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Abstract 

Much effort has been spent in developing more efficient control systems for signalized 
intersections to adapt the capacity of the network to the variability of the demand. This 
variability is partly due to time-dependent factors but also to the stochastic nature of the 
demand itself. The available formulae can still be successfully adopted in undersaturated 
conditions, where the stochastic effects fade into one green phase, or in highly 
oversaturated cases, where the queues aren't comparable with their portions caused by 
these uncertainties. In cases where the value of the degree of saturation is close to one the 
stochastic effect plays a relevant role. This paper provides a novel heuristic formula able to 
model the transition phase when the study involves a variable demand. It particularly 
solves the queuing behavior of an oversaturated period on the successive undersaturated 
ones. The delay experienced by the users is modeled using a Markov Chain process. Based 
on this data the novel model is calibrated. The new model for queues is further applied in 
two case studies. The first involves a two arms intersection where users of the two OD 
pairs can only choose between different times of departure. The second involves one OD 
pair and two parallel routes, one faster but ending with a traffic light while the other is 
unsignalised. The paper discusses the change in users' decisions with respect to the travel 
times and the delays they perceive at signalized intersections both from the route choice 
and the departure time choice point of view. In this sense a Dynamic Traffic Assignment 
problem in an extended network can be applied and solved. From this research we gained a 
deeper knowledge of the relevant role played by the random nature of the queue evolution 
in time for the delay experienced by the users. By acquiring this knowledge a time-
dependent queue function has been provided. It is now possible to model the queue as a 
continuous function with more accurate results than the ones provided by the simple 
deterministic method. 
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1. Introduction 

Up to now traffic control has been extensively studied in the static context. Available 
optimization formulae like the Webster optimal cycle formula (Webster, 1958) are derived 
from steady state equations. During congestion periods the dynamics of the transportation 
system become relevant and often the system may not reach a steady state condition within 
these periods. To investigate the optimization problem during congested periods we need 
to evaluate the effects on the network characteristics in time. Microscopic models are best 
suited for analyzing the propagation effects of congestion and for evaluating delays in 
time. However, its low computing speed limits impede this technique to be used in an 
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optimization context characterized by long iterative processes. Furthermore 
microsimulation models require several runs before giving an accurate estimate of the 
costs, since the stochastic components of the system produce variable costs. 

This research aims at building up a complete framework of a dynamic optimal control 
policy using a macroscopic model. We will focus our research on queuing models instead 
of delay models for two reasons: first modeling queues permits easily to determine delays 
while from delays to queues the process isn’t trivial. Second knowing the queue size we 
are able to solve problems like spillback effects, accumulation lane design etc. To do so, 
the research has focused on the consistency of the queuing models in time. When in 
oversaturated conditions the degree of saturation, considered invariant within a sub-period 
of the whole evaluation period, reduces itself from one sub-period to another the queue 
starts reducing as well. The available formulae model this phenomenon still using the 
linear deterministic formula (Catling, 1977). 

To generate valid data we introduce a mesoscopic simulation technique based on the 
Markov Chain probability theory. This model is able to simulate the dynamics of the queue 
length by updating the probability distribution cycle by cycle. Such a model makes it 
possible to analyze in much more detail the dynamics of the queue and its variance, 
without the need of repeated simulations. Analyzing the data we will show the strong 
relationship that links the dynamic of the queue and the standard deviation of its 
probability distribution. If the standard deviation is small enough with respect to the mean 
the queue will have a deterministic behavior while if the standard deviation becomes 
comparable with the mean then the mean will follow an exponential evolution in time. 

With the introduction of the Markov Chain technique we provide a faster generation of 
data than with microsimulation. In this way we are able to analyze the validity of the 
available formulae and to detect and quantify the errors committed when applying these 
formulae. 

