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Abstract  

We analyse the choice of mode in suburban corridors using nested and mixed logit 
specifications and incorporating revealed and stated preference data. The latter were obtained 
from a choice experiment between car and bus, which allowed for interactions among the main 
policy variables: travel cost, travel time and frequency. The experiment also included parking 
cost and comfort attributes. The attribute levels in the experiment were adapted to travellers’ 
experience using information from the revealed preferences. Different model specifications are 
presented accounting for the presence of income effect, analysing random and systematic taste 
variations and incorporating the effect of latent variables. We derived different willingness-to-
pay measures, such as the subjective value of time, that vary among individuals. Finally, we 
concluded by looking at the sensitivity of individual behaviour to various policy scenarios. In 
general, demand was shown to be more sensitive to policies that penalise the private car than 
those improving public transport.  
 
Keywords: Revealed preference; Stated preference; Multinomial logit; Mixed logit; Interaction 

effects  
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1. Introduction  
Demand analysis in the transport field has experienced tremendous progress over the past 

twenty years. Recent improvements in estimation techniques, based principally on the 
development of simulation procedures, have made it possible the application of flexible models 
that relax the basic hypotheses of multinomial (MNL) and nested logit (NL) models. The family 
of models called Mixed Logit (ML), which has been known for many years (Boyd and Mellman, 
1980; Cardell and Dumbar, 1980), has benefited substantially from these improvements. Thus, 
nowadays it is possible to overcome the main drawbacks posed by the MNL and NL and to 
specify models that allow taking account of random taste variations, unrestricted substitution 
patterns and correlation in unobserved factors over time (Train, 2002).  

The majority of empirical applications using stated preference (SP) data are based on simple 
main-effects-only designs including common level-of-service attributes. Such a modelling 
strategy may present misspecification problems when attribute interactions and the effect of 
latent variables affect individual decisions. In this respect, the joint use of revealed preference 
(RP) and SP data has become recommended practice. It allows exploiting the advantages and 
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overcoming the limitations of each type of data (Ortúzar and Willumsen, 2001), facilitates the 
estimation of utility specifications including the effect of interactions and latent variables; and 
produces better estimation results (Louviere et al, 2000).  

The aim of this paper is to analyse suburban travel demand considering different modelling 
strategies. The analysis is based on the use of a mixed RP/SP data base. The SP data were 
obtained from a SP choice experiment, between car and bus, which allows for interactions among 
the main policy variables: travel cost, travel time and frequency. The experiment also included 
parking cost and comfort attributes. A previous RP survey of 950 interviews gathered 
information about travel decisions in the two main interurban corridors in Gran Canaria and 
allowed us to customise the variables of the SP experiment.  

Concerning methodology, we analysed model structure testing different substitution patterns 
between car as driver, car passenger and bus; the presence of income effect following the 
theoretical approach proposed by Jara-Díaz and Videla (1989); this lead us to included income in 
the utility specification by dividing travel costs by the expenditure rate1. Finally we allowed for 
systematic and random heterogeneity in individual tastes, the latter through the specification of 
ML models.  

First, significant interactions between travel cost and frequency were found and we were also 
able to define interactions between some socio-economic variables and some level-of-service 
attributes; as well as between comfort and travel time. As the specification of interactions 
produces willingness to pay measures (WTP) that are not constant across individuals we were 
able to express these measures in terms of the level of comfort, the frequency, the individual’s 
expenditure rate, age,  sex, and if his/her works status.  

The alternative specifications of ML random coefficient models explored provided useful 
information about the distribution of these coefficients in the population. Hence we were able to 
deal with the random taste variation problem, which was not accounted for in the mixed RP/SP 
NL models previously estimated (Espino et al, 2003). Maximum simulated likelihood (MSL) 
allows for the estimation of the main characteristics (i.e. mean and covariance) of the distribution 
of parameters from the ML specification.  

We concluded analysing the sensitivity of traveller behaviour to model specification. We also 
analysed the effect of different policy scenarios on demand response for the better models. These 
scenarios favour the use of public transport by considering improvements in the level of service 
of the bus, reduction in fares and/or increasing parking costs. In general, demand seems to be 
most sensitive to scenarios that raise parking costs around 50%.  

The rest of the paper is organised as follows. Section 2 describes the theoretical framework in 
which this research is based. The main characteristics of the area, as well as the RP and SP data 
collection are presented in section 3. Section 4 provides the steps followed in the modelling 
process and shows the estimation results as well as the model applications. Finally, our main 
conclusions are presented in section 5.  

2. Methodology  

2.1. Microeconomic basis  
The theoretical underpinning of discrete choice modelling is based on the microeconomics of 

discrete choices (McFadden, 1981). This states that utility depends on the amount of continuous 
goods (represented by a vector X) consumed as well as on the characteristics or attributes of 
discrete alternatives (represented by a vector Qj ), following Lancaster (1966).  
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Thus, the consumer decision making problem is: 
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Where Pi is the market price of good i, cj is the cost of alternative j, I is the individual's income 

and M is the set of available alternatives. The first order conditions of problem (1) for each j yield 
the conditional demand functions ( , , )j j jX P I c Q−  on alternative j. The conditional indirect 
utility (CIU) on alternative j ( jV ) is then obtained by replacing these functions into the direct 
utility. Maximising CIU in j allows to obtain the overall indirect utility 

* ( , , )j j jj
V Max V P I c Q= − . A direct application of Roy’s identity (see for example, Jara-Díaz and 

Farah, 1988) yields the demand function of discrete alternatives. Dividing the marginal utility of 
any characteristic or attribute qkj of alternative j by the Marginal Utility of Income (MUI), 

defined as 
* *

j

V V
I c

λ ∂ ∂
= = −

∂ ∂
 allows us to pass from utility units to monetary units obtaining the 

subjective value of this characteristic; in other words, the WTP for improvements in this 
characteristic.  

