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Abstract 
A new continuous formulation of Dynamic Traffic Assignment, where a user 

equilibrium is expressed as a fixed point problem in terms of arc flow temporal profiles, is 
proposed. The precise aim of the paper is to integrate spillback modelling into an existing 
formulation of DTA, based on implicit path enumeration, which is capable of representing 
explicitly the formation and dispersion of vehicle queues on the road network, but allows 
the queue length to overcome the arc length. Specifically, we take into account the 
interaction among network links upstream and downstream road intersections deriving 
from time varying entering and exiting arc capacities due to vehicle queue spillovers, 
which is equivalent to introducing constraints on the queue lengths. To achieve this 
extension we introduce a sequence of models, that is the arc entering capacity model, the 
arc exiting capacity model, and the arc travel time model for time varying exiting capacity, 
describing, for given turning flow temporal profiles, the dynamic of the network nodes and 
arcs, and capable of representing the propagation of congestion among contiguous road 
links. Some numerical examples are devised to appreciate the relevant effect of spillback 
modelling in the context of DTA. 
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1 Introduction 

During the last decade Dynamic Traffic Assignment has been one of the most active 
fields in transport modelling. Indeed, the classical static framework of traffic assignment is 
often recognized to be an improper tool for the analysis of highly congested road networks 
where the formation and the dispersion of vehicle queues plays a decisive role. This is 
particularly true for those applications (variable massage signs, on-line information to 
drivers, ramp metering, lane variable usage) where the estimation of travel times is the 
desired output and not only the flow pattern is relevant. At the same time, the continuous 
growth of computer performances induces to think that DTA models could be used in the 
near future also for planning purposes. 

Due to the temporal dimension added, a new problem arises characterizing DTA, that is: 
loading the network with given demand flows on specified paths, in such a way that the 
resulting arc flow temporal profiles are consistent through an arc performance model with 
the corresponding travel time temporal profiles. This aspect, referred to as Continuous 
Dynamic Network Loading (CDNL), is so important that in the literature much attention has 
been dedicated to its specific analysis [see for instance Xu et al., 1999]. In fact, this one is 
the only problem to be solved in those cases, such as highway networks and urban corridors, 
where the path choice is not relevant. The relative simplicity of these network structures has 
induced researchers to describe the temporal dimension introducing “short time intervals”   
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(1-10 sec), thus exploiting in their models the fact that a vehicle entering a given arc during a 
certain time interval will exit that arc not earlier than the next time interval. 

Many existing DTA models are indeed an attempt to combine the CDNL and a path 
choice model, usually consisting of a dynamic shortest path procedure, into a dynamic 
equilibrium, thus permitting the analysis of more general networks. However, this 
approach, while perfectly correct from the modelling point of view, becomes often 
unpractical form the algorithmic point of view, due to the great amount of computer time 
and memory that is required. 

In a recent paper [Bellei, Gentile and Papola, 2002] we have proposed a new continuous 
formulation of Dynamic Traffic Assignment (DTA), where a user equilibrium is expressed 
as a fixed point problem in terms of arc flow temporal profiles. There, it is shown that, by 
extending to the dynamic case the concept of Network Loading Map (NLM), is no more 
needed to introduce the CDNL as a sub-problem of DTA in order to ensure the temporal 
consistency of the supply model. On this basis it is possible to devise efficient assignment 
algorithms, whose complexity is equal to the one resulting in the static case multiplied by 
the number of time intervals in which the period of analysis is divided. 

With specific reference to a Logit route choice model where only efficient paths are 
considered, an implicit path enumeration formulation of DTA is devised exploiting the 
concepts of arc conditional probabilities and node satisfactions, and a specific network 
loading procedure is also obtained as an extension of Dial’s algorithm; then, the fixed point 
problem is solved through an accelerated averaging procedure, called Bather’s Method. 
Another important feature of the proposed model lays in the fact that it does not exploit the 
acyclic graph characterizing the corresponding discrete version of the problem. 
Specifically, we do not introduce the hypothesis that the largest time interval must be 
shortest than the smallest free flow speed arc travel time. This way, at the algorithm level, 
it is possible to define “long time intervals” (5-10 min) and this allows to solve large 
instances of the problem with reasonable computing time and memory [Gentile and 
Meschini, 2003].  

The fixed point problem is formalized by combining the NLM, yielding the arc inflow 
temporal profiles corresponding to given arc travel time and cost temporal profiles, and an 
arc performance function, yielding the arc travel time and cost temporal profiles 
corresponding to given inflow temporal profiles, capable of representing explicitly the 
formation and dispersion of vehicle queues, but allowing the queue length to overcome the 
arc length (vertical queues). 