Among others, these limits preclude the utilization of the available analytic models to 
assignment and optimization problems: 

- Time dependent queuing models are valid only if the mean flow rate is constant for 
the whole evaluation period; 

- Only an initial queue equal to zero is admitted; 
- The models don’t cover the estimation of decreasing queues, occurring when the 

initial queue is larger than the equilibrium one; 
- The models are usually suited for certain time steps, typically 15 minutes. 
To assess the importance of the new model we compare first the results with the 

available models in a test scenario with time-varying flows. Later on we apply the novel 
model to a realistic scenario showing the differences that we obtain in the case of an 
assignment problem involving both route choice and departure time choice. 

 
2. State of the art 

Traffic control is firstly designed for reducing conflicts between flows but it can be a 
powerful tool, together with other DTM measures, for also adapting the network capacity 
according to the amount of flows. Moreover changes in the signal settings reduce or 
increase delays and consequently increase or reduce the quality of a route. If the settings 
are also modified in time then these changes in the user’s preferences propagate in time as 
well. When evaluating the performance of an urban area delay at signalized intersections 
represents the most commonly used component for the users’ costs. 

Delay is usually defined as the difference between the travel time experienced by a 
vehicle passing an intersection and the hypothetical travel time experienced if the 
intersection wasn’t controlled. According to the Highway Capacity Manual (HCM 2000), 
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if the intersection is undersaturated (the degree of saturation is low), delay has a 
deterministic and a stochastic component.  

The more the degree of saturation increases the more likely the fluctuations of the 
arrival rate may produce “cycle failures”, this means that some vehicles may not be served 
within one green phase producing an overflow queue for the starting of the next red phase. 
The presence of this initial queue produces an additional delay introduced in the Highway 
Capacity Manual only in his latest version (HCM 2000). The HCM 2000 specifies then 
three terms for calculating the delay: 

 
1 2 3d d PF d d= ⋅ + +  (1) 

 
where 
d = average delay per vehicle (s/veh) 

1d = uniform delay (s/veh) 

2d = random delay (s/veh) 

3d = initial queue delay (s/veh) 
PF = adjustment factor for including non-uniform arrivals 
 
The term 3d  depends on the assumed initial value. A good estimation of the delay is 

then implied by a good estimation of the queue. The manual doesn’t provide an accurate 
model concerning the evolution of the queue but suggests the use of the linear 
deterministic model. When the value of the degree of saturation floats around 1 the initial 
queue delay is enormously larger than the uniform and the random components. It’s 
straightforward understanding that only a good estimation of the overflow queue can lead 
to a good estimation of the initial queue delay. This reasoning leads to the focalization of 
the research on modeling queues instead of delays, looking for a systematic, easy-to-apply 
method to evaluate the behavior of the queue in a general context. 

Queuing theory can be used to evaluate the delay the travelers incur but can also be 
helpful for evaluating other characteristics not valuable with the delay itself. Spillback 
effects and the length of an accumulation lane cannot be modeled without the estimation of 
the queue length. 

Several authors have formulated expressions that describe the dynamics of a queue from 
an initial value that is smaller or larger than the equilibrium value. As for the delay models, 
queuing models can be deterministic or stochastic. Deterministic queuing models are 
typically used when the number of vehicles that can be served during a green interval is 
greater than the number of arrivals per cycle. In this case the fluctuations generated by the 
randomness of the arrivals are mostly covered by the available green time. Deterministic 
models are also in good agreement with reality when the intersection is highly 
oversaturated. In this case the component of delay generated by the random fluctuations is 
negligible with respect to the uniform component. 

