

1

SHORT-TERM CONGESTION PREDICTION ON FREEWAYS

Giovanni Huisken* and Frans Tillema

Centre for Transport Studies, Department of Civil Engineering, University of Twente,
P.O. Box 217, 7500 AE, Enschede, The Netherlands

Phone: +31-53-489 2543, Fax: +31-53-489 4040, Email: g.huisken@ctw.utwente.nl

Abstract
The paper describes a comparative analysis on several methods (the naïve method,

multi-linear regression, time series analysis, multi-layer feedforward neural networks,
radial basis function neural networks, Elman neural networks, self-organising map neural
networks, fuzzy logic) that can be used to come to short-term congestion prediction. The
field data sets that were used were acquired on two locations during the morning and
evening peak periods. The research results show that both the multi-layer feedforward and
the Elman neural networks outperform the other methods. The paper concludes with
remarks on the importance to have detectors upstream of the prediction point and to keep
in mind what kind of congestion has to be predicted.

Keywords: Congestion prediction; Time series analysis; Neural networks; Fuzzy logic;

Freeways
Topic area: C3 Traffic Control

1. Introduction

Dynamic Traffic Management (DTM) is regarded as a highly effective tool to fight
congestion, especially within the short-term and middle-long-term range. Nowadays, the
deployment of DTM-measures is predominantly reactive. However, by bringing DTM-
measures proactive into action the effectiveness could be increased. This in turn can only
be done (effectively, at least) if we have reliable information regarding the near-future
traffic state, especially whether or not it is going to be congested. In short: there is need for
short-term congestion prediction.

This paper describes a comparative analysis of several methods that can be used to
come to short-term congestion prediction. All used methods can be described as ‘data
driven’, i.e. the model development is largely dependent on the acquired data sets. The
models are tested on morning and evening peak data sets acquired on two different
locations. However, we will not only analyse the performances of the methods, we will
also reflect on lessons learned through this research.

1.1 State-of-the-art
If we check the literature we can find very few articles that have congestion prediction as
research subject. One of the exceptions is an article by Dougherty et al. (1993), however,
in this paper only one method (Artificial Neural Networks – ANNs) was used. Exceptions
to the above are a few studies that compare multi linear regression, time series analysis,
fuzzy logic and artificial neural networks (Huisken, 2000; Huisken and Coffa, 2000;
Huisken and van Maarseveen, 2000).

There is, however, a large body of research on short-term traffic flow prediction.
Subject of research is usually the prediction of traffic intensities; see e.g. Fahgri and Hua

* Current affiliation: MuConsult, P.O. Box 2054, 3800 CB Amersfoort, The Netherlands.

Phone: +31-33-465 5054, Fax: +31-33-461 4021, Email: g.huisken@muconsult.nl

2

(1992), Smith and Demetsky (1995), Florio and Mussone (1996), Ho and Ioannou (1996),
Van der Voort et al. (1996), Dia (2001) and Yin et al. (2002). The many papers in this field
have one thing in common: if comparisons are made between methods the number of
methods is usually limited to two. Then again, some exceptions can be found (Huisken,
2001; Huisken, 2003; Huisken and van Maarseveen, under review).

Another related area of research is that of short-term travel time prediction. Again,
time series analysis and artificial neural networks seem to be the most favourite choices of
method (You and Kim, 2000; Van Lint et al., 2002; Huisken and Van Berkum, 2003).

The above-referenced research shows that artificial neural networks (i.e. the multi-
layer-feedforward neural networks) gave predominantly the best results with respect to
congestion prediction as well as traffic intensity prediction. However, no studies on
multiple locations could be found.

1.3 Outline
The next section gives a condensed overview of the used methods and is followed by a
section that describes the data set acquisition sites. The section thereafter informs on the
model development processes. The paper continues with a section that contains the
comparative analysis, while the last section ends with the conclusions of the research.

2. Methods
In this section the used methods shall be described very briefly. There are references
included that give more comprehensive information for those who are interested.

