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Abstract 

A better understanding of the dynamic flow of road traffic is required to provide more 
efficient and optimal operations, and management of road transport systems. This study proposes 
a dynamic estimation model of path-specific origin/destination traffic flow using dynamic traffic 
observations from detectors. This model is based on the least squares method. The origin-path-
specific link traffic volumes and trip generation volumes are estimated sequentially. Because of 
the robust structure of the model, which permits missing data and observation errors, it can be 
applied not only to expressway networks with restricted entrances/exits but also to general 
surface road networks, where it is very hard to observe the trip generation volume. In this study, 
the proposed model was applied to simple hypothetical networks, where we could control the 
availability and accuracy of observations, and also to a real world network, to check its validity 
for practical use. Analyses conducted both on the hypothetical and real world networks 
confirmed the efficiency and practicability of the proposed model. 
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1 Introduction 

Traffic accidents and congestion are no longer a problem only on our roads; they bring with 
them social and economic problems that require attention. To tackle these problems, many traffic 
measures have been implemented using intelligent transport systems (ITS) based on mutual 
cooperation between machinery and communication technology. However, the dynamic change 
of traffic network flows must be explored and suitable traffic operations and management 
measures must be implemented to improve the efficiency of these technologies. Therefore, a 
reliable estimation method for dynamic origin and destination (OD) traffic flows or path traffic 
flows would be indispensable. 

Many OD matrices estimation models have been developed, but most adopt strict or 
unrealistic assumptions that make them difficult to apply to a real world network. This study 
attempts to construct a model to estimate road network flow using simple practical calculations. 
A dynamic combined least squares with trip generations as the dependent variables (DCLS-TGV) 
model was constructed based on a dynamic combined least squares with non-negative constraints 
(DCLS-NNC) model that was previously proposed by the authors (Kurauchi et al., 2000). The 
previous model required various types of inputs, such as traffic generation flows and link 
velocities that were sometimes difficult to obtain for a real world network. The DCLS-TGV 
model was developed to relax the data acquisition requirements. With this modification, we 
expect that the model will be applicable to a general surface road network. 
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Generally, OD matrices are estimated or surveyed to explore current traffic flow 
characteristics. These matrices are used mainly as inputs for policy evaluations. Considering that 
we implement so many dynamic traffic control measures, such as information provision or route 
guidance, one should recognize that the estimates of traffic flow patterns observed during one day 
constitute merely the flow pattern conditioned by the traffic flow and dynamic traffic measures of 
that particular day. Therefore, repeated observations of traffic flow patterns are required to obtain 
the expected or average traffic pattern. A mail-back questionnaire survey is no longer adequate; 
dynamic traffic flow observations must be utilized for this purpose. The DCLS-TGV model is 
also suitable from this point of view because of its simple algorithm and applicability for online 
estimation. Moreover, because the DCLS-TGV model estimates the path flow directly, without 
assuming any predetermined path use ratio, it can also be used as an evaluation tool for dynamic 
traffic measures. By comparing the change in the network flow before and after the 
implementation of traffic measures, we can analyze the qualitative change of traffic flow.  

A literature review of the existing dynamic network flow estimation models is presented in the 
following section to define the problem. Following this, a mathematical formulation of the 
DCLS-TGV is described, together with its characteristics. The proposed model adopts the 
method of least squares, and estimates the trip generation volume for each origin, together with 
the origin-path-specific link traffic volume. The model was formulated as a quadratic program 
with linear equality and inequality constraints. An active set method was adopted to obtain an 
optimal solution. The model was applied to simple hypothetical networks, where we can control 
the availability and accuracy of observations, and then to a real world network, to check its 
validity for practical use. We will discuss the efficiency and practicability of the model using 
these results. 
 