Considering a Taylor expansion of the CIU it is possible to represent jV  by a linear-in-
parameters specification and to obtain empirical estimates for this function. (McFadden, 1981). 
At least, a second order approximation is needed to show that the choice process depends on the 
level of individual income; thus the presence of income effect may be detected only by adding to 
the linear first-order specification a cost squared term (Jara-Díaz and Videla, 1989). A further 
discussion about the way income should be included into the utility specification can be found in 
Train and McFadden (1978), Jara-Díaz and Farah (1987) and Jara-Díaz (1998). 

2.2. Econometric modelling  
Discrete choice models are derived under the assumption of utility-maximising behaviour by 

the decision maker. The theoretical basis for the specification of the econometric model is 
random utility theory (Ortúzar and Willumsen, 2001). In this theory, the modeller assumes that 
the utility of alternative j for individual q has the expression:  
 

jq jq jqU V ε= +       (2) 
 
where jqV  is the representative or systematic utility and jqε  is a random term that includes 

effects that are not observed by the modeller. jqV  depends on the observable attributes of 

alternative j and on the socio-economic characteristics of individual q. When jqε  are distributed 
iid Gumbel we obtain the MNL model (Domencich and McFadden, 1975). This model exhibits 
the independence of irrelevant alternatives (IIA) property and it may not be adequate when 
alternatives are correlated. The NL model (Williams, 1977) may be obtained under the 
assumption of a generalized extreme value distribution for the random term. This model is 
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appropriate when the set of options faced by a decision-maker can be grouped into nests in such a 
way that the IIA property of the MNL holds for alternatives within the same nest and does not 
hold for options belonging to different nests. Both MNL and NL models cannot cope with the 
random taste variation problem yielding a set of fixed coefficients for all individuals in the 
population. They can neither cope with severe heteroscedacticity among individuals or attributes 
(Munizaga et al, 2000), but were for at least 25 years the “workhorses of the field” (Hensher and 
Green, 2003).  
 
Mixed RP/SP model estimation  

The joint use of RP/SP data to estimate choice models is based on the hypothesis that the 
difference between the error terms in RP and SP may be represented as a function of the variance 
of each data source according to the following expression (Ben-Akiva and Morikawa, 1990):  
 

2 2 2
ε ησ µ σ=        (3) 

 
where µ  is an unknown parameter, and ε  and η  are the error terms of the RP and SP 

utilities respectively. Hence, in order to mix the data we postulate the following utility functions 
for a given alternative j:  

( ) ( )

RP RP RP RP
j j j j j j

SP SP SP SP
j j j j j j

U V X Y

U V X Z

ε θ α ε

µ µ η µ θ ω η

= + = + +

= + = + +
   (4) 

 
where ,θ α  and ω  are parameters to be estimated; RP

jX  and SP
jX  are common attributes to 

the RP and SP data sets; and RP
jY  and SP

jZ  are attributes that only belong to the designated data 
set. If in estimation µ  results not significantly different from one, the two sets can be mixed 
directly and use jointly in estimation.  

Bradley and Daly (1997) proposed an estimation method based on the construction of an 
artificial NL structure where RP alternatives are placed just below the root and each SP 
alternative is placed in a single-alternative nest with a common scale parameter m . As an  
example Figure 1 shows an artificial tree structure corresponding to a three RP and two SP 
alternatives case.  
 

 
Figure 1: Artificial Tree Structure for Joint RP and SP Estimation 

(RP2) (RP1)  (RP3) (SP1)  (SP2)
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Mixed Logit Model  

The ML model solves the main limitations of the MNL and NL models. It allows for random 
taste variation, unrestricted substitution patterns and even correlation in unobserved factors over 
time (this is especially useful in SP modelling). It is a very flexible model that can approximate 
any random utility model with total precision (McFadden and Train, 2000).  

There are two equivalent formulations of the ML that allow obtaining the choice probabilities 
from the utility maximization: the random coefficients formulation and the error-components 
formulation. In the first one, and under the assumption of a linear-in-parameters utility, the utility 
of alternative j for an individual q is represented by:  
 

jq q jq jqU xβ ε′= +      (5) 
 

where, jqx  is a vector of observed attributes of alternative j for decision-maker q, jqε  is a set 
of random variables that distribute iid Gumbel and represent unobserved effects, and qβ  is a 
vector of random coefficients corresponding to the attributes and represent individuals’ tastes 
with a density in the population ( | )f β θ  characterised by a set of parameters q (usually the mean 
and covariance).  

In the error components version of the ML model, the utility of alternative j for individual q is 
specified as follows:  

jq jq q jq jqU x zα µ ε′ ′= + +     (6) 
 

where jqx  and jqz  are vectors of observed attributes of the alternative j for individual q, α  is 
a vector of fixed coefficients, qµ  is a vector of random terms with zero mean and covariance W; 
and jqε  are defined as above.  