2.1 The naïve method
The naïve method is not a sophisticated prediction method; it can better be described as a
‘do-nothing-scenario’ method. So, this rather naïve method assumes that during the look-
ahead period (i.e. the prediction horizon) the state of the (traffic) system (with regard to
congestion) is stationary. In other words: this method predicts that observation Y at time t
will remain the same during the look-ahead period and therefore is equal to Y at time t = T,
with T being the prediction horizon. Mathematically the naïve method can be noted as:

)1(tTt YY =+
2.2 Multi-linear regression (MLR)
Multi-linear regression (Bickel en Jackson, 1977) is a fairly simple method to describe
observations Y that are linearly depending on variables θ and white noise e with mean zero
and variance σ² (Gaussian disturbances) and can be mathematically noted as:

)2(22110 ikkiiii vcccY +⋅+⋅+⋅+= θθθθ K
If we set the noise to zero we can rewrite (2) and c can be found by:

())3(1 Yc TT ⋅⋅⋅=
−

θθθ
With the parameters c determined, they can then be used to estimate new observations Y
given the new variables θ. MLR is the most common regression technique and is usually
used to model linear systems.

2.3 Auto regression moving average (ARMA) time series analysis
The Auto Regression Moving Average (ARMA) time series analysis method (Box and
Jenkins, 1976) is widely used as a time dependent prediction method. Given F
observations X0, X1, …, XF-1, ARMA(f, g) time series processes can be written in the form:

3

)4(1102211 gtgttftfttt bbbXaXaXaX −−−−− ++++++++= εεεµ LL

for t = f, f + 1, … and with ε is white noise with mean zero and variance σ².

The parameters µ, a1, a2, …, af, b0, b1, …, bg, and σ² can usually be estimated by
deriving least squares and maximum likelihood estimators. Formula (4) can be rewritten
as:

)5(,

1

1

1

1

0

0

1

10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=++=

−

+−

−

−−

+

F

gf

gf

fF

f

f

X

X
X

X

X

X
X

XIPXMRX

ε

ε
ε

εµε
LLL

with R, M, and P representing matrices containing the a and b parameters and I being the
unity vector we can minimise (5) to obtain least squares estimation and maximise (5) to
obtain maximum likelihood estimation. ARMA time series analysis is usually used to
model processes that can be measured consistently in time.

2.4 Multi-layer feedforward (MLF) neural networks
Artificial neural networks (ANNs) are based upon biological neural networks - like the
human brain - by mimicking their architectural structure and information processing in a
simplified manner. They both consist of building blocks or processing elements called
neurons that are highly interconnected making the networks parallel information-
processing systems. The architecture of ANNs is usually made up of several layers; each
layer containing neurons. The neurons have a transfer function that gives them specific
characteristics. Although the ANNs are rudimentary imitations of biological ones, they are
to some extend capable of tasks such as pattern recognition, perception and motor control,
which are considered poorly performed and highly processor time inefficient by
conventional linear processing, whereas they seem to be done with ease by e.g. the human
brain. Neural networks are also known to be robust and to have the capability to capture
highly non-linear mappings between input and output (Haykin, 1994).

Muli-Layer Feedforward (MLF) neural networks are so-called ‘supervised’ ANNs
meaning that during calibration (the ‘learning process’) every time that an input is
presented (a ‘pattern’) also a desired output is provided (the ‘target’). The neurons are
equipped with a sigmoid transfer function and ‘weights’ that are adaptable. If the ANN-
generated output deviates from the target this deviation (‘error’) acts as a measure for
weight adjustment. All weights are changed in such a manner (the ‘learning rule’) that the
total of all presented inputs generates a smaller summed error during the next iteration.
MLF neural networks are by far the most used ANNs.

