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Abstract 

Railway networks are characterised by variations in demand on different links. Optimal 
strategies therefore call for a differentiated treatment of fares, frequencies and vehicle sizes in 
various links. However, for various reasons, railway operators may apply uniform levels for 
these decision variables. In this paper we investigate the welfare losses implied by uniform 
setting of fares per km, frequencies and vehicle sizes. We demonstrate that the largest welfare 
loss results when frequencies are made uniform across links. Welfare losses due to making 
vehicle size and price per km uniform across links are smaller.  
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1. Introduction 
Suppliers of public transport services face decision problems with a considerable number 

of dimensions, including network structures, pricing, spacing of lines and stops, frequency of 
service, and vehicle size. In the present paper we will focus on railway operations and pay 
special attention to three of these instruments: choice of frequency of service, vehicle size and 
price. We will investigate the potential contribution of these instruments to achieving a profit 
or welfare maximum.  

An important feature of public transport is that on various segments within networks there 
are substantial differences in demand. For example, the closer one gets to a large city, the 
higher traveller volumes become. In addition there are large differences in demand according 
to the direction of travel. Table 1 gives an illustration for a train service between A, B and C, 
where C is a large city. In the morning peak demand for train services is assumed to be high 
for the BC part, 50% lower for AB, and lower again in the opposite direction. As 
demonstrated in the table a policy to accommodate demand at the BC section leads to a rather 
low average occupancy rate of below 50% even during the morning peak.  

 
Table 1. Directional and spatial asymmetries in travel demand; implications for occupancy 
rates. 
 

Link Demand during morning peak; 
passengerkms 

Capacity: 
seatkms 

Occupancy 
rate (%) 

AB 500 1,000 50 
BC 1,000 1,000 100 
CB 250 1,000 25 
BA 125 1,000 12.5 

Total 1,875 4,000 46.8 
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The directional imbalances are usually costly to solve in railway operations. The back-haul 
problem is essentially a matter of joint production: if services are produced in one direction, 
there will also be services in the opposite direction.  It will appear that opportunities to 
address the demand imbalances by adjustments in capacity –size, frequency- are limited1. It is 
here that pricing measures –implying direction dependent pricing- may be expected to be of 
vital importance (see for example Rietveld and Roson, 2002). 

As Table 1 indicates, in addition to direction dependent imbalances in travel demand, there 
are also imbalances given differences in demand on various segments (AB versus BC). Here 
variations in frequency and size are easier to apply. However, railway operators often have 
considerable reservations against this. For example, variations in train size may imply costs of 
coupling and decoupling. Variations in frequencies may be difficult to implement within 
given structures for timetables. For example, frequencies are usually set according to fixed 
rules such as 2 per hour, or 4 per hour. Then a frequency of 3 per hour on a certain link may 
lead to long waiting times for transfer passengers when in the rest of the network the 
frequency equals 4. Further, differentiation in prices may confuse customers and may 
stimulate travellers to make detours. The question addressed in this paper concerns the 
potential contribution of variations in frequency, vehicle size and fares in order to achieve a 
profit or welfare optimum for a railway network where demand varies between links. More in 
particular the performance of second best strategies will be investigated, i.e., what are the 
losses in terms of welfare and profits when prices, frequencies or vehicle sizes are kept 
uniform. This is an important theme that has received little systematic attention in railway 
research. 

In order to address these questions we will first give a short review of the literature on 
behaviour of public transport operators (section 2). In section 3 we present results for a simple 
model based on inelastic demand. This is followed by section 4 where the case of elastic 
travel demand is considered. 

2. Choice of service frequency and size of vehicles in public transport 
The base model of frequency choice by public transport operators has been formulated by 

Mohring (1972). It can be outlined as follows. Consider the demand for trips per time period 
on a certain line (denoted as Q) as given (Q=Q0). Further, let F denote frequency of service 
per time period and let costs of service equal 
 
 Coperator = u.Q+v.F         (1) 
 

where u is the marginal cost per passenger and v is the cost of an extra vehicle used to 
serve passengers2. In addition to the costs experienced by the operator there are also costs for 
the passengers related to waiting time, schedule delay, the fare p and other travel cost 
components (cost of vehicle time plus costs of travelling to and from railway station). When 
the vehicles are equally spaced, the interarrival time between vehicles equals 1/F. This implies 
that the average waiting time for a traveller going to a public transport stop without consulting 
the timetable equals 0.5/F. Since waiting time at platforms is valued more negatively than in 
vehicle time, the value associated to the waiting time is relatively high (say a factor a1, where 
a1≥1). Then, when the value of travel time is denoted as a2, the factor a=a1.a2/2 translates the 
inter-arrival time into monetary terms: 

 
                                                           