In both formulations (5) and (6), it is easy to show that utility is correlated over alternatives 
(see Train, 2002) even under the assumption of independent random coefficients such that W is 
diagonal. Different substitution patterns can be obtained by specifying properly the jqz  variables. 
An analogue2 specification to the NL model can be obtained by defining 1jKd =  if the alternative 
j belongs to nest k and zero otherwise and then specifying the error components as 

1

K

q jq qk jk
k

z dµ µ
=

′ = ∑ , where qkµ  are iid (0, )kN σ . So, by constraining kσ to take the same value 

in all the nests we can easily reproduce the artificial tree structure used in the mixed RP/SP 
estimation (see Figure 1) under a ML specification.  

If random coefficients were known (in fact, they are known for the decision maker) the choice 
probabilities would have the simple MNL form. As coefficients are unknown to the researcher, 
the choice probabilities can be derived as the expected value of the logit probabilities along the 
population. In the case of the random coefficients formulation, these probabilities can be 
represented by the integral3:  
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As probabilities in (7) do not have a closed expression they must be approximated by 

simulation in order to obtain the simulated log-likelihood (SLL) and hence the maximum 
simulated likelihood estimator (MSLE) of the parameters q that characterise the distribution of 
bq. A detailed explanation of the simulation process required to estimate the model can be 
consulted in Train (2002). The main problem of the ML nowadays is the difficulty associated to 
correctly interpreting its results, particularly in the case of using the estimated values to derive 
WTP measures (see Sillano and Ortúzar, 2003).  

3. Data collection  
The analyses presented in this paper are based on data collected from trips in the two main 

urban/interurban corridors in Gran Canaria, Spain. These corridors run through the area with the 
highest population density in the island (ranging from 890 to 3,686 inhabitants per squared 
kilometre), and covering a distance of 40 km approximately. Two bus operators provide public 
transport services: Guaguas Municipales and Global. The former offers urban services and the 
latter interurban services. A recent change in pricing policy achieved fare integration by the two 
firms and has managed to diminish some bus fares considerably (by reducing the interchange fare 
between the two operators).  

3.1. The RP survey  
A RP survey, previous to the fare integration policy collected information about actual trip 

behaviour in both corridors. A total of 922 interviews were completed yielding information about 
the household, the chosen mode and the main socio-economic characteristics of the individual. A 
final sample of 710 observations was left after removing captive individuals (i.e. that had only 
one option available). The final sample had 65.35% car drivers, 13.38% car passengers and 
21.27% bus users; and more than 50% were mandatory trips (work and education). Other features 
of the sample are that nearly 46% of trips were made five times per week; On the other hand, 
regarding gender, trips were evenly distributed between men and women.  

The survey data on precise origin and destinations were transformed into model level-of-
service variables using a geographic information system (GIS). Thus we were able to obtain 
precise measurements of travel distances and travel times for the private transport mode. The 
measurement of public transport attributes was provided by the bus operators.  

3.2. The SP experiment  
SP data were obtained from a choice experiment between Car and Bus that allowed for two-

term interactions among the main policy variables: Travel time, Cost and Frequency. Focus 
groups, recruiting public transport users and car users, helped us to define a final set of five 
attributes: Travel time, Cost, Parking cost, Frequency of service and Comfort. We also used the 
RP survey to adapt the choice experiment to each respondents’ experience. A fractional factorial 
design of 27 scenarios was divided into three blocks in order to reduce respondent burden. Out of 
an original sample of 372 individuals, 97 finally answered the SP survey yielding a total of 871 
choice observations. A detailed analysis of the sample allowed us to detect captive, lexicographic 
and inconsistent individuals; this in turn allowed us to examine how the removal of these 
observations affected the estimation results (Espino and Ortúzar, 2002)4.  
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Three pilot surveys were needed to find the appropriate levels to define the trade-off between 
Car and Bus. Special care was also put into the definition of the latent variable Comfort for Bus 
which was allowed to take the levels: low, standard and high, the latter being comparable with 
the comfort of travelling by Car. Tables A.1 and A.2 in the appendix show the final set of 
attribute levels used in the experiment and the explanatory variables used in the model 
respectively.  

4. Estimation results and application  
In this section we analyse travel demand in the context defined above. Some important issues 

that were studied during the model specification phase were: the role of income in traveller 
decisions, the variation in individual tastes, the effect of latent variables, and the existence of 
correlation between alternatives.  

A relevant question is the specification of income in the utility function. Inclusion of an 
income variable reflecting purchasing power means that mode choice decisions depend on 
income. We applied the procedure developed by Jara-Díaz and Videla (1989) to detect the 
presence of income effect. We included a cost squared term in the utility specification and  
using the whole sample (i.e. 1,286 observations)5 we found 2c

θ  to be positive and significant, 
which indicates that cθ  should be a function of income. Stratifying the sample in two income 
strata we observed that both 2c

θ  and cθ  decreased with income as expected. The first stratum 
corresponded to people with income below 200,000 pts/month (i.e.1,202 €/month) and the second 
to people with higher income. We also found in our analysis that the Marginal utility of income 
(MUI) decreases with income as expected (Espino et al, 2003).  