The aim of this paper is to extend this formulation in order to take into account the 
interaction among network links upstream and downstream road intersections deriving 
from time varying entering and exiting arc capacities due to vehicle queue spillovers, 
which is equivalent to introducing constraints on the queue lengths. 

This approach is consistent with the definition, provided by [Adamo et al., 1999], of the 
spillback phenomenon as a hypercritic flow state, either propagating backward from the 
final section of an arc and reaching its initial section, or originating on the latter, that 
reduces the exiting capacities of the arcs belonging to its backward star and eventually 
influences their flow states. Specifically, it shall be pointed out that this paper aims at 
representing a “polite” spillback, where users that cannot enter a given arc due to the 
presence of a downstream queue do not occupy the intersection, but wait on the upstream 
arc until the space necessary to their entrance becomes available on the downstream arc. 

To achieve this extension we introduce a sequence of models describing, for given 
turning flow temporal profiles, the dynamic of the network nodes and arcs, and capable of 
representing the propagation of congestion among contiguous road links. Specifically, the 
Network Performance Model (NPM) will be articulated in a sequence of three models, 
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namely the arc entering capacity model, the arc exiting capacity model, and the arc travel 
time model for time varying exiting capacity. 

The paper is organized as follows. First, we present the formulation of DTA with 
spillback. Second, we describe the chain of sub-models making up the NPM. Third, we 
present the implicit path formulation of the NLM and the resulting dynamic equilibrium 
model. Fourth, we propose an heuristic solution algorithm. Fifth, we devise some 
numerical examples to appreciate the relevant effect of spillback modelling. Finally some 
short conclusions and consideration on future research perspectives are drawn. 

2 Formulation of DTA with spillback 
Limiting our attention to macroscopic flow modelling and thus neglecting the 

microscopic approaches to the problem, very few works in the literature achieve in 
representing spillback within the CDNL; among these [Daganzo, 1994 and 1995; Adamo 
et al., 1999]. The above models satisfy the FIFO rule and can be applied to networks with 
many origins and destinations, although they require “short time intervals” which results in 
a demanding algorithm applicable to limited size networks. The Cell Transmission Model 
is consistent with the Simplified Theory of Kinematic Waves, but requires also a thick 
spatial discretization. The formulation proposed by Adamo et al. is founded on link-based 
models, but requires an “event-based” time discretization which is intrinsically not handy 
to implement and resembles micro simulation. 

In these CDNL models the information on path choice is given in a local form by 
exogenous node splitting rates, possibly specified for each destination. Thus, their 
employment in the context of DTA requires the temporal profiles of the splitting rates to be 
calculated endogenously. Although, the latter is not a direct output of the path choice 
model [Papageorgiu, 1990], and this may be one of the reasons for the lack of models 
addressing DTA with spillback without tracking flows on each path, as in (Lo and Szeto, 
2002). 

Here we adopt a different approach which consists in solving the non-separability of the 
performances due to queue spillovers, the consistency of path choice with the path costs 
resulting from the network loading, and the CDNL jointly, by iterating, through an 
averaging algorithm, a sequence of models which will be consistent among each other only 
when the convergence is achieved, that is at the equilibrium. In doing this, we will 
introduce the representation of the spillback phenomenon simply by simulating its effects 
on the performance model, thus avoiding any interaction with the loading model. 
Specifically, we will exploiting the idea of time varying capacities as a function of the 
current arc flow temporal profiles; the arc travel times become then a function of the time 
varying arc exiting capacities; while the NLM simply loads the demand flows on the 
available paths based on the arc conditional probabilities resulting from the route choice 
model consistently with the current arc travel times.  

This way we will accomplish to introduce the representation of queue spillovers into the 
model proposed in [Bellei, Gentile and Papola, 2002], where the DTA is formalized and 
solved as a fixed point problem in terms of the arc inflow temporal profiles. Although, in 
order to model correctly the spillback phenomenon, we consider here the turning flows 
(that is, the inflows disaggregated by maneuver) as current variable of the fixed point 
problem, as these have a role in how the available capacity at a node is split among the 
upstream arcs. Figure 1 depicts the scheme of the proposed formulation. In the following 
sections we will formalize all the sub-models and then formulate DTA with spillback as a 
simple fixed point problem. 



 

 

4

Note that, in the alternative, DTA can be thought as three fixed point problems one inside 
the other. Specifically, we would have the inner fixed point consisting of the CDNL, then the 
mid fixed point problem combining the inner problem with the capacity model, and finally 
the outer fixed point problem combining the mid problem with the path choice model. 

 
Figure 1. Scheme of the fixed point formulation of DTA with spillback. 

