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Abstract 
The paper describes a comparative analysis on several methods (the naïve method, 

multi-linear regression, time series analysis, multi-layer feedforward neural networks, 
radial basis function neural networks, Elman neural networks, self-organising map neural 
networks, fuzzy logic) that can be used to come to short-term congestion prediction. The 
field data sets that were used were acquired on two locations during the morning and 
evening peak periods. The research results show that both the multi-layer feedforward and 
the Elman neural networks outperform the other methods. The paper concludes with 
remarks on the importance to have detectors upstream of the prediction point and to keep 
in mind what kind of congestion has to be predicted. 
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1. Introduction 

Dynamic Traffic Management (DTM) is regarded as a highly effective tool to fight 
congestion, especially within the short-term and middle-long-term range. Nowadays, the 
deployment of DTM-measures is predominantly reactive. However, by bringing DTM-
measures proactive into action the effectiveness could be increased. This in turn can only 
be done (effectively, at least) if we have reliable information regarding the near-future 
traffic state, especially whether or not it is going to be congested. In short: there is need for 
short-term congestion prediction. 

This paper describes a comparative analysis of several methods that can be used to 
come to short-term congestion prediction. All used methods can be described as ‘data 
driven’, i.e. the model development is largely dependent on the acquired data sets. The 
models are tested on morning and evening peak data sets acquired on two different 
locations. However, we will not only analyse the performances of the methods, we will 
also reflect on lessons learned through this research. 
 
1.1 State-of-the-art 
If we check the literature we can find very few articles that have congestion prediction as 
research subject. One of the exceptions is an article by Dougherty et al. (1993), however, 
in this paper only one method (Artificial Neural Networks – ANNs) was used. Exceptions 
to the above are a few studies that compare multi linear regression, time series analysis, 
fuzzy logic and artificial neural networks (Huisken, 2000; Huisken and Coffa, 2000; 
Huisken and van Maarseveen, 2000). 

There is, however, a large body of research on short-term traffic flow prediction. 
Subject of research is usually the prediction of traffic intensities; see e.g. Fahgri and Hua 
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(1992), Smith and Demetsky (1995), Florio and Mussone (1996), Ho and Ioannou (1996), 
Van der Voort et al. (1996), Dia (2001) and Yin et al. (2002). The many papers in this field 
have one thing in common: if comparisons are made between methods the number of 
methods is usually limited to two. Then again, some exceptions can be found (Huisken, 
2001; Huisken, 2003; Huisken and van Maarseveen, under review). 

Another related area of research is that of short-term travel time prediction. Again, 
time series analysis and artificial neural networks seem to be the most favourite choices of 
method (You and Kim, 2000; Van Lint et al., 2002; Huisken and Van Berkum, 2003). 

The above-referenced research shows that artificial neural networks (i.e. the multi-
layer-feedforward neural networks) gave predominantly the best results with respect to 
congestion prediction as well as traffic intensity prediction. However, no studies on 
multiple locations could be found. 
 
1.3 Outline 
The next section gives a condensed overview of the used methods and is followed by a 
section that describes the data set acquisition sites. The section thereafter informs on the 
model development processes. The paper continues with a section that contains the 
comparative analysis, while the last section ends with the conclusions of the research. 
 
2. Methods 
In this section the used methods shall be described very briefly. There are references 
included that give more comprehensive information for those who are interested. 
 
2.1 The naïve method 
The naïve method is not a sophisticated prediction method; it can better be described as a 
‘do-nothing-scenario’ method. So, this rather naïve method assumes that during the look-
ahead period (i.e. the prediction horizon) the state of the (traffic) system (with regard to 
congestion) is stationary. In other words: this method predicts that observation Y at time t 
will remain the same during the look-ahead period and therefore is equal to Y at time t = T, 
with T being the prediction horizon. Mathematically the naïve method can be noted as: 
 

)1(tTt YY =+  
2.2 Multi-linear regression (MLR) 
Multi-linear regression (Bickel en Jackson, 1977) is a fairly simple method to describe 
observations Y that are linearly depending on variables θ and white noise e with mean zero 
and variance σ² (Gaussian disturbances) and can be mathematically noted as: 
 

)2(22110 ikkiiii vcccY +⋅+⋅+⋅+= θθθθ K  
If we set the noise to zero we can rewrite (2) and c can be found by: 
 

( ) )3(1 Yc TT ⋅⋅⋅=
−

θθθ  
With the parameters c determined, they can then be used to estimate new observations Y 
given the new variables θ. MLR is the most common regression technique and is usually 
used to model linear systems. 
 