1 We do not go into details here on strategies that are sometimes available such as letting trains wait near the 
work location after the morning peak until the start of the afternoon peak, or using the excess capacity in other 
parts of the network.   
2 Note that we do not take into account delays related to boarding and alighting in this formulation. 
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 Ctraveller = [p + tc + a/F]Q        (2) 
 
Minimising the sum of total costs of company and travellers 

 C = Coperator + Ctraveller =   u.Q + v.F + [p + tc + a/F]Q    (3) 
 

leads to the optimum frequency: 
 F* = [a.Q/v]0.5          (4) 
 

This result is known as the ‘square root principle’. It means that an increase of demand Q 
with 10% leads to an increase of frequency of services of 5%. In a similar way optimal 
frequency will respond positively to changes in the cost of waiting time per passenger (factor 
a) and negatively to changes in costs of supply of an additional vehicle (factor v). 

One of the limitations of this result is that vehicle size is not considered explicitly: it is 
assumed to be given. This leads to the conclusion that occupancy rates will be higher in 
situations of high demand and one would expect a tendency of introducing larger vehicles in 
this case. This obviously calls for a joint analysis of choice of frequency and vehicle size by 
operators. 

 
Figure 1. The relationship between capacity and travel demand according to the square root 
principle. 
 

Another point that deserves attention is the possible response of travellers to higher 
frequencies. In the base line approach demand is inelastic (Q=Q0), but in a more general 
setting one would expect that travellers respond to higher frequencies and that operators take 
this into account in their decision whether or not to increase frequency. 

Jansson (1980) introduced the issue of vehicle size by formulating a model where operators 
jointly maximise size and frequency, and where peak and off-peak periods are distinguished. 
Based on the assumption of inelastic demand he derives optimal levels of frequency and size 
of buses. The assumption is that during the peak the occupancy rate is 100%, whereas it may 
be lower at other times. He concludes that at the time of research the structure of bus 
operations in Sweden was clearly sub-optimal since frequencies were too low and bus size 
was too large. The explanation of this gap between the actual and the optimum outcome is the 
neglect of user costs by public transport operators. 
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Using computer simulation techniques, Glaister (1986) analysed the potential 
consequences  of deregulation of public transport in the city of Aberdeen based on the 
assumption of loss minimising operators, and where also bus fares are taken into account. His 
conclusions are comparable to those of Jansson that at that time busses were too small and 
that frequencies were too low. Although deregulated bus companies would not take into 
account directly the user costs of travellers, they may yet benefit from higher frequencies 
when travellers are prepared to pay higher fares. One of the issues he raises is the possible 
emergence of differentiated services for different types of travellers, a point that has been 
investigated in more detail by Gronau (2000) who analyses optimum diversity in terms of 
service frequencies and vehicle size. 

Oldfield and Bly (1988) formulate a model with elastic demand where social benefits are 
maximised by using size, service frequency and price as control variables. Based on empirical 
data they find that both size and frequency vary approximately with the square root of 
demand. This underlines that also with much more complex models the square root principle 
seems to make sense. Jansson (1993) formulates a model for a welfare maximising public 
transport authority that considers price and frequency. Two forms of schedule delay are 
distinguished: one where frequencies are so high that customers do not consult timetables 
when they use public transport, and another one where timetables are consulted. The two 
forms have rather different effects on schedule delay costs and hence may lead to local optima 
in the frequency choice problem. 

The literature surveyed above focuses on bus transport. It is however equally relevant for 
rail transport. Given the nature of rail operations the number of constraints in the planning of 
network structures, timetables, vehicle capacities and crew and vehicle schedules tend to be 
more complex compared with those of bus companies (Daduna and Wren, 1988, Daduna et 
al., 1995). This may be an explanation why in the rail sector stylised models in terms of 
frequency and vehicle size only are not very common. Nevertheless, it may be argued, that 
although models in the tradition discussed above give a simplified picture of the optimisation 
of rail operations, they are useful to analyse the basic trade-offs faced by the planners. 

3. Different levels of demand at different parts of the railway line; inelastic demand 
Consider now a simple network where the operator serves a line from A to C with a stop B 

in between. The demand on the three relevant markets is denoted as QAB, QBC, and QAC. 
These demands are assumed to be inelastic at this stage. We consider the case that demand is 
large on the AB market, and smaller at the BC and AC markets. See figure 2 for an example.  
 
 
 
 
 
 
 
 
 
 
Figure 2. Railway network with three nodes and varying levels of demand. 
 

We study various regimes for frequencies and vehicle size in terms of whether they are 
uniform across the whole network or not (see Table 2). Clearly, in case 1, the differences in 
demand levels on various parts of the network are not matched by differences in supply. The 
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implications of the various capacity strategies for social costs will now be analysed 
subsequently. 
 