If the intersection is slightly under or oversaturated only stochastic models can help at 
estimating delays and queues. By assuming a statistical distribution the stochastic models 
calculate the delay incurred by the users for the variability of the degree of saturation. If 
the number of the arrivals is, on the average, less than the number that can depart during 
the green the intersection is undersaturated, but due to stochastic variations in the number 
of arrivals, there is a finite probability that still one or more cars will have to stop twice 
because the green phase could not handle the whole queue. The queue that evolves in this 
case is defined as the overflow queue. 
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The formulae proposed under steady state conditions require an infinite time period of 
stable traffic conditions to be achieved. In this ideal condition if the degree of saturation is 
exactly one the expected equilibrium queue is infinite. In reality flows are stationary for a 
limited period of time and it is more relevant estimate the finite queue at the end of the 
evaluation period more than the hypothetical one reached after an infinitely long evaluation 
period. If the degree of saturation is low the equilibrium queue is reached after few cycles 
and steady state formulae can be still valid. If the degree of saturation is nearly one it may 
take too long to reach the equilibrium and the knowledge of the behavior of the queue 
during this transition phase becomes relevant. 

For the situation that initially the queue is zero, Kimber and Hollis (Kimber and Hollis, 
1979) developed a suitable heuristic analytic model for queue length and delay using the 
coordinate transformation technique. Their model has been applied in e.g. the TRANSYT 
program. Akcelik formulated the expression that is most frequently used by practitioners. 
He provided a continuous formulation of the queue evolution using the coordinate 
transformation technique: 

 
2 012 ( )( ) 1 ( 1)

4
x xcTQ T x x
cT

⎛ ⎞⋅ −
= − + − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

 
where  
T is the time step (expressed in number of cycles); 
Q is the number of vehicles in queue at the starting of a green phase; 
c = S.g / C is the capacity of the arm, equal to the saturation flow S multiplied by the 

green ratio g / C; 
x is the degree of saturation, ratio between the flow and the capacity; 

0 0, 67
600
S gx ⋅

= +  is the limit value of the degree of saturation above which the stochastic 

effects are relevant. 
 
This formula is probably the most used model in case of flows approaching capacity 

and initial queue Q0=0. On the other side it fails in all other cases were the queue starts 
from a non-zero initial value limiting its applicability. A recent extension of the former 
model for including the effect of an initial queue can be found in the aaSIDRA manual 
(Akcelik, 2002). The authors add to the flow rate q a term that takes the residual queue 
generated in the previous intervals into account. The model uniformly distributes the extra 
flow over the calculation period adding Q0/T where Q0 is the expected residual queue from 
the previous time step and T is the time step length. A more detailed description of existing 
models can be found in Rouphail et al. (Rouphail et al., 2000) 

The case of decreasing queues hasn’t more accurate analytical formulation than the one 
provided by Catling (Catling, 1977) who models the evolution as a linear function that 
follows at the starting the deterministic decrease represented by the linear function: 

 
0 ( 1)Q Q x cT= + −  (3) 

 
until it reaches the equilibrium value that depends on the degree of saturation and not on 

the initial value (Miller, 1968). The aaSIDRA program uses this function to integrate the 
Akcelik’s function. 

The authors have already attempted to associate a heuristic formula to the decreasing 
part of the queue in two previous papers (van Zuylen and Viti, 2003, Viti and van Zuylen, 



 

 

5

2004) but still the formula was valid only in cases where the flow rate was constant and 
with standard deviation equal either to the mean or zero. 

 
3. The Markov Chain process model 

Several traffic models have been provided in the past to estimate the costs the users 
incur when experiencing a trip. Both optimization problems and assignment problems 
require the evaluation and comparison of different scenarios in order to choose respectively 
the best performing and the most realistic ones. 

There are three techniques to simulate the possible scenarios and to calculate the 
performance of management strategies: macroscopic, mesoscopic and microscopic 
simulation. Macroscopic models provide aggregate results: deal with flows as a continuum 
entity. Microscopic models try to model the vehicles as separated. Characteristics that 
distinguish one vehicle from another are usually easier modeled with the latter. 
Mesoscopic models use probability distributions for the microscopic states. The choice of a 
simulation model defines the level of accuracy by which the costs experienced by the users 
are computed. A microsimulation model can associate a realistic cost to each vehicle. A 
macroscopic model cannot often detect the fluctuations due to the random nature of the 
demand and the supply characteristics. 

