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Abstract  
In this paper, we describe an in-depth analysis of the combined choice of departure airport, 

airline and access-mode for passengers departing from the San Francisco Bay area. The analysis 
shows that several factors, most notably flight frequency and in-vehicle access-time, have a 
significant overall impact on the appeal of an airport, while factors such as fare and aircraft size 
have a significant effect only in some of the population subgroups. The analysis highlights the 
need to use separate models for resident and non-resident travellers, and to segment the 
population by journey purpose. The analysis also shows that important gains can be made 
through accounting for past experience at the different airports and through using a non-linear 
specification for the marginal returns of increases in flight frequency. In terms of model structure, 
the results suggest that the use of the Nested Logit model leads to significant improvements in 
model fit over the use of the Multinomial Logit model, although these improvements do not 
necessarily translate into significant advantages in prediction performance, which is already 
surprisingly good in the base models, showing the importance of using a detailed specification of 
utility.  
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1. Introduction  

The analysis of air-travellers’ choices of airports is an important component in the long-
term transport strategies in many metropolitan areas that are served by more than one airport. A 
wide range of policy measures potentially affect airport choice, including expansion of airport 
capacity in multi-airport regions, improved access-service to an airport, changes to an airport’s 
parking-cost structure, and the introduction of faster check-in procedures at an airport. In turn, the 
outcome of travellers’ airport choice decisions will affect the commercial success of the single 
airports, the financial viability of auxiliary and complementary businesses, the congestion in the 
local transportation network and the local and regional environment.  

Studies of airport choice have become increasingly popular over recent years. While most of 
the studies have used very basic models in the simple analysis of the choice of departure airport, 
several studies have employed advanced models in the joint analysis of the choice of airport and 
the choice of access mode. Recently, it has also been shown that important gains in model 
performance can be obtained by accommodating the fact that passenger behaviour varies not only 
deterministically across different groups of travellers (e.g. business/leisure), but also randomly 
within individual groups of travellers (c.f. Hess and Polak, 2004).   



 

2

It is important to recognise that passengers do in fact not simply make a choice of airport, 
but make a three-way choice of airport, airline and access mode (excluding the upper-level 
choices of destination and main-mode). The nature of the substitution patterns amongst these 
choices is not clear a priori. While some studies have recognised this issue, the majority of 
published work does at best look at only two of these choice dimensions, and uses some form of 
simplification along the third dimension (c.f. section 2). Another problem with many existing 
studies is the use of over-aggregated data for the air-transport and ground-transportation level-of-
service information. These deficiencies in the existing body of work are the main motivation for 
the present research effort.  

In this paper, we look at the combined choice of airport, airline and access-mode for 
passengers departing from the San Francisco Bay (SF-bay) area. The aim of this study is to 
determine the optimal structure for the joint analysis of these choices, with a view to using this 
structure in a later analysis incorporating random taste heterogeneity, the prevalence of which in 
air-travel choice-behaviour has been highlighted by Hess and Polak (2004). Unlike many 
previous studies, our analysis uses highly disaggregate data, by looking at the daily frequencies 
for each airline on every route, and by using detailed origin-destination matrices for the ground-
level access dimension. The study also investigates the use of non-linear specifications of 
explanatory variables such as flight frequency and access-time. Finally, the study aims to 
determine whether there are differences across groups of travellers in the relative importance 
assigned to the three separate choice-dimensions mentioned above.   

In common with most previous studies, our analysis looks only at departing passengers, due 
to the lack of data on arriving and connecting passengers. However, by including resident as well 
as visiting passengers in the analysis, the models indirectly also look at the choice of arrival 
airport, given that for the latter group of travellers, data is collected at the return leg stage, for 
which the departure airport is in fact the arrival airport from the outbound flight (excluding the 
possibility of an open-jaw ticket). Special care however needs to be taken with the use of non-
resident passengers, especially so in the case of passengers originating from multi-airport regions, 
where these passengers are not necessarily seen to be making a choice of airport in the study area. 
Similar issues arise in the case of resident passengers travelling to a multi-airport region. In this 
case, the choices of departure airport and destination airport are generally closely related, and it is 
not clear from the outset which of the two choices is more important. The discussion in section 3 
shows that careful selection of destinations can however help to ensure that the passengers used 
do in fact make a specific choice of airport in the study area. Finally, the reason for excluding 
connecting passengers is that they do not generally make a choice between several connection 
airports that are all located in the same metropolitan area. As the scope of this analysis is limited 
to airport choice in a given multi-airport region, rather than choice across different (multi-airport) 
regions, connecting passengers are thus excluded from the analysis.   

The remainder of this paper is organised as follows. In the next section, we present a brief 
overview of existing work in the area of airport choice. In the third section, we discuss the 
various datasets used, while in section four, we present the models used in the analysis. The 
results of the analysis are presented in section five, and are validated in section six. The paper 
concludes with a discussion of further avenues for research in airport choice modelling.  
 
2. Literature review  

In this section, we give a brief review of the existing body of work in the area of airport 
choice modelling; for other reviews on this topic, see for example Basar and Bhat (2004), Pels et 
al. (2003) and Hess and Polak (2004).  
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2.1. Existing work  
One of the first major studies of airport choice was conducted by Skinner (1976), who uses 

a Multinomial Logit (MNL) model for airport choice in the Baltimore-Washington DC area, and 
identifies flight frequency and ground accessibility as the main determining factors, with 
travellers being more sensitive to the latter. In a more recent study using an MNL model in this 
area, Windle and Dresner (1995) repeat the earlier results, and also identify a significant impact 
of past experience; the more often a traveller has used a certain airport in the past, the more likely 
he/she is to choose the same airport again.  

The SF-bay area has been used in several case studies of airport choice, mainly thanks to the 
availability of very good data. An early example is that of Harvey (1987), who uses an MNL 
model, and finds access time and flight frequency to be significant for both leisure and business 
travellers, with lower values of time for leisure travellers. More recently, Pels et al. (2001) have 
conducted an analysis in this area using a Nested Logit (NL) model to look at the combined 
choice of airport and airline. The results indicate that both business and leisure travellers have a 
nested choice process in which airline choice is nested within the choice of airport 
(notwithstanding considerations of airline brand loyalty). In a later study, Pels et al. (2003) again 
make use of the NL model structure, this time in the joint analysis of airport and access-mode 
choice, revealing high sensitivity to access time, especially for business travellers. In one of the 
most innovative studies of airport choice, Basar and Bhat (2004) propose the use of a two-level 
modelling structure in which the actual airport choice process is preceded by a choice-set 
generation stage, thus acknowledging the fact that some travellers only consider a subset of the 
available airports. The results show that this parameterised choice set consideration (PCMNL) 
model outperforms the MNL model, and suggest that flight frequency is the most important 
aspect in choice set composition, while access time is the dominating factor in the actual choice 
of airport. Finally, Hess and Polak (2004) have recently used the SF-bay area in a study that aims 
to show the prevalence of random taste heterogeneity in a population of air-travellers; the results 
show that, while a major part of the variation in tastes can be accounted for through a 
segmentation of the population, a remaining part of variation, namely with regards to the 
sensitivity to access time, is purely random.  