Table 2. Various combinations of frequency and vehicle size according to degree of 
uniformity in on various links in the network 
Frequency 
Size 

Uniform Non-uniform 

Uniform 1 2 
Non-uniform 3 4 
 
Case 1: Minimisation of social costs; inelastic demand. Uniform frequency, uniform vehicle 
size. 

As the reference case we impose the restriction that the operator applies a uniform service 
in terms of frequency and vehicle size on all market segments and that a uniform price per km 
is charged. The total number of passengers that travel between A and B equals QAB+QAC, and 
between B and C it equals QBC+QAC. We assume again that total capacity should be at least 
sufficient to meet total demand. Hence: 
 
 QAB+QAC ≤ F.S 

             (5) 
 QBC+QAC ≤ F.S 
 

Assume that demand on the AB segment is larger than on the BC segment. Then, it follows 
that F.S = QAB+QAC. We assume that demand is symmetric in both directions. 

The costs of the production of transport services consist of various elements. Per passenger 
the costs of ticket counters, cleaning, and other personnel are equal to u. Another part depends 
on frequency; examples are the costs of drivers, and the cost of infrastructure use. These costs 
are assumed to be proportional to distance. Energy costs per km are proportional to frequency, 
but are subject to economies of scale: large vehicles are more energy efficient per seat than 
small vehicles. This leads to a formulation of energy costs such as Cenergy = wFSb, where b≤1. 
In a similar way the capital costs of the driving stock per km are assumed to display scale 
economies, large vehicles are cheaper per seat than short vehicles: Cdriving stock = rFSc. Thus, 
costs of operations on a certain line of length d are equal to: 
 
 Coperator = uQ + vFd + wFSbd + rFScd       (6) 
 

Then, the total cost function of operations on the line between A and C, also including the 
costs of passengers (see equation (2)) is: 
 
 C = u[QAB+ QBC+QAC] + vF(dAB+dBC) + wFSb(dAB+dBC)+ rFSc(dAB+dBC) +  
            (7) 
  [pAB + tcAB + a/F]QAB + [pBC + tcBC + a/F]QBC + [pAC + tcAC + a/F]QAC 
 

Since we assume here that demand is inelastic welfare maximisation is equivalent to cost 
minimisation. Another implication of inelastic demand is that price setting may be ignored. 
Thus, the remaining instruments are frequency F and vehicle size S.  We assume that capacity 
F.S is set in such a way that it is just equal to demand in the busiest part of the network: S = 
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[QAB+QAC]/F. After substitution3 of this equation in the cost function, minimisation of costs C 
with respect to frequency F leads to: 
  
 F = [a(QAB+ QBC+QAC)]0.5 / [v(dAB+dBC) + w(QAB+QAC)b(1-b)F-b(dAB+dBC)+  
             (8) 
   r(QAB+QAC)c(1-c)F-c(dAB+dBC)]0.5 
 

Although this formula is already far removed from the simple square root expression in 
(2), the basic square root form is still clearly visible4.  Since there is no analytical solution to 
(8) we use iterative methods to compute numerical values for optimal frequency . For this 
purpose we use stylised values for the network in terms of demand levels and distances: 
QAB=10,000; QBC=5,000; QAC=7,500; dAB=10; dBC=30; dAC=40. Further, we use the following 
technical parameters: u=0.5; v=20; w=0.05; r=0.1; b=0.7; c=0.9. These parameters are based 
on studies in economies of scale in railway operations (Rietveld, 2002), and on confidential 
data from the National Railways on cost structures. For representative network structures the 
technical parameters result in cost shares for ticketing, energy, carriages/conductors and 
locomotives/drivers of about 12, 8, 50 and 30 percent. 

 
Table 3. Minimisation of social costs under various assumptions of uniform frequency and 
size: effects on frequency, size and costs 

Minimisation of social costs; inelastic demand 
   uniform freq & 

size 
varying freq, 
uniform size 

varying size, 
uniform freq 

varying freq & 
size 

F Frequency AB 34.29 43.41 34.86 47.24 
  AC 34.29 31.01 34.86 29.69 
S Size AB 510 403 502 285 
  AC 510 403 359 421 
Ctraveller Costs  192482 191349 191954 191315 
Coperator   81601 73273 73920 73213 
Ctot   274084 264622 265874 264528 
OR Occupancy AB 100% 100% 100% 100% 
 rate BC 71% 100% 100% 100% 
AC AB 0.15 0.16 0.15 0.17 
 BC 0.22 0.13 0.14 0.13 
 

Average cost 
per passenger 
km AC 0.11 0.13 0.13 0.12 

MC AB 0.33 0.04 0.18 0.16 
 BC 0.04 0.10 0.09 0.10 
 

Marginal cost 
per passenger 
km AC 0.08 0.07 0.08 0.09 

 
Table 3 gives the outcomes for the optimal frequency and train size. The occupancy rate in 

the busy part AB is 100%, whereas in the quiet part BC it is 71%. Average costs per 
passenger tend to be very high in the low demand segment (BC), which is of course no 
surprise given the low degree of capacity utilisation. Marginal costs per passengerkm are very 
different in the three market segments: in the busy part AB they are about 8 times as high 
compared with the quiet part BC. Note also the large divergence in BC between average costs 
(very high) and marginal costs (very low). These results are obviously caused by the excess 

