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Abstract 

This paper considers the network design problem (NDP) assuming that the users’ 
responses to the design variable follow the Probit stochastic user’s equilibrium (SUE). The 
Probit SUE assumes the normal distribution of the random error terms of link costs. This 
overcomes the problem of IIA property of the Logit model which is the key issue in route 
choice. The Probit SUE is extended to the case of variable demand and the fixed point 
formulation for the variable demand Probit SUE is proposed. This fixed point is imposed 
onto the formulation of the NDP resulting in a Mathematical Program with Equilibrium 
Constraints (MPEC). The paper explains the various useful characteristics of the Probit 
SUE that eases the way for solving the NDP, including the smoothness of the path flows 
respect to design variables and the uniqueness of path flows. The NDP is then reformulated 
as an implicit optimization program that allows the application of many fruitful non-linear 
optimization algorithms to the problem. This paper adopts the Sequential Quadratic 
Programming (SQP) approach and defines a method for calculating the Jacobian of the 
objective function respect to the design variable. The optimization algorithm is tested with 
a simple five-link network. 
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1. Introduction 

The Network Design Problem (NDP) has a long history in transport research. In such a 
problem, a planner⎯with control over some design variables such as toll levels⎯is 
assumed to be aiming to optimise some system level measure of performance, while 
anticipating the effect of drivers adjusting their travel choices in response to the stimuli of 
the design variables (e.g. Yang & Bell, 1998, 2001; Brotcorne et al, 2001; Patriksson & 
Rockafellar, 2002). Almost exclusively in the NDP literature, it is assumed that drivers 
possess perfect information on the changing environment, justifying the use of a fixed or 
elastic demand Wardrop User Equilibrium (UE) model. In spite of questions that could be 
raised about the realism of assuming perfect information, the UE model has justified its 
major role in transport planning through its attractive simplicity when used in isolation (i.e. 
when the values of the design variables are given). This has made it highly amenable to 
analysis; after more than thirty years, still more efficient algorithms continue to emerge for 
computing UE.  

However, when embedded in a NDP, experience has proven quite the reverse to be true 
of the UE model, with the resulting non-convex, non-smooth optimisation problem 
providing many, well-documented computational hurdles. These difficulties manifest 
themselves, and may be characterised, in a number of alternative ways depending on the 
formulation and solution strategy adopted. However, it might be argued that the three key 
(to some extent, inter-related) difficulties are: 
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Active path set changes. Consider first a simplified network structure in which the 
only paths are non-overlapping and consist of single links, and that for given design 
variables the travel cost functions are monotone (vector of link travel costs continuous and 
strictly monotonically increasing in the vector of link flows). In this case, for given design 
variables, there are unique UE link flows and path flows. Now, as the design variables are 
altered, the set of active (used) paths in the UE solution will vary. The effect is a non-
smooth problem in the neighbourhood of any path set change, and in realistic-sized 
networks with many possible paths, this will happen frequently. This is an example of a 
wider phenomenon arising from the use of complementarity problems (of which UE may 
be viewed as an example) as constraints to optimisation problems (Patriksson & 
Rockafellar, 2002, Luo et al. 1996). Thus, natural gradient-based search strategies for the 
NDP may fail even in reaching local optima. 

Non-unique UE path flows. The importance of the changing active path set in the 
success of local search strategies makes it, in some sense, natural to consider the NDP at a 
path flow level. However, in general network structures, while the set of link flow 
solutions to the UE model at given design variables is a singleton under the assumption of 
monotone cost functions (Smith, 1979), it is well known that the UE path flow solutions 
are typically non-unique. Therefore, path-based solution strategies are commonly faced 
with an additional hurdle of selecting a single UE path flow solution from a convex set, for 
example by an arbitrary choice of extreme point (e.g. Tobin & Friesz, 1988) or by an 
additional model selecting the ‘most likely’ path flows (e.g. Larsson et al, 2001). Still, 
establishing desirable properties of a sequence of such ‘unique’ UE path flow solutions, as 
the design variables are altered, may be extremely problematic. 

Multiple optima. Even if the difficulties above could be addressed, which cause 
problems with determining local optima of the NDP, the problem of determining a global 
optimum would still remain. 

Much of the literature on NDP has naturally focused on the algorithmic viewpoint of 
dealing with such problems, namely attempting to find alternative formulations, ever more 
sophisticated solution strategies, or clever heuristics that, to some degree, circumvent these 
difficulties. Taking a step further back, however, we may look at NDP on a more 
conceptual level, and ask whether such difficulties do not question the initial premise that 
UE is a sensible choice of model for representing the performance of the network and the 
responses of users? Would alternative network models, when embedded in the NDP, 
change the nature of some of these problems? Could these alternative models be defended 
in their own right, and/or could they be viewed as methods of approximating the original 
NDP with a UE model? 

In particular, the difficulties arising from active path set changes and non-unique path 
flows naturally bring to mind the Stochastic User Equilibrium (SUE) model (Sheffi, 1985). 
For problems with monotone cost functions, then under mild conditions on the choice 
probability model, SUE is know to give rise to solutions (a) in which all paths are active, at 
least in theory, and (b) which are unique in the path flow domain (e.g. Cantarella & 
Cascetta, 1995). Therefore, it is natural to ask, is solving the NDP with an SUE network 
model actually easier than with a UE? At the same time, one is adopting a model that, 
from a behavioural perspective, is arguably superior in terms of its representation of the 
uncertainty and heterogeneity that surely exists in traveller decisions. 