2.5 Radial basis function (RBF) neural networks
Radial Basis Function (RBF) neural networks (Powell, 1988) are supervised neural
networks that seem similar to MLF neural networks. The difference, however, can be
found in the construction of the usually three-layered network. The input layer is made up
of neurons with a linear transfer function. The second layer (the hidden layer) which has to
be of a high enough dimension has a different purpose than that of the MLF neural
networks; this can be seen in that the transfer function is not sigmoid but Gaussian. The
output layer supplies the response of the network to the activation patterns applied to the

4

input layer. RBF networks are most often used to deal with approximation problems in a
multidimensional space.

2.6 Elman neural networks
Elman neural networks (Elman, 1990) are partial recurrent neural networks, also known as
time-space neural networks, where information coming from neurons of the hidden layer
serve as additional input in the next time step, the so-called ‘context’. Due to the recurrent
character of the network it can be translated as networks that use information from the
‘past’ - if vectors are put in as time step vectors. Their learning rules are somewhat similar
to the ones of the ANNs described before.

2.7 Self organising map (SOM) neural networks
Self-Organising Map (SOM) neural networks (Kohonen, 1997) are unsupervised neural
network systems that intend to optimise their free parameters according to statistical
regularities of the input (training) data and map these input vectors onto a two-dimensional
(usually either rectangular or hexagonal) lattice structure. When input is presented to the
network all neurons of the lattice structure are stimulated and the neuron with the biggest
activation is declared 'winner'. The weights between the input neurons and the winning
neuron are strengthened, as well as, but not as strong as, the weights connecting the input
neurons to the neighbouring neurons. After the network is tuned and new input data are
offered the data are mapped onto the lattice area that has the most statistical similarity to
the training data. Self-Organising Maps are also known as Kohonen maps and are most
often used to deal with classification problems.

2.8 Fuzzy logic
Fuzzy Logic (FL) can be described as ‘computing with words’ (Zadeh, 1965) and is suited
for dealing with complex optimisation problems with many constraints and objectives,
with unclear input information and vague decision criteria. This category contains many
problems in the fields of traffic and transportation (Teodorović, 1999).

Fuzzy Set Theory, as it is often also called, is an extension of ordinary set theory, i.e.
elements are not just ‘member’ or ‘no member’ of a certain set but can have a degree of
membership (between 0 and 1). A fuzzy system consists of fuzzification, inference and
defuzzification.

The fuzzification process (figure 1) is designed to assign degrees of membership (µ)
to crisp input values (x0, y0) by means of lookup in one or several membership functions
(A1, A2, B1, B2) These membership functions correspond with linguistic terms that apply to
input variables and should be partially overlapping and sufficiently wide to allow for noise
in measurements. Not only input but also output variables are fuzzified (C1, C2).

The inference method uses a fuzzy rule base (or knowledge base as it is sometimes
called) that is made up of logical operations and is based on expert opinions, operator
experience, and/or system knowledge. The rules are given according to the following
format:

IF <premise 1> AND/OR <premise 2> AND/OR <premise 3> … THEN <consequence>

5

Figure1: Fuzzy logic process

Because a fuzzy rule based system consists of a set of fuzzy rules with partially
overlapping conditions, a particular input to the system often triggers multiple fuzzy rules.
Therefore a method is needed to combine the inference results of these rules. This is
accomplished typically by mapping all fuzzy conclusions onto one variable (z).

Finally, the obtained fuzzy output variables need to be translated into a crisp output
value. This process is called defuzzyfication and is established by using a method, e.g. the
centre of gravity approach, which allocates a crisp value to the final outcome (v).

FL is used extensively as a control method in various applications, e.g. for
determining traffic light green times (Niittymäki, 2001) or motor control in photo cameras.

3. Data acquisition
Field data sets were gathered on two locations: around cloverleaf Beekbergen (motorways
A1/A50 – figure 2) and cloverleaf Hoevelaken (motorways A1/A28 – figure 3).