The presence of income effect provided the microeconomic foundations to include income in 
mode choice modelling. Under the assumption of fixed income this variable was specified in the 
utility function dividing both travel and parking costs by the expenditure rate; the latter was 
defined as per capita family income (PCFI) divided by the available time (i.e. 24 hours minus the 
individual’s working hours). In our sample the share of income spent in transport does not exceed 
5.77% for car drivers, 1.68% for car passengers and 2.45% for bus users. Following Jara-Díaz 
(1998), this result implies that it is not necessary to include a cost squared term divided by the 
expenditure rate in the utility specification. Hence, all models presented here forth include this 
specification.  

In order to analyse the potential existence of systematic heterogeneity in traveller tastes we 
specified socio-economic variables interacting with modal attributes. For a given attribute iX  we 
defined a base parameter 

iXθ  and an incremental additive term including the products of all the 
socio-economic variables hSEV  interacting with it by their corresponding parameters _i hX SEVθ . 
Thus, the part of the utility corresponding to this attribute has the following expression (Ortúzar 
and Willumsen, 2001):  

_i i hX X SEV h i
h

SEV Xθ θ⎛ ⎞+ ⋅⎜ ⎟
⎝ ⎠

∑      (8) 

 
We found significant interactions of Worker (W) with Travel time, Sex (S) with Cost divided 

by the expenditure rate g, Mandatory trip (M) with Parking cost divided by g, Origin (O) with 
Walking time, and Age (A) with the bus frequency.  

We also analysed the existence of random taste variation using a random parameter ML 
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specifications. In this case, we were able to find significant estimates corresponding to 
specifications that include random coefficients only for travel time as well as for the travel time 
and the car-driver specific constant in the RP alternatives.  

We were interested in analysing the effect of the latent variable Comfort. After defining 
appropriate levels of comfort for the Bus alternative in the SP experiment, the question arose how 
this variable should be specified in the utility function. We considered two alternative 
specifications. In the first case Comfort was specified as a dummy variable, hence we included 
the linear term CL CHCL CHθ θ+ , where CL and CH were defined as in Table A.2 in the appendix. 
Note that when these two variables are zero the level of comfort is considered standard. In the 
second case, Comfort was included in the utility function interacting with Travel time; therefore, 
we should be able to obtain different perceptions of travel time depending on the level of comfort 
as well as perceptions of Comfort as a function of trip length6. In this case the non-linear term 
( )*CL CHCL CH tθ θ+  was included. 

We also analysed the existence of correlation between the RP alternatives. After testing 
different substitution patterns between the car options, or between car passenger and bus in the 
RP data set, we did not find correlation among the RP modes. The structure considered looks like 
that defined in Figure 1, where car driver, car passenger and bus correspond to RP1, RP2 and 
RP3 respectively; and car and bus correspond to the two SP alternatives.  

4.1. Estimation results  
The estimation results7 presented in Table 1 correspond to the specifications of the utility (9) 

where Comfort does not interact with Travel time.  
 

     

_ _ / / _ / / _

_ _ / / _ / / _

_ / / _ _

( ) ( ) / ( ) /

( ) ( ) / ( ) /

( ) ( ) / (

RP RP
Car Diver C D t t W c g c g S pc g pc g M

RP RP
Car Pass C P t t W c g c g S pc g pc g M

RP
Bus t t W c g c g S wt wt

V W t S c g M pc g

V W t S c g M pc g

V W t S c g

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ

−

−

= + + ⋅ + + ⋅ ⋅ + + ⋅ ⋅

= + + ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅

= + ⋅ ⋅ + + ⋅ ⋅ + + _

_ _ / / _ / / _

_ / / _ / _

) ( )

( ) ( ) / ( ) /

( ) ( ) / ( )

O f f A

SP SP
Car Driver C D t t W c g c g S pc g pc g M

SP
Bus t t W c g c g S f c g f f A CL CH

O wt A f

V W t S c g M pc g

V W t S f c g A f CL CH

θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ
−

⋅

⋅ ⋅ + + ⋅ ⋅

= + + ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅

= + ⋅ ⋅ + + ⋅ + ⋅ ⋅ + + ⋅ ⋅ + ⋅ + ⋅

              (9) 

 
In NL1 all parameters are fixed in the population while ML1 and ML2 correspond to ML 

specifications with random coefficients normally distributed. After several tests, only two 
random coefficients were found significant (the constant for car driver and the travel time 
parameter) in ML1 and one in ML2 (the travel time parameter).  

On the other hand when Comfort interacts with Travel time, the specification for the SP Bus 
option changes to (10) and the estimation results correspond to models NL2, ML3 and ML4 in 
Table 2.  

_ / / _ / _( ) ( ) / ( )SP
Bus t t W t CL t CH c g c g S f c g f f AV W CL CH t S f c g A fθ θ θ θ θ θ θ θ θ⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ ⋅ + + ⋅ + ⋅ ⋅ + + ⋅ ⋅      (10) 

 
All parameter estimates have the expected sign (perhaps with the exception of the car 

passenger constant). The constant for the SP Car alternative was not significantly different from 
zero and was removed from the final specification. Although the base parameters of Travel time, 
Parking cost/g and frequency are not significantly different from zero in some of the models 
presented in Tables 1 and 2, this is explained by the inclusion of interaction terms with the socio-
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economic variables (Ortúzar and Willumsen, 2001).  
In general ML models produce higher parameters than their MNL or NL counterparts. This is 

because the specification of random coefficients diminishes the variance of the stochastic random 
term jqε  yielding a higher scale factor (see the discussion in Sillano and Ortúzar, 2003). In our 
case this is true for the majority of the parameters with the exception of frequency and comfort 
for the ML1 and ML3 model; and frequency, the interactions of comfort with travel time, the car 
driver constant, and the interaction of travel time with W for models ML2 and ML4.  