While the algorithmic advantage of using an SUE model in NDP has been previously 
implied (e.g. Davis, 1994; Patriksson & Rockafellar, 2003), the approach adopted has been 
that of a logit-based SUE. Such a model is well known to possess poor realism for network 
problems, especially in terms of its neglecting of path overlaps, and so loses some 
attraction as a model in its own right. An improvement is to adopt a nested logit SUE (e.g. 
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Gentile & Papola, 2001), but such an approach cannot be applied to arbitrary network 
structures (for almost all realistic network structures, it will not be possible to define a 
unique hierarchy for the available routes). While developments in discrete choice theory 
open up many further possibilities, there remains one long-established model that has been 
known for many years to deal with such problems, namely the probit SUE, and this will be 
the approach adopted in the present paper. The NDP with the probit SUE in this paper is 
re-cast into the form of an implicit program.   

The structure of the paper is as follows. In Section 2 the necessary notation is 
introduced. Fixed demand network assignment models are reviewed in Section 3, then in 
Section 4 methods for extending these to the variable demand case are considered. Section 
5 discusses the Network Design Problem. Section 6 presents  numerical results of the NDP 
with a small problem and conclusions are presented in Section 7. 
 
2. Notation 

The network itself is represented by a directed graph consisting of N nodes, with A the 
set of connecting links. The demand matrix, q, has entries, rsq , representing the travel 
demand from origin r to destination s, where r, s = 1…N. The vector of link flows is x , 
with link costs )(xt , so that )( aa xt  is the cost of travelling along link A∈a  when the link 
flow is ax . The set of paths connecting node r to node s is rsK . The (binary) link-path 
incidence matrix, rs∆ , with elements rs

ka ,δ , denotes the links comprising each path connecting 
node r to s. An assignment of flows to all paths is denoted by the vector f , 
with srkf rs

k ,,  0 ∀≥ .The assignment f  is feasible for demand q  if and only if  
 

srqf rs
k

rs
k

rs

,  ∀=∑
∈K

,      (1) 

 
and the (convex) set of feasible path flows is denoted F. With )(fc  the vector of path costs, 
the cost of the k-th path is 
 

rs
ka

Aa
a

rs
k tc , ))(()( δ∑

∈

= fxf . 

 
3. Fixed demand network assignment models 

The problem of describing the distribution of traffic through a road network has 
produced a variety of solutions centred on the notion of an equilibrium set of traffic flows 
that are in some sense stable; no driver having any motivation to change their (route 
choice) behaviour when the network flows are at equilibrium. The concept of network 
equilibrium traffic flows was first defined by Wardrop (1952) whose “User Equilibrium” 
(UE) is based on the behavioural assumption that drivers choose the route minimising their 
travel cost. The UE flows are deterministic, contingent upon the number of trips between 
the nodes of the network and the nature of the link cost functions. One characterisation of 
user equilibrium is:  

At UE, no driver can reduce their travel cost by unilaterally changing route. 
Travel cost refers to all factors that the analyst may wish to include, whether this is 

simply travel time, or a more complete generalised measure of travel cost. This definition 
implies that, at user equilibrium, for each origin-destination (OD) pair the traffic is 
distributed so that the travel cost on all used paths is equal, and less than the travel time 
that would be experienced by a single vehicle on any unused path. Not all of the available 
paths are necessarily used. The UE condition for a set of network flows ( F∈f ) is that 
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srkjKkjccf rs
rs
j

rs
k

rs
k , ,,,   )()(0 ∀≠∈∀≤⇒> ff .   (2) 

The UE traffic assignment makes strong assumptions; that drivers are identical, 
perfectly rational and have complete knowledge of the network conditions. It does not 
allow drivers to act on differing individual assessments of the current network conditions 
or to have different perceptions of the attractiveness of alternative routes. While the UE 
flows provide a good starting point from which to understand the behaviour of traffic in the 
network, a more general approach can be adopted that incorporates the heterogeneity of 
drivers. 

In an attempt to incorporate into this traffic assignment model the fact that individual 
drivers have their own assessment of both network conditions and of the cost of taking 
different routes (including their personal preferences for some routes over others), their 
route choice behaviour can be assumed to follow a random utility model. This assumption 
leads to a different set of equilibrium flows: the Stochastic User Equilibrium (SUE). Let 
the perceived cost of the k-th route be (the random variable) kC , then 

kkk cC ε+=  
where )(fkk cc =  is the mean perceived route cost and the random errors ,...),( 21 εε  

follow some joint probability density function with zero mean vector. Many error 
structures have been proposed for SUE, not only the commonly used independent Weibull 
and multivariate Normal that lead to the Logit and Probit models respectively (Sheffi 
1985), but also more general cross-nested logit models (Prashker & Bekhor, 1999), mixed 
error component models (Nielsen et al, 2002) and gamma link component distributions 
(Cantarella & Binetti, 2002). However, the definition of the SUE assignment does not 
require us to specify the error distribution, so we can return to this issue later. 