µ µ

µ µ

µ

µ

µ

x

x

y

y

z

z

z

MINx0 y0

v

A1

A2

B1

B2

C1

C2

C

6

Figure 2: Data acquisition location Beekbergen

Figure 3: Data acquisition location Hoevelaken

Data was collected through the MoniCa – Monitoring Casco – system by means of

dual induction loops during the month May of the year 2001. The data sets contain 1-
minute aggregated data of intensity, mean speed, standard deviation of mean speed,
occupancy, a reliability indicator, and a congestion indicator. The first three parameters are
given in three categories: vehicles with a length up to 5.1 meters, vehicles with a length

7

between 5.1 and 12.5 meters and vehicles longer than 12.5 meters. De congestion indicator
flag is turned on when 5 vehicles subsequently pass a detector with a speed below 35 km/h
and the flag is turned off again when 5 vehicles pass with a speed above 50 km/h.

4. Pre-processing
Obviously, we want to assess the models based on the location were the data was acquired.
This means that we have 2 data sets: the Beekbergen data set and the Hoevelaken data set.
For every location the morning and evening peak bottleneck detectors (‘target detectors’)
were identified (being the detectors that usually were the first ones to detect congestion).
Since we are interested in predicting congestion it makes sense to remove periods that are
likely to not include congestion. Also, there is the reliability issue. Not all dual loop
detectors report with 100% reliability all the time. Therefore unreliable data that can be
identified by the reliability indicator has to be removed and substituted with the last known
reliable data.

As was mentioned before in section 1, all prediction methods that are used are data
driven. The implication of this is that we need the data to calibrate the models. However,
we also need the data to validate the models. This can cause problems because we have to
decide on which part of the data set will be used to calibrate the models and which part will
be used to validate the models. A proper solution to this problem is to use cross-validation,
i.e. we divide the data set in sub-sets and use a part to calibrate the model. Then we use the
remaining part to validate the model. After this exercise we follow the same routine but
then with another sub-set as validation set and repeat this until all sub-sets are used as
validation set. The average of all sub-set validations then is used for establishing the
performance of the models.

So, in order to perform cross-validation we need equally sized sub-sets. Since the
data was acquired during the month of May of 2001 we can divide the set in four one-week
sub-sets. First, all weekend days were removed. Since we were left with 4 Mondays, 5
Tuesdays, 5 Wednesdays, 5 Thursdays, and 4 Fridays the Tuesday, Wednesday, and
Thursday that contained the most unreliable data were thrown out. This left us with 4 sets
of one working week. Each day’s peak period was filtered out; a peak period is defined as
300 minutes (morning peak from 06:00 hours – 10:59 hours and the evening peak from
15:00 hours – 19:59 hours). This resulted in 4 equally sized data sub-sets (1 working week
per morning/evening peak period).

In order to build data sets that contain data that is relevant we need to identify the
bottlenecks, i.e. the dual loop detector that usually will be the first one to detect
congestion. The congestion indicator data reported by this detector will then be used as
target data. We also need the identification of this detector to select relevant detectors in
the sense that they are located either upstream or downstream in the vicinity of the
bottleneck detector. In that way we can filter out data coming from detectors that are
located on a lane on which traffic is driving in the opposite direction.

Finally, we also have to normalise data (to the [0, 1] domain; this procedure is
necessary for ANNs to accept input values) so that every model receives the same input
data during the calibration and evaluation process.

5. Model development
The variables present in each data sub-set and thus the input variables of the models are:
intensity, mean speed, standard deviation of the mean speed (all variables for each vehicle
category) and occupancy. These variables are provided by each dual induction loop. This
results in (# of loops) * 10 = # of input variables. Obviously, for ARMA time series

8

analysis temporal data coming from the target detector were used as input. For the
remaining methods spatial data was used as input.

As output variable we used the binary congestion indicator (‘congestion’ or ‘no
congestion’) gathered by the target detectors and it was shifted for 5, 10, 15, 20, 25 and 30
minutes in time to estimate the prediction performances of the models at these prediction
horizons.

We will now describe the model development process for the morning peak data set
of Beekbergen. The models for the remaining 3 peak periods have been developed in an
analogue manner.