There have also been a number of studies of airport choice in the United Kingdom. Ashford 
and Bencheman (1987), who use an MNL model for airport choice at five airports in England, 
find that access time and flight frequency are significant factors, with flight fares only having an 
impact for domestic passengers and for international leisure travellers. In a study that is of 
particular relevance to the present analysis, Ndoh et al. (1990) find that the NL model 
outperforms the MNL model in a study of passenger route choice in central England. Thompson 
and Caves (1993) use an MNL model to forecast the market share for a new airport in North 
England; access time, flight frequency and aircraft-size (comfort) are found to be significant, with 
access time being most important for travellers living close to the airport and frequency being 
more important for travellers living further afield. Finally, in an MNL analysis of the distribution 
of passengers between airports in the Midlands, Brooke et al. (1994) find flight frequency to be 
most the important factor.   

In other studies from around the world, Ozoka and Ashford (1989) use an MNL model to 
forecast the effects of adding a third airport to a multi-airport region in Nigeria; the results show 
access-time to be very significant, making the choice of location and the provision of good 
ground-access facilities important determinants in the planning process. On the quality of service 
side, Innes and Doucet (1990) use a binary logit model for airport-choice in Canada, and show 
that travellers prefer jet services to turboprop flights. Furuichi and Koppelman (1994) use an NL 
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model for departure and destination airport choice in Japan, showing significant effects by access 
time, access journey cost and flight-frequency. Finally, Veldhuis et al. (1999) produce the 
comprehensive Integrated Airport Competition Model, showing that passenger behaviour is 
represented most appropriately by a sequential sequential NL choice process that models the 
choice of main mode followed by the combined choice of airport and air-route, and finally the 
choice of access-mode at the chosen airport.   
 
2.2. Summary  

The review presented in this section has shown that, although there exists a large body of 
work on the modelling of airport choice in multi-airport regions, most of the studies use fairly 
basic modelling techniques, with a heavy bias towards the MNL model. However, some research 
has gone into the use of nesting structures, and important progress has recently been made with 
the use of methods that acknowledge the effects of choice-set formation, and the use of model 
structures that allow for the incorporation of random taste variation. This opens up the possibility 
of combining these three approaches. To do this, a thorough analysis of the choice of nesting 
structure is however required, and this is a main aim of the present paper.  
 
3. Data  

The area chosen for the present study is the SF-Bay area, which is served by three major 
airports, San Francisco International (SFO) being the busiest, with, in 1995 (the study year), 
some 15 million emplaned passengers, ahead of Oakland International (OAK), with 7.7 million 
passengers, and San Jose Municipal (SJC), with 4.2 million passengers. Forecasts by MTC 
(2000) predict significant increases in traffic; these will inevitably lead to capacity problems, and 
different expansion schemes are already under consideration (c.f. RAPC, 2000), making the area 
an ideal candidate for a study of airport choice. In this section, we give a description of the 
various datasets used in our analysis.  
 
3.1. Air-passenger survey data  

Data on passengers’ choice behaviour were obtained from the 1995 Airline Passenger 
Survey conducted by the Metropolitan Transport Commission (MTC) in August and October 
1995. This contained information on over 21,000 departing air-travellers. For a detailed 
description of the survey, see MTC (1995). Passenger interviews were conducted at the three 
main SF-Bay area airports, as well as at the minor Sonoma County airport (STS), which was not 
included in the present study. The number of passengers interviewed at the three main airports is 
not entirely representative of the real-world traffic at the airports; indeed, SJC is over-sampled, 
while OAK is under-sampled. This needs to be taken into account in the interpretation of the 
modelling results, but surprisingly, previous studies using this dataset have generally failed to 
highlight this issue (a notable exception being Basar and Bhat, 2004, who use a Weighted 
Exogenous Sample Maximum Likelihood approach). The weighting approach used in the present 
analysis is described in the section 4.  

The data selection process is based on that used by Hess and Polak (2004). It was decided to 
use only destinations that could be reached by direct flight from all three airports, on every day of 
the week (at the time of the survey), leading to 14 destinations, and a sample of 9,924 
respondents (after initial data cleaning). This contained some 3,246 travellers who indicated that 
they could not have flown out of a different airport. Possible reasons for this include 
unavailability (at the time of booking) for flights from other airports on the chosen flight date and 
time (especially likely for travellers with inflexible timing), misinformation of the traveller, or an 
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a priori decision not to consider any of the other airports. Hess and Polak (2004) show that the 
inclusion of these travellers leads to biased results, leading to the decision to exclude these 
observations from the analysis. In a way, this acts as an approximation to a model that 
incorporates choice-set generation. From the resulting sample of 6,678 travellers, a further 1,587 
passengers needed to be excluded, for four reasons. To start with, the sample contained some 111 
passengers whose chosen access-mode was a hotel-courtesy-shuttle; as it was not possible to 
unambiguously define the availability of this mode for all passengers, it was decided to exclude 
these observations. At this point, five main purposes were identified in the dataset; business, 
holiday, visiting friends and relatives, extraordinary events, and others. As the extraordinary 
events group contained a wide range of trips (from funerals to weddings), it was decided that it 
would be wrong to simply include them in a wider leisure group, as has been done previously. 
Indeed, the short-term planning and/or precise timing associated with some of these events make 
the decision-process more similar to that of a business trip. As there are however arguably also 
important differences between this type of trip and a business trip, and as it was not possible to fit 
a sensible separate model for these 299 trips, it was decided to exclude them from the analysis. 
An identical decision was taken for the 360 trips that had some other purpose. A further 817 
observations had to be excluded either due to the absence of information on household income 
(required to allow for a segmentation by income) or because of a lack of corresponding air-
transport or ground-transportation level-of-service data for specific journeys. The final sample 
thus contained 5,091 observations, with flights to 14 destinations.   

The data used are summarised in table 1, which clearly shows the oversampling of SJC. The 
specific choice of destinations had little effect on the distribution of observations across other 
dimensions, such as journey purposes and household income. Clearly, the sampling has an effect 
on the market shares for the different airlines; this was taken into account in the calculation of 
weights described in section 4. The resulting dataset was split into two parts, a dataset used in the 
actual analysis (4,582 observations), and a 10% sample retained for later validation of the models 
(509 observations).  