Estimation results show, in general, that Travel time produces more disutility for workers than 
for non-workers; in fact, the former have less time available and in general exhibit a higher WTP 
for travel time savings. There are also differences in the perception of Cost between men and 
women. The parameter corresponding to the interaction term of Cost with Sex ( / _c g Sθ ) is positive, 
which means that the MUI is larger for women than for men. For mandatory trips (work and 
education), parking costs produce more disutility than for other motives and for people older than 
35 years of age improvements in the bus frequency are more valued than for the rest of the 
travellers. Finally, walking time savings are more valued for people who travel in the northern 
corridor where walking conditions are significantly poorer than in the southern corridor, so we 
believe this fact explains these differences.  

The likelihood ratio test (Ortúzar and Willumsen, 2001) was carried out in order to reject 
models with specific travel time parameters. Therefore, and as we lacked a statistical test to 
choose between models presented in Tables 1 and 2, all these models were carried forward to 
derive WTP measures and to analyse demand response and compare results.  
 

4.2. Willingness to pay measures  
Different WTP measures were derived and we also examined the effect of different policy 

scenarios on demand response. The scenarios favour public transport use, considering 
improvements in level-of-service, fare reductions and/or increases in parking costs. All 
calculations were carried out for individuals in the RP database using a utility function built from 
common and non-common RP-SP parameters (Louviere et al, 2000). In the case of NL1 and 
NL2, if attributes were only defined for the SP case (i.e. Comfort) their parameters must be scaled 
by m . However, those corresponding to attributes measured in the RP base (i.e. the interaction 

/ /f c g f c gθ ⋅ ⋅ ⋅ ) do not need to be scaled even if they only appear in the SP utility (Cherchi and 
Ortúzar, 2004).  

The specification of interaction terms in the utility function may cause marginal utilities to 
present an incorrect sign as they vary across individuals. On the other hand, when the model has 
random coefficients the marginal utilities are random variables and they present the correct sign 
with a given probability. Thus, a detailed analysis, previous to the application of the model, is 
needed to assess if the model explains adequately the individual’s decision process. This analysis 
must be based on the microeconomic principles behind the expected signs of the marginal 
utilities.  

The WTP measures express changes in utility caused by changes in the service attributes of 
the alternatives, in monetary terms. As our model specifications allow for interactions, systematic 
taste variations and include income in the utility functions, different WTP measures can be 
obtained for each individual in the sample. Aggregate WTP can be obtained using the sample 
enumeration method (Ortúzar and Willumsen, 2001).  
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Table 1. Estimation Results. Comfort specified as dummy variables 

Parameters 
(t-ratios)   NL1 ML1 

ML2 

Mean 3.321 
(6.9) 

6.538 
(2.6) 

3.265 
(8.5) RP

Car DriverC −  _
RP
C Dθ  

Std - 3.537 
(-1.9) - 

RP
Car PassC −  _

RP
C Pθ   -0.871 

(-2.7) 
-1.168 
(-3.4) 

-1.00841 
(-3.3) 

Mean -0.018 
(-1.7) 

-0.02779 
(-1.9) 

-0.02672 
(-2.2) 

Travel time (t) tθ  

Std - 0.07365 
(3.9) 

0.05819 
(3.9) 

Travel time-Worker (t*W) _t Wθ   -0.0549 
(-2.9) 

-0.05533 
(-2.7) 

-0.04888 
(-2.9) 

Cost/g (c/g) /c gθ   -0.3218 
(-3.1) 

-1.41324 
(-2.7) 

-1.19879 
(-3.4) 

Cost/g-Sex (c/g*S) / _c g Sθ   0.2024 
(2.6) 

0.95211 
(1.9) 

0.81012 
(2.2) 

Frequency*Cost/g (f*c/g) /f c gθ ⋅   -0.0479 
(-2.2) 

-0.19295 
(-3.4) 

-0.18205 
(-3.6) 

Parking cost/g (pc/g) /pc gθ   -0.0370 
(-0.4) 

-0.40208 
(-0.7) 

-0.41373 
(-0.9) 

Parking c/g-Mandatory (pc/g*M) / _pc g Mθ   -0.4391 
(-2.5) 

-1.94716 
(-2.4) 

-1.40741 
(-2.4) 

Walking time (wt) wtθ   -0.0790 
(-2.0) 

-0.10424 
(-2.2) 

-0.09055 
(-2.2) 

Walking time-Origin (wt*O) _wt Oθ   -0.1432 
(-2.6) 

-0.18827 
(-2.7) 

-0.16311 
(-2.6) 

Frequency (f) fθ   0.1020 
(2.1) 

0.09014 
(1.7) 

0.09137 
(1.9) 

Frequency-Age (f*A) _f Aθ   0.1373 
(2.3) 

0.12577 
(2.1) 

0.1259 
(2.3) 

Comfort low (CL) CLθ   -1.929 
(-3.4) 

-1.75177 
(-6.9) 

-1.64367 
(-7.1) 

Comfort high (CH) CHθ   0.5013 
(1.5) 

0.44047 
(1.98) 

0.45328 
(2.2) 