The evaluation and optimization of DTM measures requires information of the reaction 
of road users. Since the reaction depends, among others, on the perceived utility, a realistic 
estimate of perceived utility is necessary. An optimization procedure requires the 
computation of a relevant number of scenarios. From this point of view only macroscopic 
models are suitable, since the microscopic ones require long computation times. 
Mesoscopic models can represent a valid trade-off but the research is not evolving at the 
moment on this path. 

Microscopic and mesoscopic models can also be used to find approximate expressions 
for macroscopic models. Aggregating the results of the former models in a macroscopic 
level we can compare the results obtained by using the random characteristics with the 
ones computed by the macroscopic model and associate to the difference a heuristic 
formulation. In this research we implemented a model based on the Markov Chain process 
to generate data valid for calibrating and validating the heuristic model. Some authors used 
already this technique to generate queue lengths (Brilon and Wu, 1990, Olsewski, 1990, 
Fu, 2000). 

Olszewski (Olszewski, 1990) studied the queue length dynamics with a model in which 
the probability distribution of the queue length is calculated from cycle to cycle:  
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with 

P(n.j) = probability of a queue of j vehicles at the end of the nth green phase 
σ   = the variance of the saturation flow and 
pl  = probability of l arrivals in the cycle. 
 
Microscopic simulation can be an alternative to a Markov model for the probability 

distribution. It is rather unlikely that anything will come out of micro-simulation models 
that significantly differs from the Markov model since most microscopic simulation 
models use the same assumptions about the arrivals and departures of cars as the Markov 
model does. Olzewski has implemented the Markov model in a specific situation. He was 
interested in his research to show the behavior of the queue when it started from a non-zero 
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initial value. In his research he considered the starting standard deviation equal to zero and 
flow rate constant for the whole evaluation period. 

In this research we went further by extending the Markov model to a more realistic 
case. By considering a variable flow rate we implicitly removed also the hypothesis of zero 
standard deviation, clearly unrealistic especially for non-zero initial queues. 

Our scope is to generate simulated data for assignment and optimization processes. For 
sake of simplicity we used only fixed time periods where the flow is considered constant in 
its average according to the common procedure in an assignment process. Figure 1 shows 
an example of how a variable flow rate modifies the queue behavior in time and how the 
standard deviation evolves accordingly. 

 

 
Figure 1: An example of overflow queue evolution and its standard deviation with variable 

demand 
 

4. Proposed model 
 
4.1.Influence of the variance-to-mean ratio 

When queues at signalized intersection evolve in time, a relevant role in their behavior 
is due to the entity of the standard deviation with respect to the mean value of the queue. 
When the queue has a non-zero initial value coming from a previous oversaturated period, 
in the next periods the green interval is likely to be completely used for clearing the 
demand represented by these vehicles already in queue and the ones arriving during the 
same green interval. For high values of this initial value, since we assume that the capacity, 
and consequently the departures, is a deterministic function, there is a low chance that part 
of the green phase isn’t used. The queue will then follow a deterministic behavior. 

As long as the standard deviation becomes comparable with the mean queue there is a 
relevant chance that within one cycle the oversaturated queue and the arrivals are 
completely served and that there is even part of the green phase unused. In Figure 2 the 
mean value of the queue is displayed (bold curve) together with its value with added and 
subtracted the standard deviation (dashed curves). We notice that in the first cycles, since 
the standard deviation assumes a small value with respect to the mean one, there is a spare 
chance that the queue will completely disappear. This means that in the next cycle there 
will be still an overflow queue to be cleared. The arrivals, even though stochastic, will 
influence these cycles only with its mean and the result will be a linear evolution for a 
certain number of cycles. 