                                                           
3 By this substitution the costs of energy and rolling stock become dependent on demand at the AB 
part of the network. Travel volumes on the BC segment do not matter as long as they are smaller than 
at the other market. 
4 Note that under the assumption of QAC=0, QAB=QBC=Q, dAB=dBC=1 and in the extreme case that scale 
economies in energy use and costs of vehicle stock are absent (b=c=1), we find again the exact square 
root formula in equation (4). 
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supply of capacity implied by the restriction that in all segments there should be sufficient 
capacity, and that capacity is not allowed to vary between market segments. 

The implications of this second best approach for the responsiveness of size and frequency 
with respect to changes in demand are shown in Table 4. It appears that an increase in demand 
on the busy segment AB of 1% leads to an increase in overall frequency and train size on this 
segment of .20% and .37%, respectively. An increase of demand in the quiet part leads to a 
small frequency increase and a small size decrease keeping total capacity constant. This 
means that travellers on the AB segment would benefit from an increase of demand in the 
quiet segment because of the increase in frequency. This is an example of a positive 
consumption externality in a network context. In the lower part of Table 4 the effects of 
demand increases on frequency and size are summarised. It appears that an increase in 
demand such that all market segments grow at the same rate leads to a proportional capacity 
response in terms of frequency and size (.46+.54=1.00). The square root principle following 
from the stylised case as outlined by Mohring (1976) would imply a frequency elasticity of 
0.50. In the context of the more differentiated network given here we find a slightly lower 
responsiveness of frequency, that is, however, still very close to the value of 0.5. 
 
Table 4. Minimisation of social costs under various assumptions of uniform frequency and 
size: elasticities of supply with respect to changes in demand. 

Minimisation of social costs; inelastic demand 
Elasticity uniform freq & size Varying freq, uniform 

size 
 varying size, uniform 
freq 

varying freq & 
size 

FAB - QAB 0.20 0.55 0.22 0.46 
FAC - QAB  -0.01  0.01 
SAB - QAB 0.37 0.01 0.34 0.75 
SAC - QAB   -0.22 -0.01 
Coper - QAB 0.40 0.22 0.24 0.22 

     
FAB – QBC 0.12 -0.14 0.10 0.04 
FAC – QBC  0.25  0.17 
SAB – QBC -0.12 0.14 -0.10 -0.82 
SAC – QBC   0.30 0.23 
Coper – QBC 0.08 0.20 0.19 0.20 

     
FAB – QAC 0.15 0.06 0.14 -0.02 
FAC – QAC  0.23  0.28 
SAB – QAC 0.28 0.37 0.28 0.54 
SAC – QAC   0.45 0.32 
Coper – QAC 0.30 0.35 0.34 0.35 

     
FAB – skms 0.46 0.47 0.47 0.48 
FAC – skms  0.47  0.46 
SAB – skms 0.54 0.53 0.53 0.50 
SAC – skms   0.53 0.53 
Coper – skms 0.78 0.77 0.77 0.77 

 
Another result of our analysis is that it allows us to investigate economies of density in the 

railway sector. Economies of density are usually studied in the context of aggregate cost 
functions where network structures and asymmetries in demand at various segments are 
ignored. (see for example Caves et al., 1984, and Small, 1992). The present model allows the 
aggregation of total output (seatkms) and total costs of the operator. Then, the welfare 
maximisation approach adopted here leads to a total cost elasticity of about 0.78. The returns 
to density measure would be 1/(0.78)= 1.28, which is very close to estimates usually obtained 
for costs functions based on aggregate data (see for example Pels et al., 2003) 
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In figure 3 we illustrate the sensitivity of frequency for changes in passenger demand5. The 
figure demonstrates the rather low response of frequency with respect to demand in the 
busiest part of the line (AB). This underlines that in the case with spatial variations in 
demand, it is optimal that the operator sets frequency in a way that departs from the simple 
Mohring rule.  
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Figure 3. The relationship between travel demand, frequency, and vehicle size with 

different levels of demand at various parts of a railway line. 
 
Case 2. Minimisation of social costs; inelastic demand. Varying frequency, uniform vehicle 
size. 