We then define the proportion, )(crs
kP , of drivers travelling from r to s choosing the k-th 

path as those who perceive that this is the cheapest route, given path costs c; 
 

( )
( ), , Pr

, Pr

kjKjcc

kjKjCCP

rs
rs
j

rs
j

rs
k

rs
k

rs
rs
j

rs
k

rs
k

≠∈∀+≤+=

≠∈∀≤=

εε
   (3) 

 
where Pr(.) denotes probability. For most choices of error distribution, in particular for the 
multivariate normal distribution that leads to the probit case, calculation of this probability 
(for every path) is one of the central computational difficulties in determining the SUE 
flows. One of the main attractions of using independent Weibull-distributed error terms 
(the Logit model) is that these probabilities are straightforward to evaluate exactly. For 
most other distributions the path choice probabilities cannot be written in closed form and 
instead must be approximated analytically or estimated via Monte Carlo simulation. 

The Stochastic User Equilibrium (SUE) is defined to be a set of flows such that: 
At SUE, no driver can improve their perceived travel cost by unilaterally changing 

route. 
The SUE path flow assignment (for F∈f ) is the solution to the following fixed-point 

problem 
 

., ,    ))(( srKkPqf rs
rs

krs
rs

k ∀∈∀= fc      (4) 
 
This states that, for a given OD pair, the flow on the k-th path consists of those drivers 

who perceive this to be the best path. Since f is defined to be a feasible set of flows, the 
total number of drivers on all paths connecting r to s matches the total travel demand from 
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this origin to this destination. A network path flow vector satisfying SUE will be denoted 
f*. 

If the random error terms follow a distribution that assigns non-zero probabilities across 
an unbounded domain, then k,r,sPrs

k ∀>   0  and every route in rsK is assigned some flow. This 
is the case, for example, with the logit and probit models. In practice, two factors 
ameliorate this unrealistic prediction. Firstly, the OD demand is finite and fractions of this 
demand that represent less than a single vehicle can be ignored. Secondly, when 
calculating the flows for a given network, the demand will be shared amongst only those 
paths that appear in rsK and hence the modeller can prevent even minimal flows being 
assigned to unrealistic routes by omitting them from the path-set, though this requires 
careful checks to ensure the validity of the restricted path-set. An alternative that avoids 
these issues is to choose a bounded probability distribution, though this may sacrifice 
desirable analytical properties of standard distributions. 
 
4. Variable demand network assignment models 

It is unrealistic to assume that no matter how severe congestion becomes, no one will 
decide to postpone (or cancel) their intended journey. Both of these methods for assigning 
traffic to a network (UE and SUE) can be extended to accommodate the fact that the 
number of travellers is not fixed. Typically (summary in Sheffi 1985) this variability has 
been encapsulated by a demand function that describes how the number of travellers 
depends on the cost of their desired journey. In addition to assigning traffic in accordance 
with the network equilibrium, this demand variation constitutes another equilibrium 
condition that must be satisfied. This approach is described for both UE and SUE below. 
Then for the SUE case an alternative method is presented. 
 
4.1 UE with variable demand 

Variable demand is incorporated into the UE model (see for example Beckmann et al. 
1956) by writing the OD demand rsq as a function, (.)rsD , of travel cost. For a given OD 
pair, the UE travel cost is the minimum path cost, hence solving UE with variable demand 
requires path flows F∈f  to be found such that for each OD pair the following conditions 
simultaneously hold: 

 
kjKkjccf rs

rs
j

rs
k

rs
k ≠∈∀≤⇒> ,,   )()(0 ff  

⎟
⎠
⎞⎜

⎝
⎛=

∈
)(min rs

kKkrsrs cDq
rs

. 

 
Recall that, in UE,  the minimum cost is exactly what will be experienced on any used 

path. 
 

4.2 SUE with variable demand: mean perceived cost 
For the SUE case there is no agreement amongst drivers on the cost of any particular 

used route. This means that the UE approach (above) cannot be used directly since the 
argument required for the demand function for each OD pair is the route cost appropriate 
for the population as a whole on that movement. 

One way to deal with this (Ben-Akiva et al. 1986, Gentile & Papola 2001, Maher et al. 
1999) is to use the expected minimum perceived route cost as the argument of the demand 
function. This is perhaps the nearest equivalent quantity to the experienced (minimum) 
route cost that occurs in the UE case. The SUE flows can then be calculated, as in the UE 
case, with an additional demand equilibrium condition to be satisfied 
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This definition of variable demand SUE is appropriate to any (bounded, monotonically 

decreasing) demand function (.)rsD . One particular choice for the demand function can be 
derived from the assumption that the drivers' choice of whether or not to travel follows 
random utility theory, which has already been used to describe their route choice behaviour 
in the formulation of SUE. Writing the cost of travelling as TTT cC ε+=  and the cost of not 
travelling as 000 ε+= cC , gives the number travelling (the demand) to be 

 
( ) ( )( )rs

T
rs
T

rsrs
rs

rs
rsrs ccQPQq εε +≤+−=−= 000 Pr11  

 
where the constant rsQ is the total number of travellers considering whether or not to travel, 
and ),( 0εεT  follow some zero mean joint probability distribution. 