3 Network performance model 
In the following we will present the NPM referring to the generic elements (nodes and 

arcs) of the road network, while the origins and destinations of trips are regarded as special 
nodes, called centroids, that are assumed to be connected to the road network through 
special arcs, called connectors, characterized by infinite capacity. 

The generic arc is modelled here in three parts: an initial bottleneck, a final bottleneck 
and a running link. 

The time varying capacity of the initial bottleneck takes into account the physical 
capacity of the link and the effect of queues propagating backward on the arc itself that can 
reach the initial section and can thus induce spillback conditions. Specifically, it is set to a 
value that, given the current outflow, would limit the current inflow on the running link 
just in order to ensure that at any time the number of users on the link does not exceed its 
storage capacity and that the arc physical capacity is not overcome. Clearly, at the 
equilibrium the current inflows will not exceed the time varying arc entering capacities, 
because the implicit constraints on the queue lengths will be satisfied; however this is not 
true in general at a given step of the solving procedure. 

The time varying capacity of the final bottleneck takes into account the hypercritic flow 
states, referred to as queue, that are generated either by a constant reduction of the physical 
capacity at the end of the arc due to the average effect of a road intersection, or by 
spillback conditions on the downstream arcs. The arc exiting capacities are obtained from 
the arc entering capacities based on flow conservation at nodes as a function of the turning 
lows and of the geometry of the intersection, synthetically expressed by the reduced arc 
physical capacities. 

The running link models the congestion due to the interaction along the arc of vehicles 
travelling in hypocritical conditions; it consists of a homogeneous channel where flow 
states are determined on the basis of the Simplified Kinematic Wave theory assuming a 
certain fundamental diagram. 
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For simplicity, in the following we assume that the fundamental diagram of the generic arc 
a, with initial node TL(a), final node TL(a) and length La , has a triangular shape, as depicted 
in Figure 2, where Qa is the arc physical capacity, Va is the free flow speed, and wa is the 
absolute value of the hypercritical wave speed. However, the extension to more complex flow 
models can be achieved based on the methods proposed in [Gentile, Meschini, Papola, 2003]. 

 
Figure 2. Fundamental diagram. 

 
Within this framework, the NPM determines the temporal profiles of arc entering 

capacities, of arc exiting capacities, and finally of arc travel times, for given arc turning 
flow temporal profiles, as described in the Table 1 below. 

 
Table 1. Sub-models input and output of the NPM. 
model input output 
arc entering capacities 
(separable) 

arc inflow temporal profiles 
arc outflow temporal profiles 
arc physical capacities 

arc entering capacity temporal profiles

arc exiting capacities 
(NOT separable) 

arc physical capacities 
arc entering capacity temporal profiles 
arc turning flow temporal profiles 

arc exiting capacity temporal profiles 

arc performances 
(separable) 

arc inflow temporal profiles 
arc exiting capacity temporal profiles 

arc travel time temporal profiles 

3.1 Arc entering capacity model 

This model represents the effect on the arc entering capacity of queues generated on the 
arc final section due to a limited exiting capacity. Specifically, it determines the maximum 
inflow that maintains the queue length not longer than the arc length, and by comparison 
with the actual inflow it identifies the time intervals when the spillback phenomenon 
occurs. 

Clearly, if the queue was rigid (only one hypercritical density) any hypercritical flow 
state occurring at the arc final section would propagate instantaneously to the arc initial 
section and thus for any instant when the queue exceeds the length of the arc, we would 
have that the entering capacity is equal to the outflow. However, in reality hypercritical 
flow states may occur at different densities (stop and go) and the propagation speed of the 
flow states is finite. This can be taken into account avoiding the explicit evaluation of the 
queue temporal profile, which is cumbersome since the speed and density of vehicles in the 
queue vary accordingly with the outflow. Instead, exploiting the analytical solution of the 
Simplified Kinematic Wave Theory based on cumulative flows proposed by [Newell, 
1993], the model identifies the time instants when the outflow states assumed hypercritical 
(the potential queue), propagating backward along the arc, would reach the initial section. 