We now drop the restriction that the operator applies a uniform service in terms of 
frequency. The frequency on the segment AB differs from the frequency on the segments BC 
and AC. Because the demand on AB is larger than on BC, the frequency on the first segment 
will be higher than on the latter. This means that trains, that arrive at B, not always continue 
to C, they sometimes immediately return to A. Therefore some changes in the cost function 
are to be applied. The costs of the public transport operator now become: 
 

Coperator = u[QAB+QBC+QAC] + v[FABdAB+FBCdBC] + wSb[FABdAB+FBCdBC] + 
(9) 

rSc[FABdAB+FBCdBC] 
 

The costs of the passengers become: 
 
 Ctraveller = [pAB + tcAB + a/FAB]QAB + [pBC + tcBC + a/FBC]QBC +  

          (10) 
[pAC + tcAC + a/FAC]QAC 

 
As Table 3 shows, the result of the relaxation of the condition of equal frequency in all 

segments is clear: on the busy segment frequency increases, whereas on the quiet segment it 
decreases. From a welfare perspective the average traveller will benefit: generalised costs 
decrease with about 0.6%. Note, however, that this does not imply that all travellers benefit: 
travellers on the quiet segment are obviously better off with the high frequencies in the 
reference case. Note that also the costs of the railway operator decrease with about 11%. 
Thus, making frequency flexible has a much larger effect on operator costs than it has on 
traveller costs (but note that traveller costs also depend on fares, and access costs, so that 
indeed a substantial part of these costs cannot be influenced by the operator). Occupancy rates 
are now equal on all market segments, and the variation in the marginal costs of 
passengerkilometres among the market segments is smaller than in the reference case. 
Interesting enough the marginal costs are now highest in the quiet segment BC. The reason is 

                                                           
5 The parameter values used are: QAB=10,000; QBC=5,000; QAC=7,500; dAB=10; dBC=30; dAC=40; 
u=0.5; v=20; w=0.05; r=0.1; b=0.7; c=0.9.  
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given in Table 4 where it appears that frequency in the AC segment has become rather 
responsive to demand on BC.  

Table 4 shows the responsiveness of frequency and train size with respect to demand 
changes. On the busy market frequency has become very responsive, whereas size has 
become very unresponsive here. On the other hand, size has become responsive to changes in 
demand on the long distance market. At the overall network level the responsiveness of size, 
frequency and total costs with respect to total seatkms is very close to the one in the reference 
case. For the cost function we observe that dropping the equal train size constraint has 
considerable impact on cost levels (a decrease of 11% mentioned above), but a negligible 
effect on economies of density estimates. Thus, constraints on railway operations may have a 
substantial impact on inefficiencies, while at the same time estimates of economies of density 
in railway operations remain unaffected. 
Case 3. Minimisation of social costs; inelastic demand. Uniform frequency, varying vehicle 
size. 

We return to the base model (uniform frequency and uniform vehicle size), but now drop 
the restriction of uniform vehicle size. We consider the possibility to (un)couple a railway 
carriage at B; in that way the vehicle size on segment AB differs from the size on BC. The 
costs of the public transport operator are: 
 

Coperator = u[QAB+QBC+QAC] + vF[dAB+dBC] + wF[SAB
bdAB+SBC

bdBC] + 
(11) 

rF[SAB
cdAB+SBC

cdBC] 
 

The costs of the passengers become: 
 
 Ctraveller = [pAB + tcAB + a/F]QAB + [pBC + tcBC + a/F]QBC +  

          (12) 
[pAC + tcAC + a/F]QAC 

 
This alternative way of introducing flexibility by allowing varying vehicle size leads to 

better outcomes for both traveller costs and operator costs compared with the reference case. 
However, when compared with the case of flexible frequency, it is inferior. The effect on 
operator costs is comparable to that of variable frequency, but the development of traveller 
costs is not as good. This is a plausible result, since in our model formulation, changes in 
vehicle size only have a direct effect on operator costs whereas there is no such direct effect 
on traveller’s utility, because nuisance due to crowding is ruled out.  With changes in 
frequencies this is different since these have a direct impact on costs of both travellers and 
operator. 
Case 4. Minimisation of social costs; inelastic demand. Varying frequency, varying vehicle 
size. 

The last extension to this model is making the vehicle size segment-dependent. For 
example, one may allow that the vehicle size on the segment AC is larger than on the segment 
AB. To compose the cost function in this case, we need to define another variable, G. G 
denotes the frequency solely on the segment AB, that is when a train departing from A 
arriving at B continues to C, this train does not contribute to GAB. This train contributes to 
GAC, because this train drives solely on AC. In this way FAB=GAB+GAC. By the introduction of 
G, we are able to determine the capacity restrictions: 

QAB+QAC ≤  GABSAB+GACSAC 
            (13) 
QBC+QAC ≤ GACSAC 
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The last restriction holds because GBC=0. Thus, there are no trains solely on the segment 
BC, passengers that want to travel from B to C, travel with a train that drives between A and 
C. The corresponding cost function is: 
 