5.1 The naïve model
The model development of the data set into naïve models is rather simple. We only use
data collected from the bottleneck detector. To make it even simpler, we only use the
congestion indicator data. Data is then normalised by translation ‘no congestion’ into 0 and
‘congestion’ into 1. Each data sub-set now holds 1500 numbers and can be regarded as a
vector containing 1500 units. The index number is linked to a particular minute of a
working day (location 1 is Monday 6:00 pm). By shifting the index numbers with T spaces
to the left we obtain the target vector with a prediction horizon of T minutes. An example:

Origin = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, …]

The index is shifted by 5 spaces and then becomes

Target = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …]

which is now the target vector with a prediction horizon of 5 minutes.

If we now subtract the Origin from the Target and sum the absolute value of the
resulting vector we find the number of minutes that are in error when Origin is used as a
model to predict congestion of the bottleneck with a 5- minute horizon. This process can be
done for any number of minutes keeping in mind that the prediction horizon should not
exceed the shortest ‘no congestion’ period after 6:00 and before 11:00 in the morning. This
procedure is applied to every week sub-set.

5.2 The MLR model
Input data for the MLR model is collected through all relevant dual induction loops, i.e. all
induction loops upstream of the bottleneck and two detectors downstream, just in case of
back spilled congestion. For the morning peak period of the Beekbergen location this
means data gathered by 23 detectors. This results in 1-minute time slices of 23 detectors *
10 variables = 230 input variables. Since there is 1 output variable (the congestion
indicator of the bottleneck detector) we obtain four input matrices of 230 * 1500 [500
minutes peak period for 5 week days] elements and four target matrices of 1 * 1500
elements representing four work day weeks.

Three input matrices are combined (placed behind each other) to a resulting 230 *
4500 matrix and the accompanying target matrices undergo the same procedure resulting in
a 1 * 4500 matrix. These matrices are then used according to formula (3) and so we obtain
the resulting matrix c that holds the multiplier indices that is used together with the
remaining input matrix (or evaluation matrix). If we then multiply the evaluation matrix
with c the result should ideally be the same as the remaining target matrix. The resulting
matrix is subtracted (element by element) from the target matrix and this produces an error

9

matrix that is used to determine the model’s error. This procedure is then repeated four
times (cross-evaluation) for each input matrix to serve as evaluation matrix.

5.3 The ARMA time series analysis model
Input data for the ARMA(f, g) model is collected through the bottleneck detector. The
ARMA model uses spatial data from the bottleneck detector to calibrate the model, by
making use of formula (5). The identification of the lag and order index that will provide
the best results is a time consuming task. In order to come to the identification of the
proper lag and order index we constructed a data test set that consisted of random chosen
vectors (week minutes) of data coming from every one of the data input sets and
accompanying data target set (with several prediction horizons). We used this test set to
assess the calibrated ARMA models resulting in figure 4 and thus revealing the optimum at
order 8 and lag 0. The elements of the test set were left out during the evaluation process
described in the next section.

1 2 3 4 5 6 7 8 9 10 11 12 0
1

2
3

10.5

11.0

11.5

12.0

12.5

13.0

13.5

RMS error %

order

lag

ARMA Time Series Analysis - test set

Figure 4: ARMA time series analysis - RMS error percentage of the test set depending on

order and lag

5.4 The MLF model
The input data subsets are also used to evaluate the MLF method. The model is build by
using the spatial input variables (23 induction loop detectors * 10 variables = 230
variables). These 230 input variables are mapped onto the 1 output variable, the target. The
target is the congestion indicator of the bottleneck detector shifted in time as described in
paragraph 5.1. To find the optimum number of learning epochs and the optimum neural
network architecture (i.e. the optimum number of hidden neurons) we used the vectors that

10

hold the same target elements as the test set as described in the previous paragraph. By
varying these 2 parameters we obtained figure 5 showing that the optimum was found at 30
learning epochs with a 230-6-1 neural network architecture. Again, the elements of the test
set were left out during the evaluation process.