Table 1. Destination used in the analysis 

 
 

Special care is required in the case of destinations that are themselves located in multi-
airport regions. Destinations from two such multi-airport regions were included in the present 
analysis, namely destinations in the wider Los Angeles (LA) area, as well as Chicago’s O’Hare 
(ORD) airport. The decision to include airports from the LA area was motivated by the frequency 
of these destinations in the survey data. It is important to establish whether passengers are likely 
to make a choice of airport in the San Francisco area, besides the choice made in the LA area, 
especially so for passengers whose return journey started in the LA area. During the period of 
observation, daily flights were available between each of the three SF-Bay area airports and each 
of the five airports in the wider LA region. As there was relatively high frequency on all routes, 
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passengers can be expected to make a specific choice of airport in the SF-Bay area, 
independently of the choice of airport in the LA area (where this choice may take precedence, 
especially for visiting passengers). This assumption is further supported by the fact that the 
differences in level-of-service attributes between the three SF-Bay area airports are similar across 
the five destinations in the LA area, leading to similar destination-specific choice-sets across the 
five airports in the Los Angeles area. The inclusion of ORD on the other hand was motivated by 
the comparatively very low frequency of direct flights to Chicago’s alternative airport; Midway 
(MDW). A comparison of the results produced in two small-scale separate analyses that included, 
respectively excluded these destinations, revealed no major differences, suggesting that the 
inclusion of these airports has no ill effects on the modelling analysis. For the remaining 
destinations used in the analysis, there should be no explicit choice of airport in the destination 
area. This also makes it more likely that the non-resident passengers sampled on flights to these 
destinations made a conscious choice of a specific airport in the SF-Bay area on their outbound 
flight, where this choice is influenced only by the characteristics of the SF-Bay system and the 
air-travel level-of-service variables.  
 
3.2. Air-travel level-of-service data  

For the present analysis, air-travel level-of-service data were obtained from BACK Aviation 
Solutions1. The dataset contains daily information for each operator serving the selected routes in 
August and October 1995, thus making the data more detailed than that of many previous studies 
that have relied on the use of weekly or even monthly data. Eight airlines were used in the 
analysis, and these are hereafter referred to as airline A1 to airline A8 Besides the frequencies for 
the different operators, the dataset contains information on flight times and the type of aircraft 
used. Finally, information is available on the average fares paid on a given route operated by a 
given airline. This clearly involves a great deal of aggregation, as no differences are made 
between the fares for the different classes of travel, and some information is lost as no data is 
available on the availability of different ticket classes at the time of booking, essentially leading 
to an assumption of similar selling speed on all routes. Unfortunately, this assumption cannot be 
avoided, given the quality of the data. The availability of given fare-classes can be modelled in 
the presence of adequate data on the distribution of fares across classes (c.f Battersby 2003); this 
is beyond the scope of the current analysis, the inclusion of such an approach into a wider 
framework for air-travel related choice modelling is however an important avenue for further 
research. Finally, the dataset was complemented by information on the on-time performance of 
the different airlines used in the analysis, and the overall on-time performance of airlines at the 
three airports2.  
 
3.3. Ground-access level-of-service data  

As was the case for the air-transport level-of-service data, the information on the chosen 
access mode contained in the passenger survey needs to be complemented by data on the 
unchosen access options at the chosen airport as well as at the different unchosen airports. For the 
present analysis, ground-access level-of-service information was obtained from the MTC in the 
form of origin-destination travel time and cost matrices for the 1099 travel area zones (TAZ) used 
for the SF-Bay area. Some information is clearly lost due to the aggregation into travel zones, this 

                                                 
1 Back Aviation Solutions, 6000 Lake Forrest Drive, Suite 580, Atlanta, GA  30328, www.backaviation.com 
2 Available from the Bureau of Transport Statistics, via www.bts.gov/programs/oai/airline_ontime_statistics 
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is however unavoidable due to the high number of possible ground-level origins, and the effects 
should be minimal, given the small differences between the origins situated in a given TAZ.  

The dataset contains information on travel distance, travel time and tolls for car travel, 
under peak and off-peak conditions, and for varying car-occupancy (which has an effect on tolls). 
Similarly, the dataset contains information on access time, wait time, travel time, egress time and 
fares for public transport journeys. Corresponding data for other modes, such as taxi, limousine 
and special airport bus services were calculated separately, based on current prices and the 
changes in the Consumer Price Index for California from August and October 1995 to September 
2003. A complication arose with regards to rental car, as it is difficult to judge how the cost of 
renting a car is taken into account in the decision-making process (e.g. covered by employer or 
by traveller). Similarly, it is not clear whether the marginal costs of trips by private car (e.g. 
petrol) are actually taken into account by travellers (when compared to the direct cost of a road or 
bridge-toll). A further complication arises with regards to the cost of parking at the airport, given 
that no information is available as to whether a given traveller makes use of the airport parking 
facilities (as opposed to using kiss-and-fly). Attempts to include parking cost and rental cost in 
the models led to inconsistent results; it was thus decided to exclude these costs from the model, 
allowing us to merge private car and rental car into a generic car mode, where the only cost is 
that of any toll incurred. This led to six remaining access-modes; car, public transport (transit), 
scheduled airport bus services, door-to-door services, taxi and limousine. It was assumed that taxi 
and limousine services are available for each origin, while the availability of door-to-door and 
scheduled services depends on the distance to the airports. The availability of public transport 
was obtained from the MTC OD matrices, and, in the absence of any information on the 
availability of the car mode, it had to be assumed that car is always available.  
 
3.4. Data assembly and choice-set construction  

The final sample contains data on 3 departure airports, 8 airlines, and 6 access-modes, 
leading to 144 distinct triplets of alternatives. Given the three-dimensional choice set, any given 
alternative shares the attributes of 73 other alternatives along a single dimension of choice, and 
shares the attributes of 14 alternatives along two such dimensions. In fact, it can be seen that the 
144 triplets are made up of a set of 42 distinct alternatives (8 airlines and 6 access-modes for each 
of the 3 airports). For each observation, data on the attributes and availability of these 42 
elementary alternatives was appended to the survey data. After adding in airport-specific 
attributes, the combination into triplets of alternatives was performed via the specification of 
utilities. The attributes and availability of the access-modes depend on the ground-level origin of 
a traveller, while the attributes and availability of the different airline options depend on the 
choice of destination (where not every airline operates from each airport to all 14 destinations 
used). The days of week were taken into account in the definition of the attributes and availability 
of the different flight options, as was the season (August or October), while peak and off-peak 
aspects were taken into account for the access-journey attributes. The dataset now contains 
information on the chosen and unchosen alternatives for each of the 5,091 observations used, and 
the data are ready for use in the modelling analysis.  
 
4. Modelling methodology  
4.1. Discrete choice models  

Discrete choice models predict the choice of a decision-maker in a given choice situation as 
a function of the utilities of the alternatives available to the decision-maker. The utility that a 
decision-maker obtains from choosing an alternative is calculated as a function of the observed 
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attributes of this alternative and the tastes of this decision-maker together with a random 
component, which accounts for unobserved factors influencing choice.   

Under the assumption of utility maximisation, different distributional assumptions on the 
random component of utility lead to different models. In the MNL model, the unobserved utility 
terms are assumed to be distributed IID type I extreme value. With this choice of distribution, the 
probability of decision-maker n choosing alternative i is given by:  

 ,         …(1)  
where I gives the total number of alternatives in the choice-set and V

ni 
is the observable 

component of utility, which is generally linear in tastes (β
n
 ) and attributes (z

ni
 ) i.e., V

ni
=β

n
’z

ni
.   