2.3 Auto regression moving average (ARMA) time series analysis 
The Auto Regression Moving Average (ARMA) time series analysis method (Box and 
Jenkins, 1976) is widely used as a time dependent prediction method. Given F 
observations X0, X1, …, XF-1, ARMA(f, g) time series processes can be written in the form: 
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for t = f, f + 1, … and with ε is white noise with mean zero and variance σ². 
 

The parameters µ, a1, a2, …, af, b0, b1, …, bg, and σ² can usually be estimated by 
deriving least squares and maximum likelihood estimators. Formula (4) can be rewritten 
as: 
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with R, M, and P representing matrices containing the a and b parameters and I being the 
unity vector we can minimise (5) to obtain least squares estimation and maximise (5) to 
obtain maximum likelihood estimation. ARMA time series analysis is usually used to 
model processes that can be measured consistently in time. 
 
2.4 Multi-layer feedforward (MLF) neural networks 
Artificial neural networks (ANNs) are based upon biological neural networks - like the 
human brain - by mimicking their architectural structure and information processing in a 
simplified manner. They both consist of building blocks or processing elements called 
neurons that are highly interconnected making the networks parallel information-
processing systems. The architecture of ANNs is usually made up of several layers; each 
layer containing neurons. The neurons have a transfer function that gives them specific 
characteristics. Although the ANNs are rudimentary imitations of biological ones, they are 
to some extend capable of tasks such as pattern recognition, perception and motor control, 
which are considered poorly performed and highly processor time inefficient by 
conventional linear processing, whereas they seem to be done with ease by e.g. the human 
brain. Neural networks are also known to be robust and to have the capability to capture 
highly non-linear mappings between input and output (Haykin, 1994). 

Muli-Layer Feedforward (MLF) neural networks are so-called ‘supervised’ ANNs 
meaning that during calibration (the ‘learning process’) every time that an input is 
presented (a ‘pattern’) also a desired output is provided (the ‘target’). The neurons are 
equipped with a sigmoid transfer function and ‘weights’ that are adaptable. If the ANN-
generated output deviates from the target this deviation (‘error’) acts as a measure for 
weight adjustment. All weights are changed in such a manner (the ‘learning rule’) that the 
total of all presented inputs generates a smaller summed error during the next iteration. 
MLF neural networks are by far the most used ANNs. 
 
2.5 Radial basis function (RBF) neural networks 
Radial Basis Function (RBF) neural networks (Powell, 1988) are supervised neural 
networks that seem similar to MLF neural networks. The difference, however, can be 
found in the construction of the usually three-layered network. The input layer is made up 
of neurons with a linear transfer function. The second layer (the hidden layer) which has to 
be of a high enough dimension has a different purpose than that of the MLF neural 
networks; this can be seen in that the transfer function is not sigmoid but Gaussian. The 
output layer supplies the response of the network to the activation patterns applied to the 
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input layer. RBF networks are most often used to deal with approximation problems in a 
multidimensional space. 
 
2.6 Elman neural networks 
Elman neural networks (Elman, 1990) are partial recurrent neural networks, also known as 
time-space neural networks, where information coming from neurons of the hidden layer 
serve as additional input in the next time step, the so-called ‘context’. Due to the recurrent 
character of the network it can be translated as networks that use information from the 
‘past’ - if vectors are put in as time step vectors. Their learning rules are somewhat similar 
to the ones of the ANNs described before. 
 