Let Ga(τ) be the backward propagation of the cumulative outflow temporal profile Ea(τ) 
assumed hypercritical, representing the maximum cumulative flow temporal profile that 

flow 

density wa 

Qa / wa 

Qa 

Va 

Qa / Va 
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could have entered the arc without violating the constraint on the queue length consistently 
with the current outflow pattern. We have in general [Gentile, Meschini, Papola, 2003]: 

( ) ( )

( )
{ }

( )( ) ( ) k ( ) ,
w ( )

( ) ,
w ( )

( ) inf ( ) : ( ) ,

a
a a a a a

a a

a
a

a a

a a a

eH E L e
e

Lu
e

G H u

⎛ ⎞τ
τ = τ − ⋅ − τ⎜ ⎟τ⎝ ⎠

−
τ = τ +

τ

τ = σ σ = τ

 (1) 

where ua(τ) is the instant when the backward kinematic wave generated by the outflow 
ea(τ) at time τ considered hypercritical would reach the initial section, Ha(τ) is the 
cumulative flow that would be observed at time ua(τ) in the initial section, while wa(⋅) and 
ka(⋅) express respectively the speed of the kinematic wave (which is negative for 
hypercritical flow states) and the density as a function of the flow depending on the 
fundamental diagram adopted. The latter formula in the above system of equations 
expresses the Newell-Luke minimum principle [Daganzo, 1997; Newell, 1993], stating 
that, when more than one kinematic wave reachs a point at a same time, the flow state 
yielding the minimum cumulative flow dominates the others. The solution of system (1) 
for the proposed triangular fundamental diagram is straightforward: 

1 1( ) ( )a
a a a a

a a a

LG E L Q
w w V

⎛ ⎞
τ = τ − + ⋅ +⎜ ⎟

⎝ ⎠
.  (2) 

On this basis, the entering capacity µa(τ) can be set to dGa(τ)/dτ, if the spillback 
constraint is active (that is, when Ga(τ) is not higher than Fa(τ)), and to the physical 
capacity Qa, otherwise: 

( ) , if ( ) ( );
( )

, otherwise.

a
a a

a

a

dG G F
d

Q

τ⎧ τ ≤ τ⎪µ τ = τ⎨
⎪⎩

 (3) 

Differentiating equation (2) we obtain: 
( ) ( )a a

a
a

dG Le
d w

τ
= τ −

τ
; 

then, for the proposed triangular fundamental diagram equation (3) becomes: 

( ), if ( ) ( );
( )

, otherwise.

a
a a a

aa

a

Le G F
w
Q

⎧ τ − τ ≤ τ⎪µ τ = ⎨
⎪⎩

 (4) 

Note that equation (4) is consistent with the limitation to the inflow due to the arc physical 
capacities, because the outflow produced by the NLM is always not greater than the 
reduced physical capacity. 

Figure 3 below shows graphically how the model works in this case: profile Ga(τ) is 
obtained by a rigid translation of profile Ea(τ) for -La /wa in time and for                     
La⋅Qa⋅(1/wa + 1/Va) in value. When Ga(τ) is above Fa(τ), either the queue is shorter that the 
arc or it is zero and µa(τ) is set to Qa ; otherwise spillback occurs and µa(τ) is set to        
ea(τ - La /wa). 

Since it obviously holds: 

( ( ))

( ) ( )a ba
b BS TL a

f
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τ = ϕ τ∑ ,
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τ
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( ( ))

( ) ( )a ab
b FS HD a

e
∈

τ = ϕ τ∑ ,
0
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τ

τ = ⋅∫ , 

where fa(τ) is the inflow at time τ and ϕab(τ) is the turning flow from arc a to arc b at time 
τ, with HD(a) = TL(b), we can express the arc entering capacity model in a compact form 
as follows: 
µ = µ(ϕ ; Q). (5) 
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Figure 3. Determination of the entering capacity temporal profile for given arc flows. 

3.2 Arc exiting capacity model 
This model determines with reference to a given node, the time varying exiting 

capacities of the upstream arcs on the basis of the entering capacities of the downstream 
arcs and of the local turning flows. The resulting model is spatially non separable, because 
the exiting capacities of all the arcs belonging to the backward star of a same node are 
determined jointly; it is indeed the model that propagates the spillback congestion through 
the network. 

In order to simplify the presentation we first consider only two typology of nodes: 
merging and diversions. In this case the turning flows are expressed directly through the 
arc inflows and outflows. 

When considering a merging, the problem is how to split the available capacity µa(τ) of 
an arc a among the outflows eb(τ) of the arcs b∈BS(TL(a)) of its backward star. In 
principle, we assume that the available capacity is split proportionally to their reduced 
physical capacities Cb ≤ Qb (although the capacity of connectors is infinite, their reduced 
capacity is finite). However, some of these arcs may not require all the capacity this way 
assigned to them as their outflow is lower than it. Then we can split the residual capacity 
among those arcs that would utilize more capacity if available (the arcs of the set               
B ⊆ BS(TL(a)) defined below). On this basis, the arc exiting capacities ξb(τ) are given by: 

Fa 
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{ }( ( )) : ( ) ( )b bB b BS TL a e= ∈ τ ≥ ξ τ . (7) 
The separation set B satisfying jointly (6) and (7) can be obtained, starting from BS(TL(a)), 
by subtracting iteratively from the current set the arcs for which the entering capacity 
determined through (6) is higher than the outflow (at the most |BS(TL(a)))| steps are 
required). Clearly, if ∑b eb(τ) < µa(τ), then no spillback phenomenon is active and B = ∅. 