 Coperator = u[QAB+QBC+QAC] + v[GACdAC+GABdAB] + wSAB

bGABdAB + 
            (14) 
  wSAC

bGACdAC + rSAB
cGABdAB + rSAC

cGACdAC 
 
 Ctraveller = [pAB+tcAB+a/(GAB+GAC)]QAB + [pBC+tcBC+a/GAC]QBC + 
            (15) 
  [pAC+tcAC+a/GAC]QAC 
 

Table 3 shows that the entirely flexible case has differentiations in size and frequency that 
are indeed more pronounced than the differences in the preceding alternatives. The outcome is 
a high frequency / small train service at the short distance and a low frequency / long train 
service at the long distance market. However, the differences in total costs are very small 
compared with the case that only frequency is flexible. This leads to the conclusion, that 
compared with the reference case of uniform frequency and size, varying frequency is a very 
well performing second best alternative to the first best solution where both size and 
frequency vary. 

Table 4 finally gives a view on how the planning in terms of size and frequencies in the 
various markets is affected by changes in demand in submarkets. With uniform frequency and 
size, the elasticities are rather small, which is no surprise since frequency and size are 
assumed to serve all submarkets. In the most flexible alternative, an increase in travellers in 
the busiest segment (AB) has a strong effect on size (elasticity equal to 0.75), whereas size in 
this AB market strongly decreases with increasing demand in the other market (BC). This 
table shows that the responsiveness of size and frequency with respect to demand shifts in 
submarkets varies strongly according to the regime of fixed versus flexible size and 
frequency. In the lower part of Table 4 we have introduced the effects of an average increase 
in all submarkets. Then it appears again that the elasticities of size and frequency with respect 
to travel demand are both very close to 0.5 This underlines the robustness of Mohring’s result 
derived for a simple one-line network in the context of more complex networks. 

Our overall conclusion is that when demand is inelastic the second best strategy of working 
with non-uniform frequencies leads to outcomes for total costs that are very close to the first 
best strategy. Setting the range between the completely uniform service and the first best 
solution equal to 100 (192482-191315 for travellers and 81601-73213 for the operator) we 
find that the loss of keeping vehicle size uniform (case 2) is only 1 to 3% of this range. On the 
other hand the loss of keeping frequency uniform and only varying vehicle size is 55% for 
traveller costs and 8% for operator costs. Thus, compared with strategies involving different 
frequencies at different parts of the network, strategies dealing with non-uniform vehicle size 
are performing much worse.  

A limitation of the present analysis is that due to the assumption of given travel demand, 
the price instrument cannot be considered. Therefore we shift our attention now to the case of 
elastic travel demand. We will address the question whether the above conclusion on the 
superiority of frequency as an instrument above vehicle size is still valid when demand is 
inelastic, and how the efficiency of these capacity oriented measures compare with the 
efficiency of price measures. 
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4. Optimisation of railway operations under elastic demand 
We now consider the case that demand is elastic, so that it depends on frequency and fares. 

Let demand for trips depend on generalised costs GC, where GC depends on the fare p, 
scheduling costs that are related to frequency F and other travel cost components tc as 
outlined in (2). Demand also depends on other factors such as income, supply of competing 
modes, which are incorporated in a factor A. Thus, the demand for trips on the three segments 
is6: 
 
 QAB = AAB.[pAB + tcAB + a/F]z 

 
QBC = ABC.[pBC + tcBC + a/F]z 
           (16) 
QAC = AAC.[pAC + tcAC + a/F]z 

 
where z is the generalised cost elasticity of demand (z<0). This formulation with elastic 

demand means that in addition to frequency and vehicle size, also fares are considered. We 
consider two cases, one where the objective is the maximisation of profits, the other one is the 
maximisation of social welfare. 
Maximisation of social welfare; elastic demand. 

The maximisation of social surplus with elastic demand means that the overall objective 
can no longer be formulated in terms of costs, but that consumer surplus and profits have to 
be considered. The inverse demand function is GC = (Q/A)1/z. Thus, consumer surplus equals  
 

 CS = ∫
ABQ

0

z/1
AB dq]A/q[  + ∫

BCQ

0

z/1
BC dq]A/q[  + ∫

ACQ

0

z/1
AC dq]A/q[  

- [pAB+ tcAB + a/F]QAB -[pBC+ tcBC + a/F]QBC - [pAC+ tcAC + a/F]QAC (17) 
 

In the case of welfare maximisation the objective is to maximise total surplus TS, that is 
consumer surplus plus profits pABQAB+pACQAC+pBCQBC -C: 
 

TS =  ∫
ABQ

0

z/1
AB dq]A/q[  + ∫

BCQ

0

z/1
BC dq]A/q[  + ∫

ACQ

0

z/1
AC dq]A/q[  - [tcAB + a/F]QAB - 

 
[tcBC + a/F]QBC - [tcAC + a/F]QAC - u[QAB+ QBC+QAC] - vF(dAB+dBC) -  

           (18) 
wFSb(dAB+dBC) - rFSc(dAB+dBC) 

 
Table 5 reports the results for maximisation of social welfare. In order to prevent outcomes 

with negative profits, we impose the constraint that profits should be positive. Depending on 
the institutional setting where subsidies are given to public transport, this might be replaced 
by side conditions, that losses do not exceed a certain maximum level. A major lesson to be 
learnt from Table 5 is that flexibility of prices (column 2) is a rather ineffective way to 
improve welfare compared with flexibility of size or frequency.  
 