A key limitation of the MNL model is that the pattern of substitution between any two 
alternatives is the same across alternatives, making it impossible to accommodate heightened 
correlation between alternatives that are closer substitutes for each other. Although the MNL 
model has been used repeatedly in airport choice modelling, and several authors (e.g. Ashford 
and Bencheman, 1987 and Thompson and Caves, 1993) have justified the use of the MNL model 
by claiming that airports are independent entities, this is in fact far from clear. Indeed it seems 
highly likely that in a multi-airport region there will be varying cross-elasticities between pairs of 
airports in, reflecting structural similarities amongst them.  

The Nested Logit (NL) model generalizes the MNL by dividing the choice set into nests of 
alternatives, with increased correlation, and thus higher cross-elasticities, between alternatives 
sharing a nest. The NL is a member of the Generalized Extreme Value (GEV) family of discrete 
choice models introduced by McFadden (1978). In the NL model, nests are hierarchical and 
mutually exclusive. The choice probabilities are represented through a product of successive 
logit-style choice probabilities that represent a chain from the root of the tree to the elementary 
alternative for which the probability is calculated. The utility of composite alternatives is 
determined by the utilities of the nodes situated directly below them in the tree; this way, the 
utility of elementary alternatives is propagated up through the tree, with the help of a logsum 
term. A structural (logsum) parameter is associated with each node, determining the correlation 
of the alternatives within the different nests. For example, the choice probability of an alternative 
i contained in nest m of a two-level NL model is given by:  

 ,       …(2)  
with logsum term  

 ,  
where  is the logsum parameter associated with nest m.  

The value of the different structural parametersis generally constrained to lie between 0 and 
1, where values of  below 0 are inconsistent with utility maximisation while values above 1 are 
only consistent with utility maximization for special ranges of the explanatory variables. The  
parameters measure the degree of independence between alternatives in the respective nest, with 
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higher  meaning more independence and hence less correlation between the unobserved 
components of utility of the alternatives contained in the nest. A value of 1 for all structural 
parameters leads to the MNL model.  
 
4.2. Sampling weights  

Aircraft occupancy data was used to calculate the total traffic on the different routes used in 
the analysis, for each of the carriers. From this, relative weights were assigned to each airport-
airline pair. A similar process was used to calculate corresponding weights for the sample data 
used in the present analysis. The individual pairs of weights were then used to calculate 
multiplicative weights that could be used in the analysis, where the weight for a given airport-
airline pair was given by dividing the actual population weight by the sample weight for this pair. 
This process was repeated for each observation used in the analysis, and it is easy to see that the 
resulting sum of weights over the total number of observations is equal to the number of 
observations used. In the estimation process, each term in the log-likelihood function was then 
multiplied by the appropriate weight for the associated chosen alternative.  
 
4.3. Segmentation by purpose and residency status  

An important question arises with respect to how to acknowledge the differences that exist 
between residents and visitors, and between travellers with different trip purposes. Results by 
Hess and Polak (2004) on the same data show that there exist important differences along both 
dimensions, with the differences across trip purposes seemingly being more important than those 
between residents and visitors. After a decision has been taken to segment along either or both of 
these dimensions, a further decision must be made whether to use separate models for the 
different groups of travellers or whether to use separate coefficients for each group of traveller 
within the same model, where the latter approach essentially assumes that any differences are 
restricted to a subset of the parameter space (as not all coefficients will be made group-specific).  

Several tests were conducted to investigate the benefits of the different approaches, using 
basic MNL models with a simple specification of utility. Likelihood-ratio tests were used to 
assess the impact of using separate models as compared to using a common model. The tests 

showed significant differences between residents and visitors  as well as between 
business trips and the combined group of holiday trips and visiting friends and relatives (VFR) 
trips . In the existing literature, holiday trips are generally combined with VFR 
trips to form a wider group of leisure trips. Several tests were conducted to assess the 
adequateness of such a grouping. One of these tests fits separate models for holiday trips by 
residents and by visitors, and separate models for VFR trips by residents and visitors, along with 
a common leisure model for residents and a common leisure model for visitors. In the case of 
resident travellers, the test reveals no significant differences between holiday trips and VFR trips 

. However, in the case of visitors, the differences are very significant . 
This thus not only suggests that separate models should be used, at least in the case of visitors, 
but also reiterates the findings that there are important differences between residents and visitors.  

Given the results produced by the tests, it was decided to avoid using common models for 
different purposes and for residents and visitors, as it had become clear that, in many cases, not 
all of the differences could be explained by the use of a few separate coefficients. It was thus 
decided to use six separate groups of travellers, dividing the population into residents and 
visitors, and dividing the trips into business, holiday and VFR trips.  



 

10

5. Modelling analysis  
In this section, we describe the results of the modelling analysis. This is divided into three 

main parts. We first present a discussion of the various specifications of utility used in the 
analysis. We then describe the results from the MNL models, and finally summarise the findings 
from the analysis that uses NL models.  
 
5.1. Utility functions  

Overall, the final specifications developed for the various models are very similar, although 
there are some differences, notably in the inclusion of fare and cost coefficients, and in the 
segmentation of travellers by income. For every model, attempts were made to include 
coefficients showing travellers’ sensitivity to various attributes of the airports, airlines and 
access-modes. These included factors such as flight frequency, flight time (block time, which 
indirectly takes into account airport congestion) and fare, as well as access-time (in-vehicle), 
walk-time to access-mode (e.g. to public transport station), wait-time for access-mode and access 
cost. We also explored the influence of aircraft type (jet vs turboprop) and both linear and various 
non-linear specifications of the various explanatory variables were tested. The best results were 
obtained with the use of a logarithmic transform, this however only led to an improvement in 
model fit when applied to flight frequency, whereas non-linear specifications of flight time, in-
vehicle time, access walk time, wait time and fare led to unsatisfactory results. Also, some 
potentially important influences, such as carrier loyalty, could not be explored, due to lack of data 
(e.g. no information on frequent flyer programmes). Similarly, it was not possible to identify a 
direct affect of the on-time-performance of airlines or airports on the respective choice 
probabilities. Attempts were also made to segment the population by income, for example in 
order to show different values of time in different income-classes. Three income groups were 
defined, segmenting the population into low-income (<$21,000 p.a., accounting for around 40% 
of the sample population), medium-income (between $21,000 and $44,000 p.a., accounting for 
around 35% of the sample population) and high-income (above $44,000 p.a., accounting for the 
remaining 25% of the sample population).   