10
20

30
40

50
60

70
2

4
6

8
10

7.5

8.0

8.5

9.0

9.5

RMS error %

learning epochs hidden
neurons

MLF Neural Networks - test set

Figure 5: MLF neural networks - RMS error percentage of the test set depending on

learning epochs and hidden neurons

5.5 The RBF model
The model development of the RBF model is identical to that of the MLF model. The test
set model runs resulted in figure 6 and gave as optimum 70 learning epochs at an 230-6-1
neural network architecture.

5.6 The Elman model
The model development of the Elman model is identical to that of the previous artificial
neural network model. The test set model runs with the Elman models showed an optimum
at 80 learning epochs by using a 230-2-1 neural network architecture, as can be seen in
figure 7.

11

20

30

40

50

60

70

80

10
0

15
0

2
4

6
8

12
16

8.0

8.5

9.0

9.5

10.0

10.5

11.0

RMS error %

learning epochs hidden
neurons

RBF Neural Networks - test set

Figure 6: RBF neural networks - RMS error percentage of the test set depending on

learning epochs and hidden neurons

50

80

10
0

15
0

20
0

25
0

30
0

40
0

2
4

6
8

10

8

9

10

11

12

13

14

15

16

RMS error %

learning epochs hidden
neurons

ELM Neural Networks - test set

Figure 7: ELM neural networks - RMS error percentage of the test set depending on

learning epochs and hidden neurons

12

5.7 The SOM model
The model development of a SOM model is completely different from the previous
procedures; because the learning phase is unsupervised, the network is built on statistical
clustering that is hidden within the data set. Therefore, one can only use the targets to
establish how well the model is able to see ‘congestion’ as one particular cluster. Since
there are many parameters of how to develop such a model (number of categories, one or
two-dimensional [hexagonal or square] etc.) we will only provide the model that seemed to
approach ‘congestion’ as good as possible within one cluster. The architecture of this SOM
model was 230-10 neurons.

5.8 The fuzzy logic model
We chose to use the ANFIS (Adaptive-Network-based Fuzzy Inference System) model
(Jang, 1993) that uses adaptive rules to come to the optimum shape of the membership
functions. The drawback of this method is that computation time increases exponentially
with increasing number of membership functions. Practical restraints resulted in the
selection of 4 membership functions as a maximum; we selected the 3 variables of the first
vehicle category plus occupancy. The model variable that was left to be optimised was the
number of learning epochs and again we used the test set described in 5.3. Several runs
resulted into figure 8 where the optimum was identified at 125 learning epochs.

Fuzzy Logic - test set

10.80

10.85

10.90

10.95

11.00

11.05

11.10

8 10 12 15 20 25 30 40 50 100 125 150 175 200 250

learning epochs

R
M

S
 e

rr
or

 %

Figure 8: Fuzzy Logic - RMS error percentage of the test set depending on learning epochs

6. Analysis
The performances of the methods were determined by comparing the through the models
generated output with the congestion indicator of the target detector. When errors were
made they were either classified as false alarm (predicting ‘congestion’ when in fact there
was no congestion) or error (predicting ‘no congestion’ when there was congestion).

For validation cross-evaluation was used; the method’s performances were evaluated
with 1 data sub-set per peak period per location while the remaining 3 data sub-sets per
peak period per location were used to calibrate or train/test the model parameters. This
procedure was executed for each data sub-set and the so-obtained results were averaged
giving the final performances measured in error percentages over time, i.e. (# minutes /
total minutes) * 100%.

Figures 4 – 7 display the results of the model performances. Each figure shows the
error percentage per method that is grouped per prediction horizon.