For UE, the cost of travel from r to s is simply the minimum route cost for that 
movement, and so the number choosing to travel is obtained from the above equation by 
substituting { }rs

kKk
rs
T cc

rs∈= min . For SUE, using the expected perceived minimum route cost 
gives the travel demand: 
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εεε minPr1 00  

 
The random utility model used here to describe the choice of whether or not to travel 

can assume any distribution (Weibull, Normal, Gamma) for the random error terms ),( 0εεT , 
regardless of that used in the route choice model. The problem with this formulation is 
that, in deciding whether or not to travel, drivers are described as comparing the cost 
(disutility) of not travelling with the perceived minimum route cost averaged across the 
entire population. It seems more plausible that each driver compares the cost of not 
travelling with the minimum route cost as judged by them alone, i.e. compares the option 
of not travelling with the single best route as they see it, regardless of the thoughts of the 
rest of the population (that are unknown to them). This individual-based approach to the 
variable demand SUE problem derives entirely from random utility theory and leads to a 
rather simple statement of the variable demand SUE flows. 
 
4.3 SUE with variable demand: individual perceived cost 

Consider the drivers' decision as a choice between the utilities of different routes, 
measured against the disutility of not travelling (or going later or by a different mode that 
is outside of the road network). For each OD pair, the option of “no travel” can be 
represented in the network by a pseudo-link that provides drivers with another choice of 
OD route. In this way, every driver is assigned to the network, as for the fixed demand 
case; those choosing not to travel are assigned to the pseudo-link connecting the relevant 
OD pair. The perceived cost of no travel will vary across a population of drivers and so this 
cost has a random part associated with it, just like the costs of travelling along the other 
links in the network. However, since the option of not travelling does not suffer from 
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congestion, it is assigned a constant cost (the mean disutility across the population). 
Writing the cost of not travelling as 000 ε+= cC , the proportion of drivers not travelling is 
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exactly like the route choice probabilities in (4). The option of whether or not to travel sits 
alongside the choice of which route to take, each having a distribution of perceived costs 
across the population of drivers. The people choosing not to travel are those for whom all 
routes appear more expensive than the disutility of not visiting their desired destination. 

The variable demand SUE formulation can then be written as an extended version of the 
fixed point definition of SUE 

 
,, ,    ))(( 0 srKkPqf rs

rs
krs

rs
k ∀∈∀= fc     (5) 

 
where }0{0 ∪= rsrs KK , with rsf0 the number of drivers electing to not travel, and rsq is now 
the (fixed)  total number of potential drivers, some of whom choose route ‘zero’ and do not 
travel. This mechanism for incorporating variable demand into the SUE model is a natural 
extension of the fixed demand case and is based on the same underlying principle of 
random utility theory. The variable demand SUE flows can be calculated exactly as in the 
fixed demand case, which itself occurs as the special case where the mean perceived cost 
of not travelling forces everyone to travel, in the limit ∞→0c . This model also subsumes 
the UE case, which can be recovered by taking the limit 0→Σ  for the covariance matrix of 
the joint probability distribution of the random errors. It remains to solve this fixed-point 
problem in order to calculate the equilibrium flows for a given network. Fortunately, with 
this formulation, it is no more difficult than calculating the fixed demand SUE flows, 
methods for which have been extensively discussed elsewhere (Sheffi 1985, Sheffi & 
Powell 1981, Fisk 1980). 

Thus far no restriction has been made on the distribution of the error terms for the route 
choice model of SUE or for the demand model concerning the choice of whether or not to 
travel. If all the error terms involved are assumed to be Weibull distributed, then the 
resulting logit choice model may be equivalently represented as a nested logit choice, thus 
recovering the same formulation presented in section 4.2. However, for other error 
distributions (such as the probit case) the methods are distinct. For route choice, we choose 
to use the probit model which properly accounts for the correlations between overlapping 
routes (whereas the standard logit model for example does not). For the demand model, 
various distributions could be argued as valid; adopting the probit model here is desirable 
as it eases the inclusion of the demand model as a pseudo-link, which then requires no 
special treatment in the variable demand SUE calculations. 
 
5. Probit-based network design with variable demand 

Network Design refers to the `improvement’ of a network achieved by changing the 
network design parameters. This process requires some means of quantitatively judging the 
optimality of a given network; in its most general form this evaluation might use an 
objective function comprising a weighted sum of the network’s performance against an 
array of criteria such as total travel time, revenue generated by tolls and measures of 
reliability, congestion and pollution. Desirable attributes will appear with positive 
multipliers in the objective function, whereas undesirable attributes will be weighted 
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negatively. The Network Design Problem (NDP) is then to change the network and/or the 
values of any controllable policy variables (such as tolls) in order to achieve a “maximum 
score” as evaluated by this objective function. 

The only necessary attribute of the objective function is that it can be evaluated at any 
state of the network, that is, at any given set of link flows. It is usual that the network is 
evaluated when it has reached (some sort of) equilibrium; this may be at User Equilibrium 
(UE), Stochastic User Equilibrium (SUE), or at some other well-defined state that allows 
comparisons to be made from one set of design variables to the next. 