2 Review of dynamic origin destination matrices estimation models 

Dynamic traffic measures, such as information provision or dynamic congestion charging, 
have been implemented around the world. The dynamic OD traffic volume and its pattern 
constitute indispensable input data for these measures. Hence the study of estimating dynamic 
OD matrices has attracted many transport researchers and professionals. Most estimates of 
dynamic OD matrices are based on extensions of existing static estimation methods, which 
introduce so-called dynamic network loading problems into the static models. In this section, we 
describe several existing models and discuss the remaining problems that must be considered. 

The representative estimation techniques for OD traffic volume are based on either the entropy 
maximization method or the least squares (LS) method. Willumsen (1984), Nguyen et al. (1988), 
and Oneyama and Kuwahara (1997) extended the entropy maximizing method to a dynamic case; 
Cascetta et al. (1993) and Cremer and Keller (1987) proposed similar extensions to the LS 
method. The entropy maximizing method has been formulated to maximize the joint probability 
for the produced OD traffic volume, such that the link traffic volume meets the observed volume 
and the OD production probability is predetermined. For entropy maximization-based estimation 
techniques, the calculation algorithm must solve a non-linear set of equations; this requires 
iterations and is computationally demanding. 

Oneyama and Kuwahara (1997) proposed a dynamic OD matrices estimation model by 
constructing a three-dimensional network. Links connected the origin node at the current time to 
destination nodes at the (current time + link travel time). Although the model required a huge 
amount of computational memory, because the number of links was multiplied by the number of 
time intervals, any static estimation technique could be applied to their extended network. In their 
work, an extended entropy maximization estimator was adopted. The model assumed a logit-type 
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path choice ratio to calculate the link use ratio. One of the limitations of the model was that the 
link travel time had to be a unit of the length of the time interval.  

There are typically two LS-based estimators: one uses observations of link traffic volumes 
only (the link LS model), and the other uses prior information about OD patterns, together with 
link traffic volumes (combined least squares method or CLS model). OD traffic volumes will be 
underestimated using the LS model if the volume of unknown OD traffic is greater than the 
observed volume of link traffic, which is what usually happens in the real world. Cremer and 
Keller (1987) relaxed this defect by assuming that several observations of the volume of traffic 
entering the link would have the same OD patterns. The CLS model guarantees a unique solution 
set by utilizing prior information for the OD volumes. Generally, if the non-negative constraints 
on unknown variables are ignored, the algorithm for typical LS estimators must solve a set of 
linear equations only. However, if there are large errors in the observed link traffic volumes or 
significant changes in the real OD patterns, as compared to expected patterns, the estimated OD 
traffic volumes can be negative. 

Cascetta et al. (1993) proposed a model that minimized the sum of the differences between the 
observed and estimated link traffic volumes, and the differences between the present and prior 
information of OD flow. This model adopted the ordinal least squares (OLS) method and 
considered the correlation of the observed link traffic volumes. To determine the effects of the 
OD traffic volume on specific links, the link use ratios were calculated by assuming a logit-type 
route choice structure using the algorithm proposed by Dial (1971).  

All of the papers cited above utilized Dial’s algorithm; i.e., the link use ratio was 
predetermined. However, there are two problems with this approach. Dial’s algorithm assumes 
that the travel time information for each link is perfect, but this assumption may be unrealistic if 
the network is large and complex. Also, there are few available results for Dial’s parameter that 
describe the dispersion tendency of the path use ratio. Thus the assumption may not be valid, 
especially when estimating dynamic traffic flows with short time intervals. 

 
3 Formulation of a dynamic network flow estimation model 
3.1 DCLS-NNC model 
3.1.1 Formulation 

The DCLS-NNC model proposed by Kurauchi et al. (2000) adopted the dynamic combined 
least squares method, which is based on the static CLS model (Iida et al., 1986). This model 
considered origin-path-specific link traffic volume as unknown variables. Origin-path-specific 
link traffic volume, yiaps, is defined as the traffic volume on branch p that uses link a generated at 
origin i during time interval s. The suffix p represents the branch number; the definition of a 
branch will be explained later. On a linear network, we have only one branch. Figure 1 shows the 
concept of unknown variables. 