A further specification issue that was explored was the influence of past experience on 
choice behaviour (c.f. Windle and Dresner, 1995). In the present analysis, we had information on 
the number of flights a given traveller took from each of the three SF-bay airports in the past 
twelve months. It might be expected that the effect of past experience is non-linear, such that 
most of the experience is gained in the first few flights. To this extent, a logarithmic transform 
was used on these factors. For the three airports, a coefficient was estimated that shows the effect 
of past experience at the given airport on that airport’s utility. It should be recognised that there is 
potentially also a cross-effect of experience. Hence, coefficients were also included that show the 
effect of experience at one airport on another airport’s utility. Clearly, some normalisation is 
required in this case, as the same variable cannot be included in each utility function for reasons 
of identification. Aside from three airport-specific experience coefficients, coefficients associated 
with past experience at SJC and OAK were thus included in the utility of SFO, while a 
coefficient of experience at SFO was included in the utility of SJC, and no cross-coefficients 
were included in the utility of OAK-alternatives. The inclusion of these variables did in each 
case, as expected, lead to a dramatic improvement in log-likelihood. As an example, in the MNL 
model for resident business travellers, the inclusion of these 5 coefficients led to an increase in 
log-likelihood by 219.583 units, which is clearly highly significant. It should of course be noted 
that the inclusion of these coefficients could lead to problems with endogeneity, as the values of 
the past choice indicators may be closely correlated with the other explanatory variables and with 
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unobservables. This would make this approach inapplicable in the case where the model was used 
for forecasting. However, this is not the main purpose of the present analysis; furthermore, in 
each one of the models used, the values of the remaining coefficients remained largely 
unaffected, suggesting that the inclusion of these experience terms did not introduce major bias.  
 
5.2. MNL models  

In the following six paragraphs, we describe the findings of the analysis fitting MNL 
models to the six separate estimation datasets. The results of the various models are summarised 
in table 2 for residents and table 3 for visitors.  
 
5.2.1. Business trips by residents  

The estimation dataset contains information on 1,098 business trips by residents. The 
estimation process revealed significant effects of walk-access time, access-cost, in-vehicle 
access-time, flight-time and frequency. Also, a negative impact on utility is associated with 
turboprop planes. The initial estimation revealed an effect of fare, however, this effect was of the 
wrong sign (positive) for medium and high-income traveller, while the effect for low-income 
travellers was negative, but not significant. As these results are counterintuitive, it was decided to 
drop these coefficients from the model. The fact that no significant negative effect of fare could 
be identified can be partly explained by the poor quality of the (highly aggregate) fare data, but 
could also signal sheer indifference to fare increases by business travellers.   

It was possible to segment the sensitivity to walk time and access cost by income, although, 
given very low differences between the estimates in the low and medium income group, only two 
coefficients were retained, one for people earning less than $44,000 per annum, and one for the 
remaining travellers. The results show lower sensitivity to cost for people with higher income, 
along with higher sensitivity to increases in walk time. In terms of past experience, the estimates 
show positive direct effects of past experience for all three airports, with positive cross-effects of 
experience at SJC and OAK on the utility of SFO, and a positive (but not significant) cross-effect 
of experience at SFO on the utility of SJC. Finally, increases in flight frequency lead to increases 
in utility, where the logarithmic transform ensures decreasing marginal returns.  
 
5.2.2. Business trips by visitors  

The estimation dataset contains information on 1,057 business trips by visitors. Just as for 
resident business travellers, the initial modelling estimates showed a positive (but insignificant) 
effect of fare for high and medium-income business travellers, while the effect for low-income 
travellers was negative, but not significant. Again, fare was thus excluded from the models. In-
vehicle access -time and access-cost are again significant, and negative, with increasing 
sensitivity to in-vehicle access-time with higher income (only two groups could be used) and 
lower sensitivity to cost with higher income (two groups only). Whereas it was not possible to 
estimate a significant effect of wait-time for resident business travellers, a significant negative 
effect could be identified for their non-resident counterparts. However, the estimate for flight-
time no longer significant (but still negative), and it was not possible to include an effect of 
equipment type, as flights using turboprop planes were never chosen. Also, with this model, no 
effect could be associated with access walk-time. Frequency again has a positive effect, but, 
unlike for access-time and access-cost, it was not possible to identify significantly different 
estimates for the different income groups. Finally, unlike in the model for resident business 
travellers, experience at OAK has a negative effect on the utility of SFO. Also, the cross-effect of 
experience at SJC on the utility of SFO is insignificant.  



 

12

5.2.3. Holiday trips by residents  
The model estimated on the 831 observations for residents’ holiday trips suggests a lower 

utility for flights using turboprop aircraft, negative impacts by access-cost and in-vehicle time, a 
positive effect of flight frequency, positive direct effects of past experience as well as positive 
cross-effects of past experience at SJC and OAK on the utility of SFO, and of past experience at 
SFO on the utility of SJC (not significant). Finally, for this group of travellers, a negative effect 
could be identified for fare, although the t-value is just below the 95% limit, while no effect could 
be associated with flight-time and access walk-time. No significant gains could be made through 
segmenting the population by income for any of the coefficients.  
 
Table 2. MNL results for residents (selected coefficients) 

  
 
5.2.4. Holiday trips by visitors  

For the 534 visitors on holiday trips, no significant effect of fare could be identified, and the 
effect of access-cost, although of the correct sign, is not significant at the 95% level. In-vehicle 
time has a significant negative effect, as has flight time, while increases in frequency lead to 
increases in utility. Past experience at SJC has a positive impact on the utility of SFO, while the 
other two cross-effect estimates are not significant. Finally, the aircraft-type coefficient had to be 
excluded from the model (never chosen), while no effect could be identified for wait-time, and 
segmentations by income did not lead to any gains in model fit.   
 
5.2.5. VFR trips by residents  

The estimates for the model fitted to the sample of 641 residents on VFR trips show 
significant negative effects of access-cost, in-vehicle time and flight fare, along with positive 
effects of flight frequency. The cross-effect estimates of past experience are not significant, 
equipment-size could not be included and no effects could be identified for walk-time, wait-time 
and flight time, while segmentations by income led to a loss of information in the model.  
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Table 3. MNL results for visitors (selected coefficients) 

 
 
5.2.6. VRF trips by visitors  

The final subsample used in the estimation of MNL models contains information on 421 
VFR trips by visitors. The results show negative impacts of fare in the medium and low-income 
classes (with higher sensitivity in the low-income class), while the effect for high-earners was 
insignificant and was dropped from the model. In-vehicle time and flight-time have a negative 
effect, with a positive effect for frequency increases. Again, the cross-effect estimates of past 
experience are insignificant, while no effect could be associated with access walk-time, wait-
time, and access-cost, and the turboprop coefficient had to be excluded.  
 