When considering a diversion, the problem is to determine the most severe reduction of 
outflow from an arc a due to the entering capacities of the arcs b∈FS(HD(a)) of its forward 
star. Specifically, if the spillback phenomenon is active form one of these arcs, that is   
fb(τ) ≥ µb(τ), in order to satisfy its entering capacity, based on the FIFO rule we have to 
limit its inflow in such a way that the ratio between its entering capacity µb(τ) and the 
exiting capacity ξa(τ) of arc a is equal to the ratio between the turning flow on arc b and 
the total outflow from arc a: 

( ) ( )
( ) ( )

b b

a a

f
e

µ τ τ
=

ξ τ τ
. 

Clearly if the spillback is active on more that one arc b∈FS(HD(a)), the exiting capacity 
ξa(τ) is set consistently with the most penalizing one. If no spillback is active, then the 
exiting capacity equals the reduced physical capacity. In general we have: 
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a a b b b
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eC b FS HD a f
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ξ τ = µ τ ⋅ ∀ ∈ τ ≥ µ τ⎨ ⎬τ⎩ ⎭

. 

When considering a generic node x with both merging and diversion, the turning flows 
are to be considered explicitly as follows: 
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ξ τ = ξ τ ⋅ ∀ ∈ ϕ τ > µ τ ∈⎨ ⎬ϕ τ⎩ ⎭
, 

where ξab(τ) denotes the maximum turning flow from arc a∈BS(x) to arc b∈FS(x). 
The arc exiting capacity model can thus be expressed in the following compact form: 

ξ = ξ(ϕ , µ ; C). (8) 

3.3 Arc travel time model for time varying exiting capacity 
Once the temporal profile of the exiting capacity of each arc has been determined, it is 

possible to utilize the following link based macroscopic arc performance model to 
determine the arc travel time temporal profiles. 

When there is no capacity reduction at the end of the arc, the running time ra(τ) is in 
general a function of the arc inflow temporal profile [Gentile, Meschini, Papola, 2003]. 
However, in the particular case of a triangular fundamental diagram the running time is 
constant in time and equal to La / Va . 
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We are interested here in determining, with reference to a bottleneck with time varying 
capacity ξa(τ) and constant running time ra(τ), the exit time temporal profile ta(τ) resulting 
from a given inflow fa(τ) due to a potential “vertical” queue. The cumulative outflow 
temporal profile is given by: 

( ) min ( ( )) ( ) d :a a a aE F r t t
τ

σ

⎧ ⎫
τ = σ − τ + ξ σ ≤ τ⎨ ⎬

⎩ ⎭
∫ . (9) 

The above expression can be explained as follows. When there is no queue, the travel time is 
equal to the running time, so that the outflow at a given time τ is equal to the inflow at time 
τ-ra(τ). If a queue begins at time σ, the outflow will follow from that time until the queue 
vanishes the shape of the exiting capacity temporal profile. Then, based on the Newell-Luke 
principle, the actual outflow at time τ is the one yielding the minimum value among all the 
possible outflow that would occur if the queue would begins at any previous instant σ ≤ τ . 

Based on the FIFO rule, the travel time temporal profile can be determined solving the 
following implicit equation: 
Ea(ta(τ)) = Fa(τ). (10) 
Note that, based on the monotonicity of the three profiles involved, the numerical 
computation of ta(τ) starting from Ea(τ) and Fa(τ) is trivial. 

Figure 4 show the graphical interpretation of the cumulative outflow temporal profile as 
the lower envelop of a family of curves related to the exiting capacities and of the 
cumulative inflow shifted forward in time by the running time, and the calculation of the 
exit time based on the cumulative inflow and outflow temporal profile, in the case of a 
triangular fundamental diagram. 

 

 
Figure 4. Bottleneck with time varying capacity. 

 
Note that the proposed arc travel time model applies also to connectors; the exiting 

capacity of a connector entering a centroid is infinite, while that of a connector exiting a 
centroid is obtained using the arc exiting capacity model. 

The arc travel time model for time varying exiting capacity can thus be expressed in the 
following compact form: 
t = t(ϕ , ξ). (11) 
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3.4 Arc cost model 

The arc cost for users entering at time τ is simply assumed to be: 
ca(τ) = η⋅(ta(τ) -τ) +ma(τ), 
where ma is the temporal profile of the monetary cost, while η is the Value of Time. 