The criteria included in the objective function (and their relative weights) determine 
how the network needs to be changed in order to maximise its performance. A different 
objective function should be expected to lead to a different set of optimum network flows. 

In any given instance of the NDP, there will be only certain features of the network 
infrastructure that can be changed (e.g. the traffic capacity of some links) these variables 
are the “network design parameters”. Changing the set of network design parameters is 
likely to alter the optimum network performance that can be achieved. 
 
5.1 The network design problem as an MPEC 

If we choose to evaluate the performance of the network at some equilibrium condition, 
say SUE, the Network Design Problem naturally presents itself as a mathematical program 
with equilibrium constraints (MPEC). The mathematical program is an optimisation 
problem, adjusting the network design parameters (link capacities, tolls etc) in order to 
maximise the network’s performance as measured by our objective function, and this is 
constrained to be evaluated with the network flows at SUE. 

With objective function (.)g , and network design parameters s , the NDP is 
 

( )
( ) levellower }*   subject to

levelupper },max

==

=

sff

sf
s

g
    (6) 

 
Solving the NDP typically involves a numerical search across values of the network 

design parameters to optimise the upper level objective function, whilst evaluating the 
lower level equilibrium flows at each iteration. The NDP can present a non-smooth 
objective function ‘surface’ with multiple optima in a high dimensional space. 
Sophisticated numerical methods are required to tackle such problems. To anticipate some 
of the difficulties that can be expected in larger networks, and to understand the influence 
of the choice of equilibrium condition (UE or SUE), we begin by examining a very simple 
NDP, but one that can provide multiple optima of the objective function. 
 
5.2 Example: Two link network 

Consider the two link network with total demand 11=Q , with a single network design 
parameter representing a toll,τ , imposed on Link 1, and link cost functions 
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As described in section 4.4, the demand variation is modelled by a ‘pseudo-link’ with 

cost 0C , and 0x denoting the number of drivers not travelling. We explore the behaviour of 
this network, that is to say the SUE link flows, as demand (via 0c ) and toll are varied. 
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Different values for the variance of the choice probabilities are calculated, including the 
limiting UE case. Figure 1 depicts the UE and SUE flows on the network for various 
settings of 0c  andτ . When the cost of not travelling is low, all the potential demand is 
taken by the pseudo-link and no one travels. As the cost of staying at home, 0c , increases, 
more people are forced onto the network. At low values of the link 1 toll, drivers choose to 
travel on link 1, since the free flow cost on link 2 is comparatively high. As link 1 becomes 
congested through either more travellers (as 0c  increases), or becomes less attractive (as τ  
increases), so more traffic moves onto link 2. Note that the transition of flow between the 
links as the network parameters change occurs smoothly for SUE. This may be contrasted 
with equivalent UE flows that change between routes abruptly as the network parameters 
are changed. This can be seen as the ‘sharp corners’ on the surfaces of the UE flows in 
Figure 1 and the cross sections of these surfaces in Figure 2. 

Consider the UE flows. Regardless of the toll level, as the cost of not travelling ( 0c ) 
increases, more people elect to travel on the network, that is, on links 1 and 2. The toll 
determines the relative attractiveness of link 1 or link 2, as can be seen in Figure 2 by the 
shape of the curves whenτ =60,90; for these cases the uncongested cost of link 1 is higher 
than that on link 2, hence the flow is initially assigned to link 2 and only when the 
congestion on this link increases does link 1 begin to be used. The same behaviour occurs 
for the SUE case but the transitions in flow occur smoothly. 

 

 
Figure 1: Variable Demand UE and SUE flows on the two-link network. 

 
In addition to examining the link flows and their dependence on the underlying 

parameters of the network, other quantities can also be measured. For example, the revenue 
generated by the toll on link1 is simply τ1xR = . The dependence of revenue on the toll 
level and the OD demand for UE flows is shown in Figure 3. For the UE case (mesh 
surface) the flow on link1, and hence the revenue, drops to zero when the fixed cost on link 
1 (free flow cost plus toll) increases beyond the cost of no travel (here 1000 =c ). Notice that 
the revenue surface with UE network flows has two local maxima, whereas with SUE 
flows there is a single global maximum for the revenue surface. 
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Figure 2: The UE and SUE flows on the two-link network as demand and toll are changed. 
 

 
Figure 3: Revenue from Link 1 at UE (mesh) and SUE (solid) with 102 =σ  
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Figure 4: Revenue at fixed demand for UE and SUE with several variances 

 
5.3 Implicit programming formulation of the NDP 

The problem expressed in (6) can be simply reformulated as follows: 
 

                                        
( )

( ) ( )( )
max

where  ,

g

g g≡
s

s

s s f s

%

%
                                                (7) 

Two properties of the probit SUE, including (i) the uniqueness path flows (and hence 
link flows) and (ii) the smoothness of the relationship between the path flows and design 
variables, allow the application of the implicit programming approach to (7). With the 
reformulated problem, various types of non-linear optimization algorithms can be applied 
directly to the problem provided that the Jacobian of the objective function is available. 