13

0

4

8

12

16

20

5 min 10 min 15 min 20 min 25 min 30 min

prediction horizon

Er
ro

r %
NAÏV MLR ARMA MLF RBF ELM SOM FL

Figure 9: Error % per method per prediction horizon during the morning peak period on
location Beekbergen

0

4

8

12

16

20

5 min 10 min 15 min 20 min 25 min 30 min

prediction horizon

Er
ro

r %

NAÏV MLR ARMA MLF RBF ELM SOM FL

Figure 10: Error % per method per prediction horizon during the evening peak period on
location Beekbergen

14

0

4

8

12

16

20

5 min 10 min 15 min 20 min 25 min 30 min

prediction horizon

Er
ro

r %

NAÏV MLR ARMA MLF RBF ELM SOM FL

Figure 11: Error % per method per prediction horizon during the morning peak period on
location Hoevelaken

0

4

8

12

16

20

5 min 10 min 15 min 20 min 25 min 30 min

prediction horizon

Er
ro

r %

NAÏV MLR ARMA MLF RBF ELM SOM FL

Figure 12: Error % per method per prediction horizon during the evening peak period on
location Hoevelaken

15

The morning peak figures show that the errors increase with increasing prediction
horizon; this is logical keeping in mind that the models have to predict congestion on the
minute accurate. The MLF neural networks and the Elman neural networks produce the
best results under these circumstances.

What is the matter with the evening peak results? Closer inspection of the
Beekbergen evening peak reveals that only 2 detectors are present upstream to the target
detector. This means that very little information on traffic that has to pass the target
detector is available and because of the distance that these 2 detectors lie upstream (about
1½ km) the prediction horizon is very short.

Closer analysis of the Hoevelaken evening peak learns that only roughly 8 % of the
time the target detector is congested. This might not be a problem but the severity increases
when we see how the congestion is detected: the congestion indicator flips on and off
every few minutes. This is due to stop-and-go traffic and this kind of congestion is very
difficult to predict within 1-minute accuracy. The models are calibrated with the data set
and when they output ‘no congestion’ all the time the overall value gives the best results,
i.e. about 8%. This is supported when we have a look at the ‘false alarm’ versus ‘error’
percentages: the ‘best’ models give almost no ‘false alarm’ and about the same 8% ‘error’.

7. Conclusions
Of the methods that were compared (the naïve method, MLR, ARMA time series analysis,
MLF ANNs, RBF ANNs, Elman ANNs, SOM ANNs, FL) the MLF ANNs and Elman
ANNs produce the best results. Another conclusion is that in order to come to meaningful
congestion prediction it is necessary to have access to information acquired by detectors
upstream of the bottleneck detector. It is also important to be aware of what kind of
congestion has to be predicted; if it is stop-and-go traffic congestion this has proven to be
extremely difficult (at least if one wants to predict congestion with 1-minute accuracy).
 In conclusion we have to make some critical notes with respect to the comparison:
the ARMA method and the Fuzzy Logic method use different input data then the
remaining methods. While the ARMA method uses data from previous time frames
(‘historical data’) the remaining methods also use data from detectors upstream of the
bottleneck detector, i.e. they use information relating to vehicles that have not passed the
bottleneck detector (‘future data’). The Fuzzy Logic method only uses data of the present
from the bottleneck detector and not even the complete 10 variables. However, it is
inherent to the ARMA method that it makes use of historical data and as far as the Fuzzy
Logic ANFIS method is concerned we were bound (for now) by computational restriction.

Acknowlegdements
The authors wish to acknowledge the Transport Research Centre residing under the Dutch
Ministry of Transport, Public Works and Water Management for providing the field data.

References

Bickel, P.J. and Jackson, T., 1977. Mathematical Statistics: Basic Ideas and Selected
Topics, Holden-Day, Inc., Oakland, CA, USA.

Box, G.E.P. and Jenkins, G.M., 1970. Time Series Analysis, Forecasting and Control,

Holden-Day, San Francisco, CA, USA.

Dia, H., 2001. An object-oriented neural network approach to short-term traffic

forecasting, European Journal of Operational Research, 131(2) 253 – 261.

16

Dougherty, M.S., Kirby, H.R. and Boyle, R.D., 1993. The use of neural networks to

recognise and predict traffic congestion, Traffic Engineering and Control, 34 (6) 311 –
314.

Elman, J.L., 1990. Finding structure in time, Cognitive Science, 14 179 – 211.