In a compact form we have: 
c = c(t). (12) 

4 Network loading map and dynamic equilibrium model 

4.1 Implicit path formulation of the route choice and network loading models 
In the following we briefly recall the implicit path formulation addressing both route 

choice and network flow propagation presented in [Bellei, Gentile, Papola, 2002], referring 
to users travelling to destination d. This is founded on the concepts of arc conditional 
probability and node satisfaction; the corresponding notation and definitions are 
introduced below: 
pa

d(τ) probability of using arc a, conditional on being at node TL(a) at time τ;  
wx

d(τ) expected value of the maximum perceived utility at time τ relative to the paths    
Kxd , connecting node x to d. 

In the cited paper it is proved that the following expression of the node satisfaction and 
of the arc conditional probabilities are consistent with a Logit route choice model where 
only efficient paths are considered: 

( )
( ) ( ) ( )( )

( ),

ln exp
d

a aHD ad
x

a FSE x d

c w t
w

∈

⎛ ⎞⎛ ⎞− τ + τ
⎜ ⎟⎜ ⎟τ = θ ⋅

⎜ ⎟⎜ ⎟θ⎝ ⎠⎝ ⎠
∑  , (13) 

( )
( ) ( ) ( )( ) ( ) ( )

exp
d d

a aHD a TL ad
a

c w t w
p

⎛ ⎞− τ + τ − τ
⎜ ⎟τ =
⎜ ⎟θ⎝ ⎠

 , (14) 

where FSE(x, d) is the efficient forward star of node x toward destination d, wd
d(τ) = 0, and 

pa
d(τ) = 0 if a∉FSE(HD(a), d). The solution of the system of equations (13) and (14), 

which constitutes the route choice model, can be expressed in compact form as: 
w = w(c, t), (15) 
p = p(w, c, t). (16) 

The turning flow from arc a∈BS(x) to arc b∈FS(x) directed to d is given by the outflow 
ea

d(τ) of arc a directed to d multiplied by the arc conditional probability pb
d(τ); then, 

summing up the contribution of each destination, we have: 
ϕab(τ) = ∑ d∈C pb

d(τ) ⋅ ea
d(τ) . (17) 

The inflow fa
d(τ) of arc a directed to d is given by the arc conditional probability pa

d(τ) 
multiplied by the flow entering node TL(a); the latter is given, in turn, by the sum of the 
outflows of the arcs belonging to the efficient backward star BSE(TL(a), d) of TL(a) 
toward destination d, and of the demand flow from TL(a) to d, which is null when TL(a) 
does not belong to the set of centroids C, that is: 
fa

d(τ) = pa
d(τ)⋅[dTL(a)d(τ) + ∑ b∈BSE(TL(a), d) eb

d(τ)]. (18) 
Given the travel time temporal profile of arc a, the outflow is related to the inflow 

temporal profile as follows: 
ea

d(ta(τ)) ⋅ dta(τ)/dτ = fa
d(τ), (19) 

where the weight dta(τ)/dτ stems from the fact that arc travel times vary over time, so that 
those users who enter the arc at a certain rate, in general, exit the arc at a different rate, 
which is higher, if the arc travel time is decreasing, and lower, otherwise (for details, see 
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for example Cascetta, 2001). 
The solution of the system of equations (17), (18) and (19), which constitutes the 

network flow propagation model, is formally expressed in compact form as: 
ϕ = ω(p, t ; d). (20) 

4.2 Equilibrium model with spillback 
In the previous sections we have developed a sequence of mathematical models 

reproducing the within-day network dynamic of road traffic including the spillback 
phenomenon. These models naturally lead to a fixed point formulation of DTA based on 
the system between the NLM and the NPM, as depicted in Figure 5 below. 

 

 
Figure 5. Variables and models of the fixed point formulation of DTA with spillback. 

 
In analogy with the static case, the NLM is a functional relation which allows 

determining, for given arc performances, an arc flow pattern consistent with the demand 
flows through the path choice model. Combining (15) and (16) with (20) we obtain the 
following implicit path formulation of the NLM:  
ϕ = ω(p(w(c, t), c, t), t ; d). (21) 

The NPM is the functional relation between the turning flows and the travel times, 
which can be obtained by combining (5), (8) and (11) as follows: 
t = t(ϕ , ξ(ϕ , µ(ϕ ; Q) ; C)).  (22) 

On this basis, DTA can be formalized as a fixed-point problem in terms of turning flow 
temporal profiles by substituting into the NLM (21), the NPM equations (22) and (12). 