Scale factor(1) µ   0.7225 
(3.3) [1.28] 

0.593 
(5.5) [3.4] 

0.536 
(5.2) [4.5] 

2ρ  ( )2 Cρ   0.1279 0.1438 0.1402 

Log-Likelihood ( )ˆl θ   -585.191 -574.4809 -576.9523 

Nº of observations   1,286 1,286 1,286 

 (1) t statistics with respect to H0 : 1µ =  in brackets. 
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Table 2. Estimation Results. Comfort interacting with travel time 
Parameters 

(t-ratios)   NL2 ML3 ML4 

Mean 3.402 
(7.1) 

6.29276 
(2.5) 

3.217 
(8.3) RP

Car DriverC −  _
RP
C Dθ  

Std - 3.39513 
(1.9) - 

RP
Car PassC −  _

RP
C Pθ   -0.841 

(-2.6) 
-1.18531 

(-3.4) 
-1.02916 

(-3.4) 

Mean -0.0156 
(-1.4) 

-0.02687 
(-1.9) 

-0.02629 
(-2.1) 

Travel time (t) tθ  

Std - 0.07432 
(3.9) 

0.05893 
(4.0) 

Travel time-Worker (t*W) _t Wθ   -0.0572 
(-3.0) 

-0.05329 
(-2.6) 

-0.04704 
(-2.8) 

Cost/g (c/g) /c gθ   -0.3542 
(-3.5) 

-1.4002 
(-2.5) 

-1.18822 
(-3.3) 

Cost/g-Sex (c/g*S) / _c g Sθ   0.2251 
(2.8) 

0.97677 
(1.9) 

0.828 
(2.2) 

Frequency*Cost/g (f*c/g) /f c gθ ⋅   -0.0505 
(-2.2) 

-0.18018 
(-3.1) 

-0.17154 
(-3.3) 

Parking cost/g (pc/g) /pc gθ   -0.0175 
(-0.2) 

-0.30947 
(-0.5) 

-0.33779 
(-0.7) 

Parking c/g-Mandatory (pc/g*M) / _pc g Mθ   -0.4471 
(-2.4) 

-1.80981 
(-2.2) 

-1.32647 
(-2.2) 

Walking time (wt) wtθ   -0.0784 
(2.0) 

-0.10338 
(-2.2) 

-0.08974 
(-2.2) 

Walking time-Origin (wt*O) _wt Oθ   -0.1426 
(-2.5) 

-0.18948 
(-2.7) 

-0.16524 
(-2.7) 

Frequency (f) fθ   0.0944 
(1.8) 

0.07539 
(1.5) 

0.07778 
(1.7) 

Frequency-Age (f*A) _f Aθ   0.1606 
(2.5) 

0.1297 
(2.2) 

0.13026 
(2.4) 

Travel time-C .low (t*CL) t CLθ ⋅   -0.0561 
(-3.4) 

-0.04584 
(-6.2) 

-0.04308 
(-6.4) 

Travel time-C. high (t*CH) ·t CHθ   0.0196 
(1.8) 

0.01458 
(2.6) 

0.01457 
(2.7) 

Scale factor(1) µ   0.6185 
(3.4) [2.11] 

0.6 
(5.1) [3.4] 

0.55 
(5.3) [4.4] 

2ρ  ( )2 Cρ   0.1247 0.1406 0.1372 

Log-Likelihood ( )ˆl θ   -587.302 -576.6944 -578.9423 

Nº of observations   1,286 1,286 1,286 

(1) t statistics with respect to H0 : 1µ =  in brackets. 
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We found that in NL1 and NL2 a small percentage of individuals presented marginal utilities 

with incorrect sign and they were removed from the sample during this computation process. We 
have observed that the inclusion of these individuals tends to reduce the WTP. However, in all 
ML models an inordinately high number of individuals presented marginal utilities for the 
frequency with negative sign. Thus, for these individuals, we considered that the marginal utility 
of the frequency was equal to zero when computing the corresponding WTP, so these figures 
must be interpreted with caution.  

Tables 3 and 4 present the WTP measures obtained for all our models. In the case of the ML 
models, all computations were made considering the estimated mean of the travel time 
coefficient. In all those cases the probability of obtaining a marginal utility of travel time with the 
correct sign (negative) was greater than 0.56 for non workers, and 0.81 for workers. We also 
observed that the cost parameters were up to three times greater than those corresponding to the 
NL estimates. Thus, the WTP are expected to be lower for ML models.  

In general, the WTP for transport system improvements are higher for men than for women. 
This is consistent with the fact that the MUI is higher for women than for men (note that / _c g Sθ  is 
positive) and that, in general, men have less available time than women. On the other hand, the 
subjective value of travel time was found to be higher for workers than for non workers, as well 
as for car users than for bus users, with the only exception of model ML3 when the variable 
comfort was low.  

Improvements in frequency are more valued for people older than 35 years, and walking time 
savings are more valued for people who travel in the northern corridor. Note that as walking 
conditions are significantly poorer here than in the southern corridor, we believe that this fact 
explains these differences. The WTP for walking time savings is 2.5 times higher than for travel 
time savings in the case of NL1. For NL2 these WTP are 2.5 times higher when Comfort is high, 
1.9 times higher when Comfort is standard and only 1.5 times higher when Comfort is low.  