Faghri, A. and Hua, J., 1992. Evaluation of artificial neural network applications in

transportation engineering, Transportation Research Record, 1358 71 – 80.

Florio L. and Mussone L., 1996. Neural-network models for classification and

forecasting of freeway traffic flow stability, Control Engineering Practice, 4 (2) 153 – 164.

Haykin, S., 1994. Neural networks: a comprehensive foundation, Prentice-Hall.

Ho, F.-S. and Ioannou, P., 1996. Traffic Flow Modeling and Control Using Artificial

Neural Networks, IEEE Control Systems, 16 (5) 16 – 26.

Huisken, G., 2000. Short-Term Congestion Forecasting: time series versus fuzzy sets,

In: Proceedings South-African Transport Conference - Action in Transport for the new
Millenium, 17 - 20 July 2000, Pretoria, South Africa.

Huisken, G., 2001. Short-term forecasting of traffic flow on freeways, In: Proceedings

9th World Conference on Transportation Research, Seoul, South Korea.

Huisken, G., 2003. Soft-Computing Techniques Applied to Short-Term Traffic Flow

Forecasting, System Analysis, Modelling, Simulation 43 (2) 165 – 173.

Huisken, G. and Coffa, A., 2000. Short-Term Congestion Prediction: comparing time

series with neural networks, IEE Conference Publication 472 60 – 63.

Huisken, G. and Van Berkum, E.C., 2003. A Comparative Analysis of Short-Range

Travel Time Prediction Methods, In: Preprints of the 82nd Annual Meeting of the
Transportation Research Board, Washington, DC, USA.

Huisken, G. and Van Maarseveen, M.F.A.M., 2000. Congestion prediction on

motorways: a comparative analysis, In: Proceedings 7th World Congress on Intelligent
Transportation Systems, 6-9 November 2000, Turin, Italy.

Huisken, G. and Van Maarseveen, M.F.A.M., under review. A Comparative Analysis

of Short-term Traffic Flow Forecasting Methods, Submitted to: IEEE Transactions on
Intelligent Transportation Studies.

Jang, J.-S.R., 1993. ANFIS: Adaptive-Network-based Fuzzy Inference Systems, IEEE

Transactions on Systems, Man, and Cybernetics 23(3) 665 – 685.

Niittymäki, J., 2001. Installation and experiences of field testing a fuzzy signal

controller, European Journal of Operational Research, 131 (2) 273 – 281.

17

Kohonen, T., 1982. Self-organized formation of topological correct feature maps,
Biological Cybernetics, 43 59 – 69.

Powell, M.J.D., 1988. Radial basis function approximations to polynomials, in:

Numerical Analysis 1987 Proceedings, pp. 223 – 241, Dundee, UK.

Smith B. L. and Demetsky M. J., 1995, Short-Term Traffic Flow Prediction: Neural

Network Approach, Transportation Research Record, 1453 98 – 104.

Teodorović, D., 1999. Fuzzy logic systems for transportation engineering: the state of

the art, Transportation Research Part A, 33 (5) 337 – 364.

Van der Voort, M.C., Dougherty, M.S. and Watson, S.M., 1996. Combining Kohonen

maps with ARIMA time series models to forecast traffic flow, Transportation Research
Part C, 4 (5) 307 – 318.

Van Lint, H., Hoogendoorn, S.P., and Van Zuylen, H.J., 2002. Robust freeway travel

time prediction with state-space neural networks, In: Proceedings of the 13th Mini-EURO
Conference, Bari, Italy.

Yin, H., Wong, S. C., Xu, J. and Wong, C. K., 2002. Urban traffic flow prediction

using a fuzzy-neural approach, Transportation Research Part C, 10 (2) 85 – 98.

You J. and Kim, T.J., 2000. Development and evaluation of a hybrid travel time

forecasting model, Transportation Research Part C, 8 (1-6), 231 – 256.

Zadeh, L.A., 1965. Fuzzy sets, Information and Control, 8 338 – 353.