5 Solution algorithm 
In this section, we present only the algorithm solving the NPM, referring to [Bellei, 

Gentile and Papola, 2002] for the algorithm solving the NLM and the fixed point problem 
resulting from their combination. 
In order to implement the proposed mathematical model, the period of analysis is divided 
into n time intervals identified by the sequence of instants (τ 0, … , τ i, … , τ n). By 
convention it is τ -1 = -∞ and τ n+1 = ∞. 

In the following we assume to approximate the generic temporal profile xj through 
either a piece-wise constant or a piece-wise linear function defined by the values taken at 
such instants, so that for the two cases, in that order, we have: 
xj(τ 0) = xj

0  ,  xj(τ) = xj
i, τ∈(τ i-1, τ i], i = 1, … , n,  (23) 
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xj(τ0) = xj
0  ,  xj(τ) = xj

i-1 + (τ -τ i-1) ⋅(xj
i -xj

i-1) /( τ i -τ i-1), τ∈(τ i-1, τ i], i = 1, … , n.  (24) 
Specifically, the temporal profiles of the flows are assumed piece-wise constant, while 
those of the other variables are assumed piece-wise linear. 

The state of the network at time τ 0 is assumed to be known; here, without loss of 
generality, an initially unloaded network is considered. 

The following procedure identifies a method for computing the arc entering capacity 
based on the model described in section 3.1 for the generic arc a∈AS which is not a 
connector. 

 
for each a∈AS 
 Fa

0 = 0 
 Ea

0 = 0 
 Ha

0 = La ⋅Qa ⋅(1/wa + 1/Va) 
 for i = 1, …, n  
  Fa

i = Fa
i-1 + fa

i ⋅(τ i -τ i-1) 
  Ea

i = Ea
i-1 + ea

i ⋅(τ i -τ i-1) 
  Ha

i = Ea
i +La ⋅Qa ⋅(1/wa + 1/Va) 

 next i  
next a 
for each a∈AS 
 Ga

0 = 0 
 Ha

-1 = 0 
 j = 0 
 for i = 1, …, n  
  do until τ j-1 +La /wa < τ i ≤ τ j +La /wa 
   j = j+1 
  loop 
  Ga

i = Ha
 j-1 + (Ha

 j -Ha
 j-1) ⋅ (τ i - τ j-1-La /wa) / (τ j - τ j-1)  

  if Ga
i > Fa

i and Ga
i-1 > Fa

i-1 then 
   µa

i = Qa 
  else 
   µa

i = (Ga
i - min{Ga

i-1,Fa
i-1}) / (τ i - τ i-1) 

  end if 
 next i 
next a 
 

The following procedure identifies a method for computing the arc exiting capacity 
based on the model described in section 3.2 for the generic node x which is not a centroid. 

 
for i = 1, …, n 
 for each x∈N \ C 
  for each b∈FS(x) 
   B = BS(x) 
   return 1 
   CB = 0 , FB = 0 
   for each c∈BS(x)  
    if c∈B then 
     CB = CB + Cc 

    else 
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     FB = FB + ϕcb
i
 

    end if 
   next c 
   for each a∈BS(x) 
    if a∈B(b) then  
     ξab

i = Ca / CB ⋅(µb
i - FB) 

    else 
     ξab

i = Cb  
    end if 
    if ϕab

i < ξab
i then 

     B(b) = B(b) \ a 
     goto 1    
    end if 
   next a 
  next b 
  for each a∈BS(x) 
   ξa

i = Ca 
   for each b∈FS(x) 
    if ξab

i ≤ ϕab
i and ξa

i > ξab
i ⋅ea

i /ϕab
i then 

     ξa
i = ξab

i ⋅ea
i /ϕab

i 
    end if 
   next b 
  next a 
 next x 
next i 
 

The following procedure identifies a method for computing the exit time based on the 
model described in section 3.3 for the generic arc a∈AS which is not a connector. Figure 6 
depict the method graphically. 

 
for each a∈AS 
 Ea

0 = 0 
 j = 1 
 Fa

n+1 = Fa
n 

 for i = 1, …, n  
  do until τ j-1 -La /Va < τ i ≤ τ j -La /Va 
   j = j+1 
  loop 
  Ea

i = Fa
 j-1 + (Fa

 j -Fa
 j-1) ⋅ (τ i - τ j-1-La /Va) / (τ j - τ j-1)  

 next i 
 for i = 1, …, n  
  TE = Ea

i-1 + ξa
i ⋅ (τ i - τ i-1) 

  if Ea
i > TE then 

   Ea
i = TE 

  loop 
 next i 
 Ea

n+1 = Ea
n 

 j = 1 
 ta

0 = τ 0 + La /Va 
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 for i = 1, …, n  
  do until Ea

 j-1 < Fa
i ≤ Ea

 j 
   j = j+1 
  loop 
  if Ea

 j > Ea
 j-1 then 

   ta
i = τ j-1 + (Fa

i -Ea
 j-1) ⋅ (τ j -τ j-1) /(Ea

 j -Ea
 j-1) 

   if ta
i < τ i + La /Va then 

    ta
i = τ i + La /Va 

   end if 
  else 
   ta

i = τ i + La /Va 
  end if 
 next i 
next a 

 

 
Figure 6. Exit time for given piece-wise linear cumulative inflow and outflow. 