5.2.7. Comparison  

The discussions in sections 5.2.1 to 5.2.6 have revealed that there are important differences 
across models (and thus data sub-samples) in the optimal specification of utility. The common 
point across models is that a logarithmic specification of frequency and past experience is always 
preferable to a linear specification. Significant effects of flight fare could only be identified for 
resident holiday and VFR travellers, as well as for visiting VFR travellers, where there are also 
differences across income groups in fare-sensitivity. In terms of model fit (ρ 

2
), the models for 

residents perform better than those for visitors for business and holiday trips, while the opposite 
is the case for VFR trips. Finally, it is of interest to compare the substantive results across 
models. Given the potential differences in scale, such comparisons should only be made in the 
form of ratios in parameters. As fare is only used in three of the models, it was decided to give 
preference to the trade-off between flight frequency and in-vehicle time (over the trade-off 
between fare and frequency). The coefficient estimated for in-vehicle time β

AT
 gives the marginal 

change in utility resulting from an increase in in-vehicle time by one minute. The corresponding 
estimate for flight frequency gives the return of an increase in the logarithm of frequency by one 
unit, such that, with a base frequency of f flights, and coefficient estimate β

FT
, the return of an 
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increase by one flight is equal to β
FT

(ln(f+1)-ln(f)). The trade-off between increases in flight 
frequency and increases in access in-vehicle time is thus given by β

FT 
(ln(f+1)-ln(f)) / β

AT 
. The 

results show a higher willingness to accept increases in access-time for residents (values of β
FT 

/ 
β

AT 
equal to 25.28, 22.3 and 29.47 minutes per additional flight for business, holiday and VFR 

trips respectively) than for visitors (values of 15.93 and 26.32 minutes respectively for high and 
low-income business travellers, and 14.01 and 10.38 minutes respectively for holiday and VFR 
trips). The differences are especially significant in the case of VFR trips, where the relative value 
of frequency increases is at its highest for residents, while it is at its lowest for visitors.  
 
5.3. NL models  

After the estimation of the MNL models described in section 5.2, the next aim of the 
analysis was to find appropriate specifications for NL models. Several important issues arise in 
this case. The analysis looks at the combined choice of airport, airline and access-mode. While 
heightened correlation is generally expected between the different flight options at a given 
airport, it must equally well be assumed that there is heightened correlation between the different 
flights operated by a given carrier, and also between two alternatives sharing the same access 
mode. As such, there is potentially a need to nest by airport, airline, and access-mode. However, 
a four-level NL model (root, plus three additional levels of nesting) would not be appropriate as 
the lower level of nesting would be obsolete, given that each nest would contain just a single 
elementary alternative (e.g. after the choice of airport and airline, there is only one remaining 
alternative for each access-mode). This thus means that at best, a three-level structure can be 
used, discarding one of the three possible nesting levels. This leads to six possible tree structures, 
when one notes that a tree structure with airport above airline is not equivalent to a tree structure 
with airline above airport. The use of each of these six three-level structures was attempted, 
however, none of them led to satisfactory results. This suggests that a multi-level structure is not 
applicable for the modelling of airport choice, at least with the current data. A two-level structure 
would thus have to be used, nesting either by airport, or airline, or access-mode. In this section, 
we describe the results obtained with each of these approaches. Due to space constraints, only a 
very limited part of the results is reproduced here; the optimal utility function specifications of 
the various models were however essentially identical to those of the corresponding MNL models 
(as were the substantive results in terms of ratios of coefficients), although the use of a nesting 
structure occasionally led to a drop in significance of individual coefficients.   
 
5.3.1 Nesting by airport  

The first set of models nest the elementary alternatives by airport, leading to 48 alternatives 
per nest (8 airlines and 6 access-modes). The results are summarised in table 4, with t-statistics 
for the structural parameters given in brackets. For comparison, the table again gives the final 
log-likelihood of the corresponding MNL models. The results show that, for every single model, 
the structural parameter of the nest containing the SFO alternatives had to be constrained to a 
value of 1, as it would otherwise have exceeded this value, becoming inconsistent with utility 
maximisation. This suggests that there is no heightened correlation between the different 
alternatives available from SFO. Passengers are not more likely to shift to another alternative at 
SFO than they are to shift to an alternative at another airport. This can at least partly be explained 
by the overall poor on-time performance of SFO.   
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Except for the case of visitors on VFR trips, where the structural parameter for OAK had to 
be constrained to 1, the estimates for the structural parameters of the other two airports are 
always below 1. There are differences across models in the values of the structural parameters, 
and also in the relative values of the structural parameters for the SJC and OAK nests (although 
λ

SJC
 is generally lower than λ

OAK
), suggesting important differences between the different groups 

of travellers. In terms of model fit, the use of the NL models leads to a significant increase in log-
likelihood, except in the case of visitors on VFR trips, where the log-likelihood is virtually 
identical to that of the MNL model, as is the NL model itself, given that the SFO and OAK 
structural parameters are equal to 1, while the structural parameter for SJC is very close to 1. 
Except for VFR trips, the improvements in model fit are more important for visitors than for 
residents, and the lower structural parameters for visitors on business and holiday (only for SJC) 
trips suggest a lower substitution effect between airports than is the case for residents.   
 
5.3.2 Nesting by airline  

The lack of information on frequent-flier programme membership means that the models are 
largely unable to pick up the full effect of the correlation between different alternatives that refer 
to the same airline. Nevertheless, it is of interest to attempt to use a nesting structure that uses a 
single nest for each airline, leading to 8 nests, with 18 alternatives each. The results of this 
analysis are summarised in table 5.   

The effects of the lack of information relating to airline-allegiance become visible in the 
high number of structural parameters that had to be constrained to a value of 1. Nevertheless, 
except for the model for visitor VFR trips, the use the NL model resulted in a significant increase 
in log-likelihood over the MNL model. Also, the great variability in the values of the structural 
parameters for given airlines across the different models suggests significant differences in the 
cross-elasticities in the different models. The exact analysis of these cross-elasticities is beyond 
the scope of the present paper (given the very high number of elementary alternatives); however, 
the results in table 5 could suggest that, despite the lack of adequate data on allegiances to 
airlines, the models are able to pick up some effect of correlation between alternatives associated 
with given airlines. Also, a brief analysis revealed some correlation between the nesting 
parameters associated with a given airline and the on-time performance of that airline. Indeed, 
airline A7, for which the structural parameter had to be constrained to a value of 1 in each model, 
was plagued by very poor on-time performance in 1995, as were airlines A1 and A3, for which the 
structural parameters are also generally closer to 1; passenger allegiance to such airlines is clearly 
affected in a negative way. Finally, airlines A5 and A8 on average have lower structural 
parameters than the other airlines. This could at least be partly be related to the fact that these two 
carriers run a budget-airline scheme; travellers on such airlines are generally far more likely to 
shift to another service operated by this same or another low-cost carrier than to shift to another 
airline. It could also signal that these travellers make a decision to travel by air solely because of 
the low cost offered by these carriers, and are thus very unlikely to consider flying on another 
airline.  
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Table 4. NL results for nesting by airport 

 
 
5.3.3 Nesting by access-mode  

In many regards, the use of nesting by access-mode is the most promising approach. Indeed, 
in this case, there are no important problems with missing data such as in the case of the nesting 
by airline. Furthermore, given the heavy bias towards car in the access-journeys to the different 
SF-bay area airports (over 80% in the present sample), it can be expected that the nesting 
parameter for this nest especially should be very low, to reflect the higher substitution effects 
between alternatives sharing the car mode, and the low cross-elasticities between the car mode 
and alternative access-modes. The results of this analysis are summarised in table 6.  