A local linear approximation to the (surface of) SUE flows can be obtained via 
sensitivity analysis and this is sufficient to understand the changes in the SUE flows that 
result from small changes to the network design parameters (s). These approximate 
equilibrium flows can then be used to evaluate the objective function of the NDP, giving 
insight into the (local) consequences of changing the network design parameters. 

For SUE with fixed demand, Clark & Watling (2002) derived an expression for the 
leading order linear changes in the link flows resulting from perturbations of the network 
design parameters (link cost function or OD demand changes). 

The SUE path flows can be written as a function of the design parameters as 
 

)(** sff =  
 
with f* a solution to the variable demand SUE fixed point problem (5). The SUE flows 
depend on the network design parameters, s, that can include link cost parameters, OD 
demands and covariance matrix terms. The vector of path cost functions is then ),( sfc . 
Consider the function 
 

( )qsfcPfsfh ),(),( −= . 
 
For any given ‘setting’, s, of the design parameters, 0sfh =)*,(  where )(** sff =  are 

the corresponding SUE link flows. 
The Clark & Watling (2002) result is that 
 

)()(*)(* 02
1

10 ssJJsfsf −−≅ − ,    (8) 
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where the Jacobian matrices ( 21 , JJ ) are the derivatives of ( )00 ),( ssfh  with respect to f and 
s respectively. Following section 4 this result for fixed demand SUE extends immediately 
to the case of variable demand SUE by extending the path set to include a constant cost 
pseudo-link for each OD pair.  

 With this sensitivity expression, we can calculate the derivative of path flows (f) 
respect to the design variables (s) as follows: 

 

                                                 
( ) ( )0 1

1 2
0

* * −−
∇ = ≅ −

−
f s f s

f J J
s s

                                          (9) 

 
In calculating the Jacobian matrices ( 21 , JJ ), we also need the information on the 

Jacabian of path-choice probability. The method suggested by Daganzo (1979) is adopted 
in this paper to compute the jacobian of path-choice probability respect to the design 
variable. 

One method of solving the NDP would be to apply the Sequential Quadratic 
Programming (SQP) algorithm to the problem in (7). At each outer iteration of the SQP, 
the algorithm demands information about the evaluation of the objective function of (7) 
and the Jacobian of the objective function (9). Thus, given a vector of design variable (sk) 
at iteration k, the optimization process re-calculates the SUE flows, evaluates the objective 
function at the new SUE flows, and calculates the Jacobian of the objective function 
respect to the design variable. The SQP algorithm then uses this information to determine 
the predicted optimal design variable (sk+1) for the next iteration.  

To ensure that the path flows and link flows change smoothly, one potential strategy for 
the MPEC would be to first solve a ‘high-variance’ SUE, before allowing the variances to 
return to their ‘correct’ level (zero for the UE solution). Figure 4 illustrates that this 
approach would lead to the solution 1UE  (finding the optimum of the high-variance SUE, 
then taking the limit 0→Σ ), whereas the global UE optimum occurs at the point 0UE . The 
processes of solving the NDP and taking the limit 0→Σ  therefore seem to be non-
commutative. Note in addition, that Figures 3 and 4 show the UE revenue to have multiple 
local optima whereas the SUE revenue has only one (global) optimum. 
 
6. Numerical results with the five-link network 

The algorithm developed in the previous section is tested with a simple five-link 
network. Figure 5 shows the five-link network with all link cost functions (including the 
elastic pseudo link). For the first test, we set the demand of 5 units wishing to travel from 
node 1 to node 2. The β is set to 0.3 for the initial test. The NDP considered in this test is 
the optimal toll problem with the objective of maximising the revenue.  

Figure 6 illustrates the gradient of link flow on link 3 (x3) respect to the toll on link 3 
( 3τ ). Two different gradient profiles are presented. The bold line is the gradient profile 
calculated by numerical differencing. The SUE link flows are calculated at each toll level 
and the numerical differencing gradient is calculated following: 

( ) ( )* *
3 3 0

0

x xτ τ
τ τ
−
−
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Figure 5: Five-link network 

 
The dash line represents the gradient of link flow at each toll level calculated from the 

sensitivity expression, 1
1 2
−−J J . The gradient of link flow as calculated by the sensitivity 

analysis expression is relatively smoother than the gradient calculated from numerical 
differencing. Based on the information on the link flow gradient, the approximated link 
flow can be calculated as the function of the link toll, ( ) ( ) ( )1

3 3 0 1 2 0x xτ τ τ τ−= − ⋅ −J J . 
Figure 7 shows the linear approximation of the flow on link 3 as the function of the link 
toll at three different initial toll levels ( 0,4,10τ = ). The bold line is the real SUE link flow. 
As expected, the linear approximations of the link flow in all cases closely estimate the real 
link flow around the neighbourhood of the initial toll level. The approximated link flows 
are all linear relationships respect to the link toll since the linear approximation is adopted. 