6 Numerical examples 
In order to investigate the behavior of the proposed model, we will analyze three simple 

examples, which present intuitive solutions and could be solved also in closed form. In 
these examples we consider 100 intervals of 60 sec, assuming V = 20 m/s and w = 0.25⋅V. 

The first two examples refer to the simple intersection depicted in Figure 7 below. 
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Figure 7. The network of example 1 and 2. 
 
Assume first that the reduced capacity are: C1 = C3 = 2000 veh/h, C2 = C4 = 900 veh/h; 

and that there is a constant demand during the first 33 minutes of simulation: d13 = 1200 
veh/h, d43 = 400 veh/h and d45 = 600 veh/h. The output of the two models with and without 

time

ve
hi

cl
es

τ i t 
i 

cumulative 
inflow 

Fa
i

τ j-1 τ j 

cumulative 
outflowEa

 j

Ea
 j-1



 

 

15

spillback are presented in Figure 8 below, showing that the results are quite different both 
in terms of flows and travel times. Without spillback, the congestion is concentrated on arc 
2 and does not spread upstream: the travel time for the other arcs remains at the 
uncongested level, while the travel time of arc 2 grows until the end of the demand, since 
its inflow is not bounded. As a result, the travel time from node 4 to node 3 (arcs 3 and 2) 
gets very high; instead, the demand from node 4 to node 5 (arcs 3 and 4) travels at the free 
flow speed and is not involved in the congestion phenomenon. With spillback, the travel 
time on arc 2 has an upper bound, since congestion is transferred upstream as soon as the 
queue reaches the initial section of the arc; from that moment, the inflow on arc 2 drops to 
the outflow level, that is 900 veh/h. Since the outflow from arc 3, which is at the most 
equal to d43 , is lower than C2 ⋅C4/(C1+C4) = 450 veh/h, arc 3 is not conditioned by the 
spillback phenomenon, and the congestion propagates only on arc 1. As a result, the travel 
time from node 4 to node 3 is much lower than the one calculated without spillback, since 
most of the queue develops now on arc 1 and only in part on arc 2. 
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Figure 8. Output of the first example. 
 

Assume now that the demand d43 is increased up to 600 veh/h. The output of the two 
models with and without spillback are presented in Figure 9 below. This example is very 
similar to the previous one, except for the fact, that now d43 is higher than C2 ⋅ C4/(C1+C4). 
Then, the congestion on arc 2 spills back on both arcs 1 and 3, and thus their travel time 
increases substantially. As a result, also the flow traveling from node 4 to node 5 is 
delayed, despite it does not use arc 2. Clearly, the model without spillback is unable to 
represent this effect. 
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Figure 9. Output of the second example. 
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In the third example we consider the Braess network depicted in Figure 10 below with 
the aim of showing the effect of spillback on path choice. We assume the following 
reduced capacities: C1 = C5 =2000 veh/h, C2 = C3 = C4 =1000 veh/h; and that there is a 
constant demand during the first 33 minutes of simulation: d14 = 2300 veh/h. 
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Figure 10. The network of example 3. 

 
The output of the two models with and without spillback are presented in Figure 11 

below. Without spillback, the congestion is located only on arcs 3 and 4, so that on all the 
paths between node 1 and node 4 the queue is equal; path 1-5-4 has few users, since it 
appears to be not convenient with respect to paths 2-4 and 1-3. If the spillback congestion 
is represented, however, the queue propagates toward arcs 1 and 2 from arcs 3 and 4, 
where, after an initial growth, it remains constant and equal to the arc length; path 1-5-4 
becomes now competitive, as it implies a longer route but a shorter queue.  
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Figure 11. Output of the third example. 

7 Conclusions 
The proposed model has been applied to several elementary networks in order to verify 

the correspondence with the results obtained by other authors [Daganzo, 1998]. 
Particularly, interesting is the comparison of the DTA model with spillback and the 
previous model without it. More work is ongoing to improve the convergence of the 
solution algorithm and to test the method on a real network. 
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