Except for the model for business trips by visitors (for whom the car and rental car market 
shares are generally lower than for other groups), the structural parameter for car is always very 
low, illustrating travellers’ allegiance to the car mode; they generally seem to be more willing to 
accept a change of airline or airport than to accept a change of access-mode. A comparable 
constant low structural parameter is observed for the taxi nest, while the structural parameter for 
the scheduled nest especially varies widely across models. Unlike in the models using nesting by 
airport and airline, the present nesting approach leads to universal significant increases in log-
likelihood, including the model for VFR trips by visitors. Also, in total, only three of the 
structural parameters had to be constrained to a value of 1. Nevertheless, it should be noted that 
some of the structural parameters reported in table 6 are insignificant. The exclusion of these 
parameters however either led to a significant drop in log-likelihood (in the case of the model for 
holiday trips by residents and visitors) or did not lead to significantly changed values of the other 
structural parameters and coefficients (in the case of VFR trips). Finally, it should be noted that, 
for holiday trips by visitors, the structural parameters of the car, door-to-door and taxi nests were 
constrained to have the same value, given that the initial estimates were almost indistinguishable. 
This led to a drop in the log-likelihood by a mere 0.028 points. Overall, the results from this 
section suggest that important gains can be made by using a structure that nests alternatives by 
access mode. This reinforces the belief that access-related factors often play a crucial role in the 
choice of airport.  
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Table 5. NL results for nesting by airline 

  
 
Table 6. . NL results for nesting by access-mode 

 
 
5.3.4 Summary of NL results  

The analysis has shown that some gains in model fit can be obtained by using a nesting 
structure, although these gains are often not as significant as expected. This could be due to two 
very distinct reasons. Nested Logit models differ from the MNL model in that they accommodate 
a correlation between the unobserved components of utility. The first explanation interprets the 
closeness between the performances of the two models as a good performance by the MNL 
models. This would mean that the (observed) utility specification used captures almost all of the 
variation in utility across alternatives, reducing the scope of the NL model to capture any 
correlation patterns in the remaining unobserved part of utility. An alternative explanation is 
based on the reasoning that the nesting structure used is little better that the MNL in capturing the 
true structure of the underlying correlations in the unobserved component of utility. It is not clear 
from the outset which of these reasons is more likely; it seems that, while the specification of 
utility used in the MNL models was clearly quite good (relatively good ρ 

2
 values), further gains 

could be made by using a more flexible nesting structure that allows for the correlation along the 
three choice dimensions. As mentioned previously, attempts made during the present analysis to 
accommodate correlation along two dimensions resulted in non-converging models. It seems that 
a promising alternative would be to use cross-nested models; this approach is discussed in more 
detail in section 7.  

Although the gains in model fit were not as important as expected, several conclusions can 
be drawn from the analysis discussed above. First, there seem to be important differences across 
population groups in the values of the structural parameters. This suggests that gains in 
performance could be made by using a modelling structure in which the structural parameters 
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themselves are functions of socio-economic characteristics of travellers, as discussed by     Bhat 
(1997) in the context of intercity travel. Secondly, the results indicate differences in performance 
between the three nesting structures across the six datasets used. As such, the models nesting by 
access-mode lead to the biggest gains in LL for the three datasets with resident travellers, while 
for visitors this is only the case for VFR trips, with nesting by airport leading to the biggest gains 
in LL for business and holiday trips. This again suggests differences in behaviour between 
residents and visitors. The fact that nesting by airport produces the best results in two out of the 
three models for visitors indicates that these travellers are less likely to choose an alternative 
airport, which could suggest that these travellers often simply choose the airport that is closest to 
their intended ground-level destination (keeping in mind that the chosen airport is actually their 
arrival airport from the outbound leg). This is consistent with the high values of access-time 
reported for these travellers by Hess and Polak (2004). Finally, nesting by airline never leads to 
the biggest improvements in LL; this is at least partly explainable by the lack of good data on 
allegiance-related factors.  
 
6. Model validation  

To validate the various models described in the paper, they were applied to the validation 
sample of 519 observations (divided into 6 groups for the separate models) specifically retained 
for this use, using the coefficient values produced during the estimation process. This enabled us 
to compare the models’ performance in terms of correctly predicting the observed choices and in 
terms of recovering the market shares for the various airports, airlines and access modes, using 
data that is unknown to the models.   

The validation approach produces, for every observation, a choice probability for each of 
the 144 elementary alternatives, where this choice probability is adjusted using the weights 
employed during estimation. From this, the average probability of correct prediction for the 
actual choice in the validation sample can be calculated. Aside from this probability of the choice 
of the actual triplet of airport, airline and access-mode, it is also of interest to look at the 
probability of correct choice for just the airport, just the airline, and just the access-mode. These 
probabilities can be obtained through summing the probabilities of the single elementary 
alternatives falling into the given group. Given the high number of elementary alternatives used 
in the models, the choice probability estimated for the actual chosen alternative will not 
necessarily be very high (although the relative probability should be); the use of these aggregated 
choice probabilities is thus a more accurate measure of model performance. Additionally, the 
choice probabilities for the individual elementary alternatives were used to calculate the weighted 
predicted market shares for individual airports, airlines and access-modes, which could then be 
compared to the actual shares of these alternatives in the control sample, using the root-mean-
squared error (RMSE) between the observed and predicted shares (in percentage points) for the 
different composite alternatives. The RMSE was preferred to the other commonly used mean 
absolute percentage error (MAPE), as it is less susceptible to bias introduced by small prediction 
errors for alternatives with a low market share.  

The results of this analysis are summarised in table 7. The first observation that can be made 
from this table is the surprisingly high probability of correct prediction of the actual chosen 
elementary alternative. Indeed, even in the poorest-fitting model (holiday trips by visitors), the 
probability of correct prediction is close to 30%, which is very high when one takes into account 
the extent of the choice-set. In terms of the correct prediction of airport choice, the probabilities 
range from 68.51% to as high as 85.39%. This compares very well to results in other studies, and 
the rates obtained in some of the models in fact exceed those obtained in many previous studies. 
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The performance in terms of the choice of access-mode is also very good, although generally 
slightly poorer than the performance in the case of airport choice, which can at least be partly 
explained by data problems in terms of the availability of the car mode, and lack of information 
on parking behaviour. The performance of the models to predict the correct choice of airline is 
poorer than that for the choice of airport and access-mode; however the values still always exceed 
50%, despite the extensive choice set of eight airlines, and the lack of information on airline 
allegiance. Again, superior performance could be expected if better data were available, notably 
with regards to fare structures and frequent flyer programmes. The comparatively poor 
performance of the models for holiday trips (especially by visiting travellers, see also section 
5.2.4) can possibly partly be explained by the fact that at least some of the travellers on such 
holiday trips have purchased a package holiday (or special flight deal); for such deals, the choice 
of departure airport is potentially influenced by factors that were not directly measurable and 
could thus not included in the models.  