Very similar figures were obtained for the rest of the models, meaning that in spite of 
obtaining important differences in WTP depending on the model used, their relative magnitudes 
are maintained. In the case of models NL2, ML3 and ML4, the values of travel time savings 
decrease as comfort is improved. This is consistent with the fact that travel time produces more 
disutility as the level of comfort is reduced.  
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Table 3. Willingness to Pay Measures from NL1, ML1 and ML2 

Alternative Socio-Economic Class 
 

NL1 
 

ML1 ML2 

Willingness to Pay for Travel Time Savings (€ / hour) 

Non-Worker 2.44 0.73 0.83 Women 
Worker 15.70 3.81 4.08 

Non-Worker 6.83 2.21 2.52 Men 
Worker 33.49 9.67 10.44 

Car 

Average 17.40 4.48 4.87 
Non-Worker 1.86 0.57 0.64 Women 

Worker 12.24 3.04 3.19 
Non-Worker 3.89 1.25 1.36 Men 

Worker 17.54 5.01 5.16 

Bus 

Average 10.08 2.59 2.70 
Willingness to Pay for Walking Time Savings (€ / min) 

Southern 0.16 0.04 0.04 Women 
Northern 0.57 0.16 0.16 
Southern 0.28 0.09 0.08 Men 
Northern 1.06 0.33 0.32 

Bus 

Average 0.41 0.12 0.12 
Willingness to Pay for Improvements in Frequency (€ / bus-hour) 

Age ≤ 35 0.13 0.001 0.001 Women 
Age > 35 0.36 0.022 0.027 
Age ≤ 35 0.24 0.003 0.004 Men 
Age > 35 0.57 0.025 0.032 

Bus 

Average 0.35 0.013 0.016 
Willingness to Pay for Increasing Comfort from Low to Standard (€) 

Women 3.02 0.46 0.45 
Men 5.39 0.94 0.90 Bus 

Average 4.32 0.72 0.70 
Willingness to Pay for Increasing Comfort from Standard to High (€) 

Women 0.78 0.12 0.12 
Men 1.40 0.24 0.25 Bus 

Average 1.12 0.18 0.19 
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Table 4. Willingness to Pay Measures from NL2, ML3 and ML4 

Alternative Socio-Economic Class 
 

NL2 
 

ML3 ML4 

Willingness to Pay for Travel Time Savings (€ / hour) 
Non-Worker  1.93 0.71 0.82 Women 

Worker 14.27 3.71 3.99 
Non-Worker  5.58 2.33 2.68 Men 

Worker 31.13 10.16 10.93 
Car 

Average 16.10 4.64 5.05 
Non-Worker  0.67 0.38 0.44 Women 

Worker 19.08 2.66 2.81 
Non-Worker  0.72 0.88 1.00 Men 

Worker 13.71 4.66 4.78 

Bus  
Comfort 

High 
 

Average 9.26 2.27 2.40 
Non-Worker  3.02 0.57 0.64 Women 

Worker 22.89 2.99 3.15 
Non-Worker  3.22 1.31 1.44 Men 

Worker 16.44 5.23 5.36 

Bus  
Comfort 
Standard 

 
Average 12.06 2.66 2.78 

Non-Worker  4.78 1.15 1.21 Women Worker 16.58 4.02 4.17 
Non-Worker  10.38 2.65 2.73 Men Worker 24.28 7.02 7.10 

Bus  
Comfort 

Low 
Average 15.45 3.87 3.96 

Willingness to Pay for Walking Time Savings (€ / min) 
Southern 0.14 0.04 0.04 Women Northern 0.53 0.16 0.16 
Southern 0.26 0.09 0.09 Men Northern 0.99 0.35 0.35 

Bus 

Average 0.38 0.13 0.12 
Willingness to Pay for Improvements in Frequency (€ / bus-hour) 

Age ≤ 35 0.10 0.001 0.001 Women Age > 35 0.36 0.022 0.027 
Age ≤ 35 0.20 0.002 0.002 Men Age > 35 0.57 0.027 0.033 

Bus 

Average 0.35 0.013 0.016 
Willingness to Pay for Increasing Comfort from Low to Standard (€) 

Women 2.45 0.50 0.45 
Men 4.59 1.00 0.96 Bus 

Average 3.62 0.74 0.72 
Willingness to Pay for Increasing Comfort from Standard to High (€) 

Women 0.85 0.14 0.15 
Men 1.60 0.32 0.33 Bus 

Average 1.26 0.24 0.24 
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4.3. Demand response or policy analysis  
Forecasts of changes that would be produced after the application of different policy scenarios 
were represented by the percent change in the aggregate share of alternative j with respect to the 
initial situation:  

1 0

0 100j j
j

j

P P
P

P
−

∆ = ⋅      (11) 

where 1
jP

 
is the aggregate share of alternative j once the policy is applied and 0

jP is the initial 
(do-nothing situation) aggregate share of alternative j. Both aggregate probabilities were obtained 
by sample enumeration.  

Results of the application of the various policies are presented in Table 5. Policy scenarios 
were chosen in order to be consistent with the attribute levels considered in the SP experiment. 
We analysed improvements in service frequency, increments in parking costs, reductions in travel 
time for Bus users and reductions in fares according to the new integrated fare system. In the last 
case, we considered two policies: the first consists in the use of a prepaid card that allows a 
discount of 30% in the first stage of the trip plus a discount of 70% (or 30%) in the second stage 
for urban (or interurban) trips respectively. The second allows discounts up to 50% in the first 
stage and of 100% in the second, for fixed trips.  
 