       Mean 
---   SD 
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Figure 2: Evolution of the mean queue and confidence interval 

 
After few cycles (around 40 in the picture) the probability that a zero overflow queue 

remains becomes non-negligible. In Figure 3a the probability distribution of the overflow 
queue is given for a queue starting from an initial value of 14 vehicles and degree of 
saturation of 0.95. The distribution is referred to the evolution after 5 cycles. The 
distribution, as also Newell (Newell, 1971) noticed is normal for all the values larger than 
zero but the probability of the queue being zero starts increasing. 

It’s straightforward to understand that the mean starts to be slightly larger than the mode 
and this difference increases as long as the time passes and the probability for zero 
increases. When the standard deviation is in its value comparable with the mean and the 
probability of being zero assumes a value of around 25% of the cumulative distribution the 
mean queue starts not changing its value in time and the steady state equilibrium holds. 
Figure 3b shows the distribution of the queue probability for the same example but after 50 
cycles. This distribution doesn’t change anymore and the mean remains around 7.8, stating 
the validity of the Miller (Miller, 1968) steady-state queue function. 

 

 
Figure 3a,b: Probability distribution of the queue after 5 and 50 cycles 

 
The transition phase is then starting to evolve when the probability of being zero starts 

increasing and the trend gradually passes from the linear function to the exponential 
function introduced. In order to properly model this transition part we have to analyze the 
influence of the standard deviation. In van Zuylen and Viti (2003) and Viti and van Zuylen 
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(2004) the authors modeled the queue starting from an initial queue that can have a value 
of the standard deviation equal to zero or to the value of the mean. 

If we suppose to divide a peak period in n sub-periods in which the flows arriving at the 
intersection are assumed constant in the mean and distributed as poissonian it may happen 
that within these periods the standard deviation is not even able to reach a value 
comparable with the mean. In Figures 4a, b, c we simulated a period of 30 minutes and we 
supposed this period to be divisible in two sub-periods. The mean degrees of saturation are 
respectively 0.95, 1 and 1.2 in the first and 0.90 in the second. The Markov Chain process 
model has been extended in order to capture the probability distribution at the end of one 
sub-period being the probability distribution for the initial queue at the starting of the 
following sub-period. 

 

 
 

Figure 4a,b,c: Evolution of the queue with x=1.2,1,0.95 in the first 15min and x=0.9 in the 
next 15min 

 
As shown, the behavior of the queue in the second period depends on the value of the 

standard deviation with respect to the mean. In the first case the variance is around 30% of 
the mean and the initial trend is clearly linear. The following two pictures show that the 
more the variance-to-mean ratio increases the less the evolution follows the linear trend. 
The various differences highlighted suggest to modify the approximate expression 
introduced in van Zuylen and Viti (2003) and Viti and van Zuylen (2004). We need to 
understand how the initial variance-to-mean ratio can be included in the analytical function 
such that if its value is low enough the evolution will initially follow the deterministic 
function while when this value is close to the unity or larger the function won’t follow this 
trend but the transition phase will be different. 

There should be also a relevant role played by the time interval chosen for the sub-
periods. Obviously it will influence in the previous period the evolution of the variance-to-
mean ratio. We will investigate on this path in future researches. In this way we are able to 
model in a very realistic way the queuing process within the hypotheses assumed. This 
novel model will have the following features that don’t characterize the available formulae: 

 It is valid for variable demand; it is then possible to be used for assignment 
processes and optimization problems; 

 Models the queue also when the initial value isn’t zero. 
 

4.2.Extension to variable demand using the variance-to-mean ratio 
The mean of the queue at the end of a sub-period and its standard deviation influence 

strongly the behavior of the queue in the next period, especially at the first cycles. The 
system tends, whenever possible, toward the equilibrium value both for the mean and for 
the standard deviation starting from an instable point represented by the initial queue and 
it’s straightforward understanding that different standard deviation for the initial point lead 
to different evolutions. 
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We immediately notice that in Figure 4b and 4c the standard deviation assumes a value 
always comparable or higher than the mean value. This causes in the second sub-period a 
behavior that doesn’t present any linear part. The reason is that in the first sub-period the 
queue has built up with a non-zero mean but the chance to have cases when the overflow 
queue isn’t present is still high. 

