considered shapes of
distribution.

Even if a great deal of these alternative specifications are tested by means of mixed model
estimation and results are compared, the correct combination of shape of distributions is not
guaranteed to be found. The importance of correctly specifying the probability model and the
utility function was emphasised by the test results, as erroneously specified models could not
always be detected from the coefficient estimates/ model results.

A synthetic data set was constructed and mixed models based on 36 different a priori
assumptions of shape of distributions were estimated. Comparisons of estimation results showed
that half of the model estimations did provide estimates significantly different from zero and
improved fit of data in terms of likelihood value compared to the ’fixed coefficient” model. At
this point, only few different shapes of distributions have been tested. Had more shapes of
distributions been tested, it may have turned out that other distributions had performed better, but
the N LN would under no circumstances have had come out as the best.

Hereby, estimating a model with nice tvalues, does not imply the ’best’ model specification
has been found as several differently shaped distributed terms can have a standard error
significantly different from zero. Further, depending on how alternative specifications were
introduced e.g adding distribution to one coefficient at a time, did result in different final model
specifications!

As the comparisons of the model results showed most of the distributed terms or rather the
estimate of the standard error for their distribution, turned out to be significantly different from
zero! This implies that estimating a model and recovering a standard error for some distributed
term significantly different from zero, does not imply the ’best’ model specification has been
found as numbers of differently shaped distributed terms can have a standard error significantly
different from zero.
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However, little comfort is left to the modeller as irrespective of by distributions the
coefficients were assumed to follow, the effect in likelihoodvalue was positive and all models had
likelihoodvalues significantly better than the *fixed coefficient’ model.

To assist in the search for the correct model specification the SODA method was described
and applied to the data. By application of the SODA method to the data the ’correct’ shapes of
distribution were pointed at — sufficiently clear to enable the modeller to chose which shape of
distribution to assume for the subsequent MSL estimation.

The importance of correctly specifying the probability model and the utility function is
emphasised bythe test results, as erroneously specified models cannot always be detected from
the coefficient estimates/ model results.
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