 
Figure 1. Concept of Origin-Path-Specific Link Traffic Volume 
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According to Figure 1, y11ps indicates the traffic volume that uses link 1 generated at origin 1 
during time interval s. The OD traffic volume can be easily calculated using these origin-path-
specific link traffic volumes. For example, the traffic volume generated at origin 1 destined to 2, 
x12ps, is calculated as follows: 

 
Based on the concept of this unknown variable, the DCLS-NNC model is formulated as 

follows: 

 

 
where 
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The first term of the objective function represents the differences between the observed and 

estimated link traffic volumes. The second term represents the differences between the estimated 
traffic volume and observed trip generation volume compared to its prior probability. All of the 
constraints describe traffic conservation rules. The first constraint provides that the traffic volume 
generated from an origin is equal to the sum of the link traffic volume flowing out from that 
origin. The second constraint ensures that the traffic volume that traverses a concentration 
centroid node must be less than the traffic volume that arrives at that node if the node is a 
destination for any OD pair. The third constraint guarantees that the traversing traffic volume is 
equal to the arriving traffic volume if the node is not a destination for any OD pair. 

 
3.1.2 Branch Enumeration 

 
Figure 2. Example of a Multi-path Network   Figure 3. Tree Composition 

 
The branch enumeration is explained by the network illustrated in Figure 2, in which the 

origin-link traffic volume that entered at origin O1 is considered. The possible destinations of the 
traffic generated at O1 are D2, D3, and D4. The number of possible paths to each destination is 
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one (link 1) for D2, two (link 2 and links 1-3) for D3, and three (links 1-4, links 2-5, and links 1-
3-5) for D4. These six paths can be integrated into the tree diagram shown in Figure 3. 

By integrating the paths into tree diagrams, each branch becomes similar to a linear network. 
We then find branches that share a common link with other trees. In Figure 3, trees 2 and 3 share 
link 1, and trees 1 and 2 share link 5. The next step is to determine whether the previous links 
used to reach the shared links from the origin are the same. From origin O1 to link 1, trees 2 and 
3 are the same; on the other hand, trees 1 and 2 have different routes from the origin to link 5. 
Additional origin-specific link traffic volumes are prepared for the links that are shared between 
several trees, where the previous links for each tree are different. In the case of Figure 3, link 5 
meets this condition. Finally, links 1-4 need only one origin-specific link variable, but link 5 
needs two variables. In the calculations, the path enumeration is executed first, and then the 
dynamic link use ratio is calculated for each path. Additional origin-specific link traffic volumes 
are added if there are different values for the dynamic link use ratios on the same link. Even 
though this method appears complicated, preparing the unknown origin-specific link traffic 
volumes is quite easy if the possible paths are enumerated. 

This procedure provides a very useful characteristic. From the travel time for each link, we 
can easily calculate how much a vehicle from an origin running on one specific path may affect 
one link. Therefore yiaps can be regarded as the origin-path-specific link traffic volume, and the 
path traffic volume can be calculated without making any assumptions for the path use ratio. 

 
3.1.3 Input Variables 

The DCLS-NNC model requires two coefficients: the dynamic link use ratio and prior 
probability. 

The dynamic link use ratio, qiapst, is defined as the proportion of the traffic generated at origin i 
during time interval s and on link a during time interval t, corresponding to the pth branch. The 
link use ratio can be calculated dynamically from the moving locus of cars for a specific path on 
a time-space diagram. Here, we make the following two assumptions to simplify the calculations: 

 
(A.1) vehicles that enter a link are uniformly distributed for a period of one time interval, which 
is short enough that the vehicles do not traverse the entire link, 
(A.2) vehicles are running with an observed average velocity at each link, and this velocity is 
maintained for a period of one time interval. 
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Figure 4. Moving Locus of Cars 
 

Figure 4 illustrates a time-space diagram for a moving locus of cars based on the above 
assumptions. To explore the methodology, let us consider the traffic that was generated during 
the first time interval. During time interval 3, all of these cars are assumed to run with the 
velocity that was observed at point B. This can be expressed as follows: 

 
where // represents a parallel relationship in the graph. 