According to Figure 4a in the first sub-period the variance-to-mean ratio decreases in 
time. The more the mean increases, the less likely the queue can be zero since the standard 
deviation is considerably lower than the mean. This causes the behavior being 
deterministic. At the starting of the second sub-period even with the reduced flow ratio the 
chance the queue being zero is small enough to be neglected. The probability distribution 
of the queue at each cycle is then normally distributed and symmetric and the queue 
evolution is for the first cycles linear. As long as the standard deviation assumes a value 
comparable with the mean the evolution starts following the exponential behavior. 

The results above shown are referred to sub-periods of 15 minutes. If we assume a 
different length, the variance-to-mean ratio at the end of each period will change. We will 
not stress this hypothesis at this point but we will focus our interests only on the influence 
of the variance-to-mean ratio with fixed sub-period intervals. 

As introduced in van Zuylen and Viti (2003) and in Viti and van Zuylen (2004) the 
queue evolution in time for the decreasing part can be modeled with the following simple 
expression: 

 
1. Initial linear decrease  
 

0Q = Q  - (x-1) c T⋅  (5) 
 
2. Transition between linear and exponential decrease, which can be approximated as: 
 

0 0 eQ = (T) ( Q  - (x-1) c T) + (1- (T)) [Q + Q  (1-exp(- T))]α α β⋅  (6) 
 
3. Exponential approach to the equilibrium value 
 

0 eQ = Q + Q  (1-exp(- T))β  (7) 
  
The parameter β, as shown in van Zuylen and Viti (2003) and in Viti and van Zuylen 

(2004), doesn’t depend on the initial conditions and obviously neither on the variance-to-
mean ratio so it’s value is as stated: 

2(1 )
0.15

xβ −
=  (8) 

 
The weight function α(T) is a continuous function that balances the linear deterministic 

behavior and the exponential function only in the transitional phase, assuming the value 
respectively 1 and 0 for the first phase and the third phase. The continuity of the function is 
assured by the continuity of the three functions and from its initial and final values. The 
function is then, even if divided into three regimes, continuous with continuous derivatives 
in all its points. 

Two parameters, one representing the position and one the extension of the transition 
phase specify the logistic function. These parameters will depend on the variance-to-mean 
ratio. If the initial queue is zero the model can be extended by simply the following 
expression: 
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2

eQ = Q (1- exp(- T) )β⋅  (9) 
 
while the expression of the decreasing part can be applied also when the starting value 

is smaller than the equilibrium value. 
Analyzing the data we notice that the transition phase tends to start when the variance-

to-mean ratio assumes a value of approximately 0.30. Using this information we can 
always understand if and when the transition phase occurs and also depending on the 
degree of saturation how long it lasts. From the same analysis we notice that the queue is 
well represented by the exponential behavior when the variance-to-mean ratio is nearly the 
unity. If then at the end of a period we calculate a standard deviation that is in its value 
comparable with the mean we have to expect that in the following period the queue will 
have only the exponential evolution. If the value is in between 0.30 and 1 we will have in 
the first cycles a transition phase while if the initial value is smaller than 0.30 then we have 
to include in the behavior an initial linear part that follows the deterministic trend. 

A physical explanation of this behavior can be attempted by considering Figures 3 and 
4. The more the time passes the more the distribution of the queue assumes a shape well 
represented for its positive values by a normal distribution. This assertion is also confirmed 
in Newell (Newell, 1971). 