Table 5. Demand Response to Policy Scenarios 
Percent Variation in Aggregate Share1 of Bus 

Policy Scenario Comfort High Comfort 
Standard Comfort Low 

                                                                                         Model NL1 
+50% Frequency 7.86 8.96 15.89 

+100% Frequency 15.94 18.05 32.83 
Reduction in Fares (Policy 1) 7.72 8.76 14.24 
Reduction in Fares (Policy 2) 15.83 18.26 31.03 

-10% Travel Time (Bus)  4.86 5.15 6.82 
+50% Parking Cost 37.64 39.28 53.69 

                                                                                         Model NL2 
+50% Frequency 7.92 9.15 14.15 

+100% Frequency 16.16 18.49 29.01 
Reduction in Fares (Policy 1) 8.35 9.51 13.11 
Reduction in Fares (Policy 2) 16.96 19.85 28.55 

-10% Travel Time (Bus)  2.85 4.81 12.73 
+50% Parking Cost 35.38 36.70 44.32 

(1) With respect to the estimation sample 
 
Demand appears to be less sensitive for policies consisting in improvements to the Bus level-

of-service than for those penalising the Car (i.e. increased parking costs). For model NL2 demand 
is more sensitive in the first four policies when the level of comfort is high and standard. When 
comfort is low, demand is more sensitive for model NL1 in all except the fifth policy.  

5. Conclusions  
In this paper we estimated alternative NL and ML model specifications incorporating mixed 

RP/SP databases to analyse demand for suburban trips. The models also include latent variables 
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and interaction effects. Besides this, we included non-linear terms in the form of interactions 
between some socio-economic variables and modal attributes, allowing us to study the systematic 
heterogeneity in individuals’ tastes. In the ML specifications we found significant estimates of 
random taste variations for travel time and the car driver constant. We also accounted for the 
presence of income effect in mode choice decisions and for this reason we included the 
expenditure rate (dividing the cost terms) in the utility specification.  
During the construction of to the SP choice experiment, special care was taken in the definition of 
the latent variable Comfort. In this sense, focus groups interviews and pilot surveys were 
determinant in the quality of the final design. A thorough analysis was carried out to detect 
captive, inconsistent and lexicographic respondents. Removing these observations had a positive 
effect on the quality of the estimation results only when SP data were used. However, we found 
that keeping lexicographic individuals in the mixed RP/SP models produced statistically better 
results.  

Both the inclusion of interaction terms and the specification of random coefficients made it 
necessary to carry out a detailed analysis of the sign of marginal utilities in order to be consistent 
with microeconomic principles. In our case, although we were able to find econometrically good 
models, only NL1 and NL2 seem to behave well from a microeconomic perspective, because the 
majority of the individuals are well modelled under these specifications. Therefore, alternative 
specifications must be tested in order to obtain random coefficients models which are fully 
consistent with microeconomic behaviour.  

Model estimates were used to obtain different WTP measures and to analyse demand response 
to different policy scenarios favouring the use of public transport (the latter only for NL1 and 
NL2). These show that the subjective value of time decreases as comfort is improved; it is higher 
for men than for women and for workers than for non workers. Increments in service frequency 
appear to be more valued for men than for women as well as for people older than 35. Finally, the 
WTP for improvements in comfort increases with travel time and is higher, again, for men than 
for women. We concluded analysing the sensitivity of traveller behaviour to model specification. 
We compared the results obtained after considering different modelling strategies and observed 
that the ML models produced lower WTP figures.  

Finally, we examined the effect of the different policy scenarios tested on demand response. 
The clearest effect is that demand seems to be very sensitive for scenarios that raise parking 
costs. Therefore, penalising the use of the car seems to be the most effective policy in order to 
favour the use of public transport in a rather crowded island.  
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Apendix 

 
Table A.1. Attributes and Levels of the SP Experiment 

Car-Bus Bus Car Bus Levels 
Travel Time Cost Frequency2 Parking Cost Comfort 

0 < -25% >> Min1 = 0% = 0% low 
1 = 0% >>> Min1 < -25% > +50% standard 
2 > +25% > Min1 << -50%   high 

(1) Minimum threshold difference between car and bus costs; (2) The frequency is represented by the 
headway (i.e. the time between two consecutive bus services). 

 
Table A.2. Explanatory Variables 

Mode 
Variable Units Car 

Driver Car Passenger Bus 

SP Data Units    
Travel time (t) Min  -  
Cost (c) Pts(1)  -  
Parking cost (pc) Pts(1)  - - 
Frequency (f) buses/hour - -  
Comfort low (CL) 1 if comfort low - -  
Comfort high (CH) 1 if comfort high - -  

RP Data     
Travel time (in vehicle) (t) Min    
Walking time (wt) Min - -  
Cost (c) Pts(1)    
Parking cost (pc) Pts(1)   - 
Frequency (f) buses/hour - -  

Socio-Economic Data     
Worker (W) 1 for workers    
Sex (S) 1 for men    
Mandatory trip (M)  1 for mandatory trips    
Origin of the trip (O) 1 if origin is Arucas(2)    
Age (A) 1 if age < 35 years    

(1) At the time of the survey 1€ = 166.39 pts; (2) Arucas is the town of origin in the northern corridor. 
 