 

 
Figure 6: Link flow gradient from sensitivity analysis and numerical differencing 

 
The direct product of the ability to approximate the link flow from the initial SUE link 

flow is the derivative of the objective function of the NDP. In this test, a simple objective 
function of maximising the revenue is: 

 
j j
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and assuming that the toll is only imposed on link 3, the derivative of the objective 
function respect to the link toll can be defined as: 
 

3
3 3

3 3

g x xτ
τ τ
∂ ∂

= ⋅ +
∂ ∂

. 

 
Figure 7: Linear approximation of link flow respect to the toll on link 3 

 
Figure 8 shows the gradient of the revenue curve respect to the toll on link 3 calculated 

by sensitivity analysis expression and numerical differencing. Similar to the case of the 
link flow gradient, the gradient of the revenue curve as calculated by the sensitivity 
analysis expression is much smoother than the gradient from the numerical differencing 
method.  

As illustrated above, the derivative of the link flow respect to link toll is a linear 
function of the toll level. Thus, the approximated revenue at each toll level will be a 
quadratic function of the toll level. Figure 9 depicts the real revenue curve (bold line) and 
the approximated revenue curve at different initial toll levels of 0, 4, and 10. At each 
iteration of the SQP, the information on the gradient of the revenue curve and 
approximated revenue curve will be used to define the predicted optimal toll level for the 
next iteration. For example, from Figure 9 if the initial iteration starts at the toll level of 
zero, the SQP will seek the optimal toll level for the approximated revenue curve which 
will be about 2. The toll level of 2 will then become the toll level for the next iteration.  

With this operation, the NDP with Probit SUE can be solved directly with the SQP. The 
first example presented in this section is to optimize a single toll level on link 3 in order to 
maximize the revenue. Figure 9 shows the optimization process from the SQP algorithm. 
The bold line represents the real revenue curve, the dots represent the iteration of SQP, and 
the dash lines represent the approximated revenue curves at each of the SQP iterations. The 
initial toll level is set to be at 0.2. As mentioned, the SQP received the information about 
the gradient of link flow and revenue curve respect to the toll on link 3, then the predicted 
optimal toll is calculated from the approximated revenue curve (dash curve). The predicted 
toll is 2.04. Then, the new SUE flow is calculated for the toll level of 2.04. The 
information on the gradient of the link flow and revenue curve at the toll level of 2.04 is, 
again, passed to the SQP algorithm which predicts the next toll level of 2.25. The 
algorithm terminates here meaning that the toll level of 2.25 is the optimal toll level for 
link 3. 
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Figure 8: Revenue curve gradient from sensitivity analysis and numerical differencing 

 
Figure 9: Approximation of revenue respect to the toll on link 3 

 

 
Figure 10: SQP iterations for optimizing the toll on link 3 
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The next test is to find the optimal tolls for link 3 and link 5. Similarly to the case of 
single tolled link, an approximated revenue surface is created based on the initial flow 
condition, then the SQP predicts the optimal tolls based on this approximated surface. 
Figure 11-13 show the approximated revenue surface from three different initial points. 
The mesh-grids in Figure 11-13 are the real revenue surface where the dark surfaces are 
the approximated revenue surfaces. 

From the real revenue surface, we can observe the existence of multiple-optima in three 
different regions. The first region is the region with the ‘dome shape’ revenue surface. In 
this region, both link 3 and link 5 still have some link flows and the global optimum is in 
this region. Figure 11 shows the surface approximating the first region that is approximated 
at the toll levels of 0.4 and 0.5 on link 3 and link 5 respectively. The second region is the 
curve on the left hand side of the dome shape. In this region, there is no traffic volume on 
link 5 since the toll on this link is too high (started from about 10). If the initial point for 
the approximation is in the vicinity of this second region, the approximated revenue 
surface will look like the curve shown in Figure 12 (the initial point for the approximation 
are the toll levels of 0.4 and 11 on link 3 and 5 respectively). The final region is on the 
right hand side of the dome shape where there is no link flow on link 3 (toll on link 3 starts 
from about 10). The toll on link 3 does not effect the revenue of in this region. Figure 13 
shows the approximated revenue surface of this last region which is approximated at the 
toll levels of 9 and 5 on link 3 and 5 in that order. 

 Figure 14 shows the contour of the revenue surface as the function of the toll levels on 
link 3 and 5. The figure also shows the optimization process (from the SQP) started from 
three different initial solutions. Table 1 shows the initial solution and the final solution 
converged for each optimization test. 

 
Table 1: Initial points and solutions for optimization A, B, C for the tolls on link 3 and 5 

Test Initial solution (toll 
on link 3, toll on link 5) 

Solution (toll on link 
3, toll on link 5) 

Revenue 

A 0.40, 11.00 3.53, 10.96 2.45 
B 9.00, 5.00 3.28,3.28 4.00 
C 0.40,0.50 3.64, 3.41 3.99 

 

 
Figure 11: Approximated revenue surface at 
the toll level of 0.4 and 0.5 on link 3 and 5 

Figure 12: Approximated revenue surface at the 
toll level of 0.4 and 11 on link 3 and 5 
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Figure 13: Approximated revenue surface at 
the toll level of 9 and 5 on link 3 and 5 

Figure 14: Optimization process for the toll level 
on link 3 and 5 starting from three different points

 
The optimization A started at the region that has the approximated surface shown in 