If the standard deviation has a value smaller than 30% of the mean the probability that 
the queue at the end of the cycle is zero is nearly zero but surely negligible. This means 
that at the end of the cycle we have to expect in general a deterministic behavior. If the 
standard deviation is larger than 30% than the probability that the queue will be zero 
increases and the starts being larger than the mode, as it can be deduced by the above 
Figures. In this process the standard deviation attempts to reach the equilibrium as well as 
the mean. The exponential distribution is then the representation of the queue attempting to 
reach the equilibrium when both the functions have reached the equilibrium among each 
other. Viti and van Zuylen (2004) provide an expression of the standard deviation in the 
case of decreasing queues: 

1. Initial square root behavior: 
  

2
0 0Q = c x T 0.01Q Q⋅ ⋅ + + ⋅  (10) 

 
2. Transition phase: 
 

2 SD SD
0 0 0 eQ = (1- (T)) c x T 0.01 + (T) [Q  +Q exp(- T)]SD SDQ Qα α β⋅ ⋅ + + ⋅  (11) 

 
 3. Exponential approach to the equilibrium value 
 

SD SD
0 eQ = Q  +Q exp(- T)β  (12) 

 
The formula is still applicable for increasing queues starting from zero (only the square 

root behavior will be present) and for variable demand. 
 

5. Case studies 
In this section we show how the application of the proposed formula leads to a user 

equilibrium different than the one that is found from the Highway Capacity Manual delay 
function. Firstly we assign on a test scenario a vector of flows representing a peak period. 
We assigned exactly the same vector of flows drawn in Figure 1 and we compare the 
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results with the ones obtained from the Markov model. Secondly we apply the formula to 
the simple examples drawn in Figure 5, focusing only on the choice made by the users 
passing from west to east. We solved a simple Dynamic Traffic Assignment problem 
formulated as a Nash game where the users have both the chance to change their route and 
their time of departure. For reference on the assumed model see Viti et al. (2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Case studies 
 
In the first example we will obtain a difference only in terms of departure time choice 

since no alternative route is available. In the second we will obtain also route splits. Figure 
6 compares the Markov model result redrawn from Figure 1 (crossed line) with the one 
obtained from the proposed method (bold) and the ones obtained applying the linear 
deterministic function (asterisks). In this example the Highway Capacity Manual does not 
calculate the queue behavior in the first cycles since it considers an overflow queue only 
when the degree of saturation is larger than 1. It also stops considering an overflow queue 
when the linear function decreases to zero. 

 

 
 

Figure 6: Example of queue evolution for variable demand 
 
The model follows the Markov model with an estimation error in this example of 

maximum 1 vehicle while the error made applying the linear function is enormous. We 
now apply the queuing function in the delay function provided by the HCM 2000 by 
substituting the linear function with the proposed one. To evaluate the user equilibrium in 
the case studies drawn in Figure 5 we divided the whole evaluation period (4 hours) in sub-
periods of 15 minutes each. The first scenario involves only departure time choice; this 
means that the users will switch their time of departure in order to maximize their 
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individual utility. The second scenario includes for the W-E demand an alternative route 
representing a bypass. The utility function is represented by the following formula 
introduced by Arnott et al.(1990): 

 
( ) ( ) ( )h h

rs rs rs rsc t t PDT tt k SDα β γ= ⋅ − + ⋅ + ⋅  (13) 
 

where ( )h
rsc t  is the cost the user of direction rs perceives when choosing to depart at 

time t on route h, h
rs rs rsSD t tt PAT= + −  is the scheduled delay, PDTrs and PATrs are 

respectively his/her preferred departure time and his/her preferred arrival time, ( )h
rstt t  is the 

travel time spent for traveling on path h and departing at time t and α , β , γ  are weights. 
For the path including the intersection the travel time function is represented by a free-

flow travel time and a delay at the intersection. For the bypass we used the BPR function 
(TRB, 2000): 

( )bypass
bypass bypass rs
rs rs

f ttt fftt
s

δ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (14) 

 
where bypass

rsfftt  is the free-flow travel time, ( )bypass
rsf t  is the flow departing at time t, s is 

the saturation flow and δ is a weight. 
In the case studies we used the following values: the total demand is 8500 vehicles for 

the first example and 12000 for the second, PDT and PAT are respectively 8:00 and 8:30 in 
the morning, the free flow travel time for route 1 is 15 minutes while for route 2 is 30 
minutes, s=1800 veh/h, g=24sec, r=60sec,α , β ,γ  are 0.5, 4 and 2 and δ=3. Figure 7 
shows the different results in terms of degree of saturation obtained by applying the HCM 
2000 or the proposed formula in the first scenario. To solve the problem we applied a 
Stochastic User Equilibrium assignment with MSA-FA convergence criterion. 