2.7 Self organising map (SOM) neural networks 
Self-Organising Map (SOM) neural networks (Kohonen, 1997) are unsupervised neural 
network systems that intend to optimise their free parameters according to statistical 
regularities of the input (training) data and map these input vectors onto a two-dimensional 
(usually either rectangular or hexagonal) lattice structure. When input is presented to the 
network all neurons of the lattice structure are stimulated and the neuron with the biggest 
activation is declared 'winner'. The weights between the input neurons and the winning 
neuron are strengthened, as well as, but not as strong as, the weights connecting the input 
neurons to the neighbouring neurons. After the network is tuned and new input data are 
offered the data are mapped onto the lattice area that has the most statistical similarity to 
the training data. Self-Organising Maps are also known as Kohonen maps and are most 
often used to deal with classification problems. 
 
2.8 Fuzzy logic 
Fuzzy Logic (FL) can be described as ‘computing with words’ (Zadeh, 1965) and is suited 
for dealing with complex optimisation problems with many constraints and objectives, 
with unclear input information and vague decision criteria. This category contains many 
problems in the fields of traffic and transportation (Teodorović, 1999). 

Fuzzy Set Theory, as it is often also called, is an extension of ordinary set theory, i.e. 
elements are not just ‘member’ or ‘no member’ of a certain set but can have a degree of 
membership (between 0 and 1). A fuzzy system consists of fuzzification, inference and 
defuzzification. 

The fuzzification process (figure 1) is designed to assign degrees of membership (µ) 
to crisp input values (x0, y0) by means of lookup in one or several membership functions 
(A1, A2, B1, B2) These membership functions correspond with linguistic terms that apply to 
input variables and should be partially overlapping and sufficiently wide to allow for noise 
in measurements. Not only input but also output variables are fuzzified (C1, C2). 

The inference method uses a fuzzy rule base (or knowledge base as it is sometimes 
called) that is made up of logical operations and is based on expert opinions, operator 
experience, and/or system knowledge. The rules are given according to the following 
format: 
 

IF <premise 1> AND/OR <premise 2> AND/OR <premise 3> … THEN <consequence> 
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Figure1: Fuzzy logic process 
 

Because a fuzzy rule based system consists of a set of fuzzy rules with partially 
overlapping conditions, a particular input to the system often triggers multiple fuzzy rules. 
Therefore a method is needed to combine the inference results of these rules. This is 
accomplished typically by mapping all fuzzy conclusions onto one variable (z). 

Finally, the obtained fuzzy output variables need to be translated into a crisp output 
value. This process is called defuzzyfication and is established by using a method, e.g. the 
centre of gravity approach, which allocates a crisp value to the final outcome (v). 

FL is used extensively as a control method in various applications, e.g. for 
determining traffic light green times (Niittymäki, 2001) or motor control in photo cameras. 
  
3. Data acquisition 
Field data sets were gathered on two locations: around cloverleaf Beekbergen (motorways 
A1/A50 – figure 2) and cloverleaf Hoevelaken (motorways A1/A28 – figure 3). 
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Figure 2: Data acquisition location Beekbergen 

 

 
Figure 3: Data acquisition location Hoevelaken 

 
Data was collected through the MoniCa – Monitoring Casco – system by means of 

dual induction loops during the month May of the year 2001. The data sets contain 1-
minute aggregated data of intensity, mean speed, standard deviation of mean speed, 
occupancy, a reliability indicator, and a congestion indicator. The first three parameters are 
given in three categories: vehicles with a length up to 5.1 meters, vehicles with a length 
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between 5.1 and 12.5 meters and vehicles longer than 12.5 meters. De congestion indicator 
flag is turned on when 5 vehicles subsequently pass a detector with a speed below 35 km/h 
and the flag is turned off again when 5 vehicles pass with a speed above 50 km/h. 
 
4. Pre-processing 
Obviously, we want to assess the models based on the location were the data was acquired. 
This means that we have 2 data sets: the Beekbergen data set and the Hoevelaken data set. 
For every location the morning and evening peak bottleneck detectors (‘target detectors’) 
were identified (being the detectors that usually were the first ones to detect congestion). 
Since we are interested in predicting congestion it makes sense to remove periods that are 
likely to not include congestion. Also, there is the reliability issue. Not all dual loop 
detectors report with 100% reliability all the time. Therefore unreliable data that can be 
identified by the reliability indicator has to be removed and substituted with the last known 
reliable data. 