Because at time interval 4, the velocity on link 2 is larger than that on link 1, a proportion of 

the vehicles (  HDGH ) disperse to GJ . Therefore, the vehicles that departed during time 
interval 1 are divided into two groups. Also, at the end of time interval 3, the following 
relationship must hold: 

 
According the above, the ratio of traffic generated at origin i during time interval 1 and 

observed at link 1 during time interval 2, qi1p12, can be expressed as follows: 

 
The link use ratio for link 1 during time interval 3, qi1p13, is the ratio of traffic that traverses 

below the traffic detector for link 1 at time interval 3, 



 

8

 
Similarly, the link use ratio for link 2 at the same time interval, qi2p13, is 

 
All of the required dynamic link use ratios can be calculated using this method. The prior 

probability, giaps, refers to the origin-path-specific traffic volume, as compared to the trip 
generation variables. The prior probability is calculated simply from estimates made for the 
former time interval. The latest n estimates are calculated as follows: 

 
where  is the most current time interval during which and  are estimated. 
 
3.1.4 Characteristics and problems of the DCLS-NNC model 

The DCLS-NNC model employs a sequential estimation technique so that it can be used 
online. Another advantage of the DCLS-NNC model is that there is no need to predetermine the 
link use ratio. This characteristic enables us to explore changes in the path traffic volumes. The 
results of the origin-path-specific link traffic volume estimates are useful for practical 
applications.  

According to the first constraint, however, the observed trip generation volume must be equal 
to the sum of the estimated origin-path-specific link traffic volume leading out of the origin. 
Because of this strict condition, the model can only be used in a network, such as an urban 
expressway network, where the trip generation is easily observed. In addition, this model requires 
the link traffic volume, link travel time, and trip generation volume as inputs. These restrictions 
prevent the model from being applied to networks without trip generation observations, such as 
general surface road networks. The model limitations should be relaxed so that it can be applied 
to practical situations. 

 
3.2 DCLS-TGV model 
3.2.1 Formulation 

The DCLS-TGV model is an improved version of the DCLS-NNC model. Observation errors 
are permitted for the trip generation because the constraints have been relaxed. The DCLS-TGV 
model estimates not only the origin-path-specific link traffic volume, yiaps, using the same 
concept as the DCLS-NNC model, but also the trip generations, Ois. It can be formulated as 
follows: 
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where 

 

 
 
3.2.2 Characteristics of the DCLS-TGV model 

The DCLS-TGV model has all of the advantages of the DCLS-NNC model. It does not require 
a path use ratio in advance, and it can perform a multi-path online estimation using any time 
interval. The model can estimate the path-specific traffic volume, and it can explore the change in 
the quality of the network traffic volume, such as path choice probability. In addition, because 
trip generations are treated as unknown variables, the proposed model can be applied to surface 
road networks where it is difficult to observe the traffic volume. The observed trip generation 
traffic can be either utilized or neglected, depending on its accuracy. 
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3.3 Solution algorithms 
The model uses a least squares estimator with linear equality and inequality constraints, which 

guarantees global optimal solutions. The active set method (Gill et al., 1989) is applied to obtain 
an optimal solution. If the active constraints are known in advance, the problem can be treated as 
a non-constrained quadratic programming problem. The first part of the algorithm forecasts the 
set of active constraints (i.e., variables with zeros), and the unconstrained optimization problem is 
solved using the other variables and Newton’s method. If the solution set is optimal, all of the 
variables must satisfy the Kuhn-Tucker constraints. The variables within the active set that do not 
satisfy the Kuhn-Tucker conditions are removed from the active set, and the variables outside the 
active set that satisfy the conditions are inserted into the active set. The unconstrained 
optimization problem is then solved using the updated active set of variables. This iteration 
procedure continues until all of the variables satisfy the Kuhn-Tucker conditions. 