 
 
                                                           
6 The parameters in this demand function have been set at the following values: AAB=10,000; ABC=5,000; 
AAC=7,500; tcAB=2.04; tcBC=3.79; tcAC=4.67; a=50, z=-1.5 
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Table 5. Maximisation of social welfare under various assumptions of uniform frequency,  
size and fare. 

Maximisation of social welfare; elastic demand 
  uniform 

freq, size 
& price 

Varying 
price, 
uniform 
freq & 
size 

varying 
freq, 
uniform 
size & 
price 

varying 
freq & 
price, 
uniform 
size 

Varying 
size, 
uniform 
freq & 
price 

Varying 
size & 
price, 
uniform 
freq 

varying 
freq & 
size, 
uniform 
price 

varying 
freq, size 
& price 

F Frequency AB 31.64 37.85 89.92 78.02 41.90 42.53 73.91 74.82 
  AC 31.64 37.95 22.93 27.06 41.90 42.53 27.71 28.07 
S  Size AB 705 496 387 405 699 644 533 449 
  BC 705 496 387 405 241 276   
  AC       341 387 
p Price AB 2.02 3.88 1.47 1.83 1.48 1.92 1.45 1.77 
  BC 6.07 1.65 4.41 3.51 4.45 3.76 4.34 3.67 
  AC 8.09 4.42 5.88 4.39 5.94 4.58 5.78 4.49 
Q Demand AB 18635 12812 30440 26071 24371 21443 29400 26332 
  BC 3877 8529 4481 5417 5173 5814 4790 5333 
  AC 3685 5955 4402 5550 4936 5942 4662 5526 

AB 100% 100% 100% 100% 100% 100% 100% 100% OR Occupancy 
rate BC 34% 77% 100% 100% 100% 100% 100% 100% 

R Revenues  90985 90116 90428 91076 88480 90295 90229 91059 
Coper Costs  90985 90116 90428 91076 88480 90295 90229 91059 
Z Profits  0 0 0 0 0 0 0 0 
CS Consumer 

surplus 
 404770 425065 453007 455610 444222 445919 454403 455699 

W Welfare  404770 425065 453007 455610 444222 445919 454403 455699 
Rec AB 0.20 0.39 0.15 0.18 0.15 0.19 0.14 0.18 
 BC 0.20 0.05 0.15 0.12 0.15 0.13 0.14 0.12 
 

Receipts per 
passenger km 

AC 0.20 0.11 0.15 0.11 0.15 0.11 0.14 0.11 
FC AB 0.14 0.15 0.17 0.16 0.14 0.14 0.15 0.16 
 BC 0.44 0.17 0.13 0.13 0.17 0.16 0.14 0.13 
 

Full Costs per 
passenger km 

AC 0.10 0.11 0.13 0.12 0.15 0.14 0.14 0.12 
NRec AB 0.06 0.24 -0.02 0.02 0.01 0.05 -0.01 0.02 
 BC -0.23 -0.11 0.02 -0.01 -0.02 -0.03 0.00 -0.01 
 

Net receipts 
per passenger 
km AC 0.10 0.00 0.02 -0.02 0.00 -0.02 0.01 -0.02 

 
Compared with the reference case (column 1), flexible prices only lead to an increase of 

potential welfare of  (425065-404770)/(455699-404770)=39.8%. As illustrated in Figure 4, 
this figure is 77.5% for flexible vehicle size, and for flexible frequency it is as high as 94.7%. 
Thus, flexible prices do help to improve the social surplus in rail transport, but changes in the 
supply of capacity (frequency and train size) appear to be more efficient. Another result is that 
when two instruments are applied in a non-uniform way, most of the potential welfare gains 
can be achieved. Least attractive is the combination of vehicle size and fare with a score of 
about 80%, the combinations of F,p and F,S get close to a score of 100%. It is interesting to 
note that the combination F,p performs slightly better than F,S. This reveals that the degree of 
overlap in the effects of F and S is larger than in the effects of F and p.  

Flexible prices with uniform frequency and size imply that the per km price in the busy 
segment (AB) is about 7 times higher than in the quiet segment (BC) –note that we assume 
BC to be three times as long as AB. Thus, optimal fares indeed vary strongly in a situation 
with differences in demand levels, but in spite of this the price instrument is not very effective 
in getting close to the welfare optimum. Comparison of the first best case with the case where 
the price per km is uniform in the network (the two right most columns in table 5) reveals that 
the welfare loss of imposing a uniform price per km is very small. 