As was mentioned before in section 1, all prediction methods that are used are data 
driven. The implication of this is that we need the data to calibrate the models. However, 
we also need the data to validate the models. This can cause problems because we have to 
decide on which part of the data set will be used to calibrate the models and which part will 
be used to validate the models. A proper solution to this problem is to use cross-validation, 
i.e. we divide the data set in sub-sets and use a part to calibrate the model. Then we use the 
remaining part to validate the model. After this exercise we follow the same routine but 
then with another sub-set as validation set and repeat this until all sub-sets are used as 
validation set. The average of all sub-set validations then is used for establishing the 
performance of the models. 

So, in order to perform cross-validation we need equally sized sub-sets. Since the 
data was acquired during the month of May of 2001 we can divide the set in four one-week 
sub-sets. First, all weekend days were removed. Since we were left with 4 Mondays, 5 
Tuesdays, 5 Wednesdays, 5 Thursdays, and 4 Fridays the Tuesday, Wednesday, and 
Thursday that contained the most unreliable data were thrown out. This left us with 4 sets 
of one working week. Each day’s peak period was filtered out; a peak period is defined as 
300 minutes (morning peak from 06:00 hours – 10:59 hours and the evening peak from 
15:00 hours – 19:59 hours). This resulted in 4 equally sized data sub-sets (1 working week 
per morning/evening peak period). 

In order to build data sets that contain data that is relevant we need to identify the 
bottlenecks, i.e. the dual loop detector that usually will be the first one to detect 
congestion. The congestion indicator data reported by this detector will then be used as 
target data. We also need the identification of this detector to select relevant detectors in 
the sense that they are located either upstream or downstream in the vicinity of the 
bottleneck detector. In that way we can filter out data coming from detectors that are 
located on a lane on which traffic is driving in the opposite direction. 

Finally, we also have to normalise data (to the [0, 1] domain; this procedure is 
necessary for ANNs to accept input values) so that every model receives the same input 
data during the calibration and evaluation process. 
 
5. Model development 
The variables present in each data sub-set and thus the input variables of the models are: 
intensity, mean speed, standard deviation of the mean speed (all variables for each vehicle 
category) and occupancy. These variables are provided by each dual induction loop. This 
results in (# of loops) * 10 = # of input variables. Obviously, for ARMA time series 
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analysis temporal data coming from the target detector were used as input. For the 
remaining methods spatial data was used as input. 

As output variable we used the binary congestion indicator (‘congestion’ or ‘no 
congestion’) gathered by the target detectors and it was shifted for 5, 10, 15, 20, 25 and 30 
minutes in time to estimate the prediction performances of the models at these prediction 
horizons. 

We will now describe the model development process for the morning peak data set 
of Beekbergen. The models for the remaining 3 peak periods have been developed in an 
analogue manner. 
 
5.1 The naïve model 
The model development of the data set into naïve models is rather simple. We only use 
data collected from the bottleneck detector. To make it even simpler, we only use the 
congestion indicator data. Data is then normalised by translation ‘no congestion’ into 0 and 
‘congestion’ into 1. Each data sub-set now holds 1500 numbers and can be regarded as a 
vector containing 1500 units. The index number is linked to a particular minute of a 
working day (location 1 is Monday 6:00 pm). By shifting the index numbers with T spaces 
to the left we obtain the target vector with a prediction horizon of T minutes. An example: 
 

Origin = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, …] 
 
The index is shifted by 5 spaces and then becomes 
 

Target = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …] 
 
which is now the target vector with a prediction horizon of 5 minutes. 

If we now subtract the Origin from the Target and sum the absolute value of the 
resulting vector we find the number of minutes that are in error when Origin is used as a 
model to predict congestion of the bottleneck with a 5- minute horizon. This process can be 
done for any number of minutes keeping in mind that the prediction horizon should not 
exceed the shortest ‘no congestion’ period after 6:00 and before 11:00 in the morning. This 
procedure is applied to every week sub-set. 
 