In terms of a comparison between the NL and MNL models, the results show that in 
general, the NL models perform slightly better than the corresponding MNL models. Even more 
so than was the case for the differences in model fit described in section 5, these differences are 
however far less significant than expected. This can again be seen as a reflection of the good 
performance of the MNL models, or the inability of the NL models to recover meaningful 
underlying correlation patterns in the unobserved utility components. Given the high correct 
prediction probability, the former reasoning however seems more likely. Overall, the best 
performance seems to be given by the models using nesting by mode, while nesting by airport 
leads to good results especially for visitors on business and holiday trips (reflected in the good 
model fits reported in section 5). However, the differences between the performances of the 
individual models are very low, and it is not directly clear what measure of error should be 
associated with these probabilities, such that no certain conclusions can be drawn. Nevertheless, 
it is interesting to note that, while the models using nesting by mode regularly outperform the 
other models in the correct prediction of the choice of airport and airline, this form of nesting 
never leads to the best results in terms of the correct prediction of mode-choice. Indeed, the best 
performance is in this case always obtained by the model using nesting by airport. Given the 
good performance of the nesting by mode for predicting the correct choice of airport, these 
results indicate high correlation between these two choice dimensions. Overall, the results 
suggest that the nesting by access-mode should be the preferred option, reinforcing earlier beliefs 
that the access-journey plays a crucial role in the choice of airport. Finally, even though the NL 
models do thus not lead to a very important gain in model fit or prediction performance, they 
should be preferred, given their more intuitively correct behaviour in terms of the substitution 
effects between alternatives.  

In terms of the models’ ability to recover the sample shares of the different composite 
alternatives, the performance is again very good, with the poorest performance being a RMSE of 
a mere 5.65 percentage points. With regards to a comparison between the performance of the 
MNL and NL models, the results on average show very similar performance, with the only major 
outlier being the poor performance in terms of airport shares by the NL model using nesting by 
mode in the model for VFR trips by residents.  
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Table 7. Model validation using control sample 

 
 

In summary, the results show very good prediction performance for the different models, 
where the performance is comparable, and occasionally even better than the performance 
obtained during a comparable application run on the actual data used during estimation (detailed 
results available on request). This is remarkable, given that this validation data was unknown to 
the models, and suggests that the model could be successfully used as a prediction tool (although 
the issue of endogeneity caused by the past experience variables would need to be addressed). In 
a direct comparison with the previous analysis conducted by Hess and Polak (2004), the models 
presented in the present paper on average lead to a better correct prediction rate (with a 
corresponding rate of around 72% in the previous study), showing that important gains can be 
made by using disaggregate level-of-service information for air-travel (i.e. avoid the use of 
measures of overall service at an airport), and by explicitly modelling the choice of airline and 
access-mode. When taking into account the fact that this was not the case in the study conducted 
by Hess and Polak (2004), the performance obtained in that study is in fact very good, signalling 
the advantages of using an approach that allows for a random distribution in the tastes of 
decision-makers. The combined conclusions from these two analyses suggest that important gains 
could be made by using a mixing framework on a purely disaggregate dataset and by explicitly 
modelling the individual choices of airport, airline and access mode. This is the topic of ongoing 
research (c.f. section 7).  
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7. Further research  
The analysis described in this paper has shown the importance of explicitly modelling the 

separate, but related choices of departure airport, airline and access-mode. The analysis has also 
highlighted the prevalence of correlation between the unobserved components of utility along 
each of these three choice dimensions. However, while the three types of NL model fitted showed 
the effect of individually allowing for correlation along either of these dimensions, it was not 
possible to fit a model that allowed for correlation along multiple dimensions through using a 
more complicated nesting structure. This at least partly explains the lack of significant 
improvements in prediction performance when using the NL models instead of the MNL model. 
Furthermore, with this layout of the data, where each triplet of composite alternatives 
corresponds to exactly one elementary alternative, it is not possible fit a multi-level NL model 
with one level per choice dimension. It is however clearly desirable to simultaneously account for 
the correlations in unobserved utility components along these three dimensions, and there is a 
way around using the NL model while still allowing for correlation along the three choice 
dimensions. Indeed, it is possible to use a Cross-Nested Logit (CNL) model, where the upper 
level contains a nest for each of the 17 composite alternatives, and where each elementary 
alternative belongs to exactly three nests, one in each group (one airport, one airline and one 
access-mode). By using separate structural parameters, such a model would be able to show the 
relative level of correlation between the unobserved utility components along each of the three 
dimensions. For more information on this type of model, see for example Koppelman and Sethi 
(2000). Also, while the results of the present analysis have shown the importance of explicitly 
modelling the individual choice components, and of using separate models for different 
population groups, the results by Hess and Polak (2004) have shown the benefit of allowing for a 
random distribution in tastes in given subpopulations, in addition to the use of deterministic 
variations in tastes through a segmentation of the population. It seems likely that important gains 
in model performance could be made by combining the two approaches described above, thus 
allowing for varying correlation between the unobserved utility components, as well as a random 
distribution of tastes. This is possible by noting that, just as the MNL model is the most basic 
type of GEV model, the Mixed Multinomial Logit (MMNL) model used by Hess and Polak 
(2004) is simply the most basic member of a wider class of mixed GEV (MGEV) models (c.f. 
Train, 2003). This opens up the possibility of the use of a Mixed CNL model for the joint 
analysis of airport, airline and access mode; this is the topic of an ongoing study, and is an 
important avenue for further research. Finally, two other aspects that should be considered are 
choice-set generation (as proposed by Basar and Bhat, 2004) and the availability of different fare 
classes (c.f. Battersby, 2003). These additional modelling components could relatively readily be 
incorporated into a wider framework of an MGEV model, and could lead to important further 
gains in model accuracy.  
 
8. Conclusions  

In this paper, we have described an in-depth analysis of the combined choices of departure 
airport, airline and access-mode for passengers departing from the San Francisco Bay area. The 
analysis has shown that several factors, most notably flight frequency and in-vehicle access-time 
have a significant overall impact on the appeal of a given airport, while factors such as fare and 
aircraft size have a visible impact only for some of the population subgroups.. Our study has 
highlighted the need to use separate models for resident and non-resident travellers, and has also 
shown the benefit of using individual models for different journey purposes. From a utility 
specification perspective, the research has shown that important gains in model fit can be 
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obtained through the use of a non-linear specification of flight frequency, and for some journey 
purposes, through a segmentation of the population into different income classes. 
Accommodating the effects of past experience on the current choice also leads to very significant 
improvements in model fit.  

In terms of modelling structure, the analysis has shown that significant gains in model fit 
can be obtained through the use of a Nested Logit model, although these improvements are less 
significant than expected and do not in general translate into important advantages in terms of 
model prediction performance, which is already very good for the MNL models used as a base. 
This could suggest that an appropriate specification of utility is more important than the use of an 
adequate nesting structure. Nevertheless, the paper has highlighted the importance of explicitly 
modelling the three separate choice dimensions of airport choice, airline and access mode, and 
while the advantages of the nesting approach are less significant than expected, these models 
should still be preferred, as they give more intuitively correct representation of the choice 
process.   
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