Figure 12. The optimization process is trapped at the local optimum in this region. The 
final solution is the local optimal with the toll levels of 3.53 and 10.96 for link 3 and link 5 
respectively. The revenue from this solution is about 2.45. In the optimization B, the SQP 
is started at the toll levels of 9 and 5 on link 3 and 5. Figure 13 shows the approximated 
revenue curve from this starting point. Despite the similarity between the starting region of 
the optimization A and B, the optimization process found its ways to the global optimum in 
the dome-shape region. This is because there exists some slope toward the dome-shape 
region on the top of the approximated revenue curve shown in Figure 13. This is not the 
case for the approximated curve in Figure 12. Finally, the optimization C is started at the 
point near the no-toll case (0.4 and 0.5). The approximated revenue curve at this point is 
shown in Figure 11. This starting point in indeed in the region with the global optimum. As 
expected, the final solution of the optimization C converged to the global optimum at the 
toll levels of 3.64 and 3.41 on link3 and 5 respectively.   

 Overall, the optimization process seems to work well in solving the NDP with the 
Probit SUE, at least for the simple case. However, there are various implementation issues 
that may pose some problem on the optimization process. The first one is the lack of the 
smoothness of the objective function surface. This is mainly due to the lack of the 
convergence of the MSA (Method of Successive Average) adopted to find the Probit SUE. 
Figure 15 shows the detail surfaces of the revenue curves (toll on link 3) with different 
numbers of MSA iterations.  

Three different numbers of MSA iterations were tested, including 10000, 1000, and 500 
iterations. As expected, the revenue curve with the lowest number of MSA iterations (500 
iterations) is relatively non-smooth compared to the revenue curve with a higher number of 
MSA iterations. The reason is due to the convergence error of the SUE flows. This is also 
the reason for the non-smoothness of the gradient of the link flow calculated by the 
numerical differencing method (see Figure 6 above). It is important to address this issue 
before attempting to apply this method to a large scale network problem(which may 
involve a higher magnitude of the convergence error).  
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Figure 15: Comparison of the revenues curves generated by different MSA iterations 

 
The other source of non-smoothness is, as mentioned earlier, due to the level of the 

variance of the Probit model. As described earlier, the nature of UE (which can be seen as 
the SUE case with zero variances) is likely to exhibit some non-smooth changes of the link 
flows (due to the change of active paths set). Figure 16 shows the comparison of the 
revenue curve against the different constant values of the pseudo link cost (with toll level 
on link 3 =1) with three different levels of β , including 1, 0.3, and 0 (UE case).  

  

 
Figure 16: Comparison between the revenue curves with different values of variance 

 
The revenue curves with  β = 1 and 0.3 (SUE case) are reasonably smooth. On the other 

hand, with the UE case (β = 0) the revenue curve exhibits the ‘cusp’ point (around the 
constant value of 6) which may be non-differentiable. This point happened when there was 
a change of the set of used paths. This result confirms the advantage of utilising SUE as the 
equilibrium rule for the NDP. Nevertheless, there still some possibility that the NDP with 
the Probit SUE may involve some non-differentiable points. This can be happen in the case 
with very low variances. This is also possible from the practical point of view, since in 
theory all paths are used by the SUE but in practice this is not the case. Due to some 
computational precision, some paths with very low path choice probabilities may not be 
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active paths. This condition may be changed when the design variable is changed and the 
unused paths become active (exactly the same case with the UE). Further investigation on 
this point is necessary to ensure the functionality of the method proposed with a larger 
scale problem. 
 
7. Conclusions & further research 

In this paper we have considered the Network Design Problem (NDP) in the case where 
the user and network response is governed by an elastic demand, Probit SUE model. Such 
a model has some claims to greater behavioural realism than the commonly used UE 
model, yet here we have particularly focused on the properties it induces in the NDP. In 
particular it has been seen how the perceptual variance has desirable consequences in terms 
of the smoothness of the resulting NDP, implying that gradient methods such as sensitivity 
analysis may be used to infer sensible local search directions. In this paper, the aim has 
been to understand the nature of the NDP, rather than solve it, but given the results from 
the simple example illustrated, it is a natural next step to the explore the solution of such 
problems via the use of sensitivity analysis, building on the promise of such techniques 
from previous ‘bilevel’ applications of this nature (e.g. Yang, 1995, 1997; Patriksson & 
Rockafellar, 2003). 

The examples studied in this paper were deliberately chosen to be simple, to serve 
illustration of the principles, yet it would clearly be valuable to conduct further 
investigations of the comparisons conducted on larger scale networks. This would serve to 
provide greater evidence of the relationship between the NDP-UE and NDP-SUE 
responses, and allow the further investigation as to what extent NDP-SUE may be viewed 
as a smoothing method approximation for solving NDP-UE problems, and to what extent 
the perceptual variance term impacts on the existence and multiplicity of local optima. 
Given the generality of the SUE fixed point formulation, we may also examine asymmetric 
SUE problems when the ‘lower level’ may no longer be a singleton (multiple separated 
SUE). The other key practical issues that must be considered for developing a method for a 
large scale network are the issue of convergence error from the MSA and its impact on the 
calculation of the link flow gradient.  
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