5.2 The MLR model 
Input data for the MLR model is collected through all relevant dual induction loops, i.e. all 
induction loops upstream of the bottleneck and two detectors downstream, just in case of 
back spilled congestion. For the morning peak period of the Beekbergen location this 
means data gathered by 23 detectors. This results in 1-minute time slices of 23 detectors * 
10 variables = 230 input variables. Since there is 1 output variable (the congestion 
indicator of the bottleneck detector) we obtain four input matrices of 230 * 1500 [500 
minutes peak period for 5 week days] elements and four target matrices of 1 * 1500 
elements representing four work day weeks. 

Three input matrices are combined (placed behind each other) to a resulting 230 * 
4500 matrix and the accompanying target matrices undergo the same procedure resulting in 
a 1 * 4500 matrix. These matrices are then used according to formula (3) and so we obtain 
the resulting matrix c that holds the multiplier indices that is used together with the 
remaining input matrix (or evaluation matrix). If we then multiply the evaluation matrix 
with c the result should ideally be the same as the remaining target matrix. The resulting 
matrix is subtracted (element by element) from the target matrix and this produces an error 
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matrix that is used to determine the model’s error. This procedure is then repeated four 
times (cross-evaluation) for each input matrix to serve as evaluation matrix. 
 
5.3 The ARMA time series analysis model 
Input data for the ARMA(f, g) model is collected through the bottleneck detector. The 
ARMA model uses spatial data from the bottleneck detector to calibrate the model, by 
making use of formula (5). The identification of the lag and order index that will provide 
the best results is a time consuming task. In order to come to the identification of the 
proper lag and order index we constructed a data test set that consisted of random chosen 
vectors (week minutes) of data coming from every one of the data input sets and 
accompanying data target set (with several prediction horizons). We used this test set to 
assess the calibrated ARMA models resulting in figure 4 and thus revealing the optimum at 
order 8 and lag 0. The elements of the test set were left out during the evaluation process 
described in the next section. 
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Figure 4: ARMA time series analysis - RMS error percentage of the test set depending on 

order and lag 
 
5.4 The MLF model 
The input data subsets are also used to evaluate the MLF method. The model is build by 
using the spatial input variables (23 induction loop detectors * 10 variables = 230 
variables). These 230 input variables are mapped onto the 1 output variable, the target. The 
target is the congestion indicator of the bottleneck detector shifted in time as described in 
paragraph 5.1. To find the optimum number of learning epochs and the optimum neural 
network architecture (i.e. the optimum number of hidden neurons) we used the vectors that 
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hold the same target elements as the test set as described in the previous paragraph. By 
varying these 2 parameters we obtained figure 5 showing that the optimum was found at 30 
learning epochs with a 230-6-1 neural network architecture. Again, the elements of the test 
set were left out during the evaluation process. 
 

10
20

30
40

50
60

70
2

4
6

8
10

7.5

8.0

8.5

9.0

9.5

RMS error %

learning epochs hidden 
neurons

MLF Neural Networks - test set

 
Figure 5: MLF neural networks - RMS error percentage of the test set depending on 

learning epochs and hidden neurons 
 
5.5 The RBF model 
The model development of the RBF model is identical to that of the MLF model. The test 
set model runs resulted in figure 6 and gave as optimum 70 learning epochs at an 230-6-1 
neural network architecture. 
 
5.6 The Elman model 
The model development of the Elman model is identical to that of the previous artificial 
neural network model. The test set model runs with the Elman models showed an optimum 
at 80 learning epochs by using a 230-2-1 neural network architecture, as can be seen in 
figure 7. 
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Figure 6: RBF neural networks - RMS error percentage of the test set depending on 

learning epochs and hidden neurons 
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Figure 7: ELM neural networks - RMS error percentage of the test set depending on 

learning epochs and hidden neurons 
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5.7 The SOM model 
The model development of a SOM model is completely different from the previous 
procedures; because the learning phase is unsupervised, the network is built on statistical 
clustering that is hidden within the data set. Therefore, one can only use the targets to 
establish how well the model is able to see ‘congestion’ as one particular cluster. Since 
there are many parameters of how to develop such a model (number of categories, one or 
two-dimensional [hexagonal or square] etc.) we will only provide the model that seemed to 
approach ‘congestion’ as good as possible within one cluster. The architecture of this SOM 
model was 230-10 neurons. 
 