 

 
 

Figure 7: Equilibrium flow pattern applying the HCM 2000 and the proposed formula in 
case study 1 

 
The differences in terms of degree of saturation are small. We notice that applying the 

proposed formula part of the flow accumulated in the central periods tends to be distributed 
in earlier periods. This difference gives enormous differences in terms of queue and delay. 
Figure 8a and b show the queue evolution according to the two user’s equilibrium. 
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In the first Figure the queues are comparable with each other and with the 
correspondent Markov Chain model. In the second picture we notice that if we calculated 
the queue with the deterministic model we would have obtained a queue 10 vehicles less 
than the Markov model. Moreover the maximum queue at equilibrium is around 15 
vehicles less than the one calculated with the HCM 2000. The proposed formula mimics 
the Markov Chain model more accurately in both the examples. 

 

 
Figure 8a,b: Queue evolution at user’s equilibrium applying the HCM2000 and the 

proposed formula 
 
The same conclusion holds when comparing the delay, drawn in Figure 9a and b. The 

delay calculated with the HCM 2000 is underestimated with respect to the Markov Chain 
counterpart and in the first scenario the Markov maximum delay is nearly 400 s/veh while 
in the proposed formula solution the Markov maximum delay is less than 300 s/veh. 

Figures 10 and 11a and b show the results of the second scenario. Comparing the result 
of the two methods, using the proposed formula part of the flows accumulated in the 
central sub-periods choose both to change time of departure and route. Figures 11a and b 
show that the equilibrium calculated applying the HCM 2000 method gives, using the 
proposed formula a delay around 100 s/veh less than the one calculated in the equilibrium 
with the applied proposed formula. Moreover the HCM 2000 estimates the delay 50% less 
than the Markov model in both the examples. 

 
Figure 9a: Delay when user’s equilibrium is calculated applying the HCM2000 compared 

with MC and the proposed formula 
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Figure 9b: Delay when user’s equilibrium is calculated applying the proposed formula 

compared with the MC and the HCM 2000 
 

 
 

Figure 10: Flow pattern of the two alternative routes using the two methods 
 

 
 

Figure 11a,b: Delay of the two alternative routes using the two methods 
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6. Conclusion and further research 
In this paper we showed the possibility to use the Markov Chain process to generate 

data whose validity is comparable with the ones produced by a microsimulation program. 
Starting from previous works we implemented a Markov Chain process able to deal with 
variable demand. 

Furthermore we provided heuristic, easy-to-use formulae that properly mimic the data 
both for the mean and for the standard deviation of the queue. We tested these formulae in 
a scenario where the peak hour flows have been represented by a step function and 
compared it with the Markov model and the deterministic model. 

The formula improves highly the available analytical models, showing a better fit than 
the linear relationship when the degree of saturation floats around 1, giving the possibility 
to evaluate queues and delays in a dynamic scenario. Finally we showed a potential 
application of the model in an assignment process, showing that the function gives 
different results with respect to the ones computed using the Highway Capacity Manual 
delay formula. 

Further research will attempt to improve the formula to include the cycle length and the 
sub-period lengths as parameters and to extend it to arterial networks. We also intend to 
show the results of an optimization problem and compare them with the available optimal 
green and cycle time formulae, study the effect of a responsive control and of signal 
coordination for evaluate both the efficiency and reliability of such measures with respect 
to the fixed, uncoordinated system. 
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