There is an interesting link with the literature on road pricing. It is well known that when 
the degree of congestion varies between different links in the network important welfare gains 
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can be achieved with differentiated prices. However, this result only holds true long as 
capacity is fixed. As demonstrated by Verhoef and Rouwendal (2004). when capacities are 
optimised there are no welfare gains by using differentiated road prices. This result is 
obtained under the assumption of constant returns to scale for road capacity. In the railway 
case we use cost formulations that depart from the constant returns to scale assumption. 
Therefore, we do find a welfare increasing effect of the introduction of non-uniform prices. 
However, the effect is very small, so that the main conclusion still holds, that the most 
efficient way to deal with variations in a network with non-uniform demand is to use 
differentiated frequencies. Differentiation of vehicle size achieves the second position and 
differentiation of fares is least attractive. 

It is important to realise that different results may be obtained in the case of direction 
dependent variations in demand as also illustrated in Table 1. In this case, the operator has to 
face the issue of joint production: by producing the services between A and C, there will also 
be return services between C and A. When demand in both directions is strongly assymmetric, 
as it is in Table 1, price differentiation may become an important instrument (see Rietveld and 
Roson, 2002). 

Figure 4. Relative efficiency of strategies ranging from undifferentiated frequency, vehicle 
size and price per km (left) to a fully differentiated strategy (right) under welfare 
maximisation. 
 
Maximisation of profits; inelastic demand. 
Profits of the monopolist are equal to: 
 

Z = (pAB-u)QAB + (pBC-u)QBC + (pAC-u)QAC - vF(dAB+dBC) - wFSb(dAB+dBC) -  
           (19) 

rFSc(dAB+dBC) 
 

The maximisation of profits appears to lead to higher prices, and lower frequencies and 
vehicle sizes compared with maximisation of welfare. Given the purpose of our paper we 
focus on relative welfare performance of the various strategies, illustrated in Figure 5. 
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Figure 5. Relative efficiency of strategies ranging from undifferentiated frequency, vehicle 
size and price per km (left) to a fully differentiated strategy (right) under profit maximisation. 
 

The relative efficiency effects of imposing uniformity constraints on fares, frequencies and 
vehicle size in the case of profit maximisation are similar to those of welfare maximisation, as 
can be observed by comparing Figures 5 and 4. In both cases the most efficient instrument to 
cope with variations in demand in various market segments is the use of the frequency 
instrument. As soon as frequencies and vehicle size have been established at their optimal 
levels, only small efficiency gains can be achieved by the introduction of differentiated fares 
per km. 

5. Conclusions 
There are various reasons why railway operators may wish to apply uniform frequencies, 

vehicle size and fares per km. These reasons include indivisibilities in frequencies and in 
wagon size. It is more convenient for travellers when frequencies are a fixed integer number 
per hour. And given network interdependencies, having a frequency of 3 per hour in a system 
where two per hour is the standard is not very comfortable. For vehicle size flexibility can be 
achieved by coupling wagons, but wagon size itself is fixed in the short run, and costs of 
coupling and uncoupling may be substantial. Also different prices per km may lead to 
resistance from travellers when these are considered as nontransparent or unfair. In the 
present paper we investigate the welfare consequences of the imposition of such uniformity 
constraints. 

The use of uniform frequencies and vehicle size in railway networks with varying levels of 
demand lead to losses in terms of both operator costs and generalised traveller costs. When 
demand is inelastic the second best strategy of working with non-uniform frequencies and 
keeping vehicle size constant leads to outcomes for total costs that are very close to the first 
best strategies.  

In the variants with elastic demand also the price instrument can be incorporated. We find 
that differentiated prices do help to increase overall efficiency of the railway system, but that 
the effect is small. When supply, measured in terms of vehicle size and frequency has been 
optimised, the potential contribution of differentiated prices is limited. Thus, only when size 
and frequency are not set at their optimal level, price differentiation becomes important.  

An additional result is that the square root formula –derived in simple network models- 
still is a good approximation of the optimal response of frequency when overall demand 
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increases in larger network models. However, when there are non-uniform changes in demand 
in various parts of the network quite differentiated frequency responses may be called for. 

The model formulations employed here are based on detailed cost functions for individual 
links. They can be used to compute aggregate economies of scale in railway operations in 
larger networks. In our numerical example we arrive at economies of scale of about 1.28, a 
value that is close to what is found in the aggregate costs functions literature.  It also appears 
that this parameter hardly depends on specific frequency or size constraints imposed on the 
operator. Thus, uniformity of frequency or vehicle size certainly matters for total cost levels, 
but not for the economies of scale parameter. 
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