5.8 The fuzzy logic model 
We chose to use the ANFIS (Adaptive-Network-based Fuzzy Inference System) model 
(Jang, 1993) that uses adaptive rules to come to the optimum shape of the membership 
functions. The drawback of this method is that computation time increases exponentially 
with increasing number of membership functions. Practical restraints resulted in the 
selection of 4 membership functions as a maximum; we selected the 3 variables of the first 
vehicle category plus occupancy. The model variable that was left to be optimised was the 
number of learning epochs and again we used the test set described in 5.3. Several runs 
resulted into figure 8 where the optimum was identified at 125 learning epochs. 
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Figure 8: Fuzzy Logic - RMS error percentage of the test set depending on learning epochs 
 
6. Analysis 
The performances of the methods were determined by comparing the through the models 
generated output with the congestion indicator of the target detector. When errors were 
made they were either classified as false alarm (predicting ‘congestion’ when in fact there 
was no congestion) or error (predicting ‘no congestion’ when there was congestion). 

For validation cross-evaluation was used; the method’s performances were evaluated 
with 1 data sub-set per peak period per location while the remaining 3 data sub-sets per 
peak period per location were used to calibrate or train/test the model parameters. This 
procedure was executed for each data sub-set and the so-obtained results were averaged 
giving the final performances measured in error percentages over time, i.e. (# minutes / 
total minutes) * 100%. 

Figures 4 – 7 display the results of the model performances. Each figure shows the 
error percentage per method that is grouped per prediction horizon. 
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Figure 9: Error % per method per prediction horizon during the morning peak period on 
location Beekbergen 
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Figure 10: Error % per method per prediction horizon during the evening peak period on 
location Beekbergen 
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Figure 11: Error % per method per prediction horizon during the morning peak period on 
location Hoevelaken 
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The morning peak figures show that the errors increase with increasing prediction 
horizon; this is logical keeping in mind that the models have to predict congestion on the 
minute accurate. The MLF neural networks and the Elman neural networks produce the 
best results under these circumstances. 

What is the matter with the evening peak results? Closer inspection of the 
Beekbergen evening peak reveals that only 2 detectors are present upstream to the target 
detector. This means that very little information on traffic that has to pass the target 
detector is available and because of the distance that these 2 detectors lie upstream (about 
1½ km) the prediction horizon is very short. 

Closer analysis of the Hoevelaken evening peak learns that only roughly 8 % of the 
time the target detector is congested. This might not be a problem but the severity increases 
when we see how the congestion is detected: the congestion indicator flips on and off 
every few minutes. This is due to stop-and-go traffic and this kind of congestion is very 
difficult to predict within 1-minute accuracy. The models are calibrated with the data set 
and when they output ‘no congestion’ all the time the overall value gives the best results, 
i.e. about 8%. This is supported when we have a look at the ‘false alarm’ versus ‘error’ 
percentages: the ‘best’ models give almost no ‘false alarm’ and about the same 8% ‘error’. 
 
7. Conclusions 
Of the methods that were compared (the naïve method, MLR, ARMA time series analysis, 
MLF ANNs, RBF ANNs, Elman ANNs, SOM ANNs, FL) the MLF ANNs and Elman 
ANNs produce the best results. Another conclusion is that in order to come to meaningful 
congestion prediction it is necessary to have access to information acquired by detectors 
upstream of the bottleneck detector. It is also important to be aware of what kind of 
congestion has to be predicted; if it is stop-and-go traffic congestion this has proven to be 
extremely difficult (at least if one wants to predict congestion with 1-minute accuracy). 
 In conclusion we have to make some critical notes with respect to the comparison: 
the ARMA method and the Fuzzy Logic method use different input data then the 
remaining methods. While the ARMA method uses data from previous time frames 
(‘historical data’) the remaining methods also use data from detectors upstream of the 
bottleneck detector, i.e. they use information relating to vehicles that have not passed the 
bottleneck detector (‘future data’). The Fuzzy Logic method only uses data of the present 
from the bottleneck detector and not even the complete 10 variables. However, it is 
inherent to the ARMA method that it makes use of historical data and as far as the Fuzzy 
Logic ANFIS method is concerned we were bound (for now) by computational restriction.  
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