 
4 Application to hypothetical networks 

In this section, the DCLS-TGV model is applied to hypothetical networks to determine its 
accuracy and performance. These hypothetical networks consist of a linear network with a single 
path between OD pairs, and a multi-path network with several paths between OD pairs. 

 
4.1 Linear network 
4.1.1 Data 

This network consisted of three links and four nodes with two origins and three destinations 
(Figure 5). The lengths of links were 10, 15, and 5 km, respectively, and the time interval 
between observations was set to 5 minutes. First, hypothetical OD traffic volumes were created 
from random numbers. These were regarded as true traffic volumes. The link travel time was 
assumed to be a function of the link traffic volume. Assumption (A.2) was strictly satisfied here. 
The true values of the link traffic volumes were then calculated using the link travel time 
function, assumption (A.2), and OD traffic volumes. The dynamic link use ratios, qiapst, and prior 
probabilities, giaps, were calculated using these data. Origin and link traffic volumes that included 
some observation errors were also prepared to explore the effect of these errors on the accuracy 
of the model estimates. Observed traffic volumes with errors were created by adding a normal 
random error with a mean of zero and a variance of ε % to the true traffic volume. Four values 
were used for ε: 3, 5, 10, and 15. 

 
Figure 5. Hypothetical Linear Network 
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4.1.2 Estimation results 
We first estimated the OD traffic volume using accurate values of the link traffic volume, 

without any observation errors, to determine the maximum performance of the DCLS-TGV 
model. Most of the estimated OD traffic volumes corresponded to the true OD traffic volumes. 
Figure 6 shows the results for one of the longest OD pairs, OD(1,4). The proposed model 
estimated the OD traffic volumes very accurately. 

 

 
Figure 6. Transition of the Estimates of the OD Traffic Volume (1,4) 

 
The OD traffic volumes with observation errors were estimated with both the DCLS-TGV and 

DCLS-NNC models. The results are compared in Figure 7. A root mean square normalized 
(RMSN) value was used to compare the accuracy of the estimates. From Figure 7, the DCLS-
NNC model was slightly more accurate than the DCLS-TGV model when the variance of the 
observation error was either 0 or 3%. This is because the DCLS-NNC model does not assume an 
observation error for the trip generation; this assumption is suitable for observations with small 
errors. However, the DCLS-TGV model gave more accurate estimates as the variance of the 
observation error increased. Thus we can conclude that the observation errors generally reduced 
the accuracy of the estimates, but the effect was smaller in the DCLS-TGV model, as compared 
to the previous DCLS-NNC model. 

 

 
Figure 7. Estimation Accuracy of the Models using Data with Observation Errors 
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The most striking difference between the DCLS-TGV and DCLS-NNC models is that the 

volume of trip generations can be used either as known or unknown variables. This implies that 
the model can be applied to situations where we cannot observe trip generations, or where the 
observation errors are huge and the data are unreliable. Figure 8 compares the results obtained 
when the observed trip generation volumes with observation errors are either used or discarded. 
In this example, the observed link traffic volumes were assumed to not have any errors, so that 
the results illustrated only the effects of the observation errors on the traffic generation volumes. 
The estimation results show that the trip generation observations should be ignored when the data 
observation error is greater than 7%. 

 

 
Figure 8. Estimation Results with and without Trip Generation Observations 

 
4.2 Multi-path network 
4.2.1 Data 

The DCLS-TGV model was also applied to the hypothetical multi-path network shown in 
Figure 9. This network had 6 OD pairs and 10 paths. The data required for the estimates were 
obtained from the simulation model proposed by Uno et al. (2001). In this simulation model, the 
link lengths were set to 3, 6, 2, 6, and 3 km, respectively. Because the DCLS-TGV utilizes 
observed (or estimated) velocities to calculate the dynamic link use ratio, the estimation results 
were influenced by the locations of the traffic counters. To evaluate these effects, the link traffic 
volumes and velocities were collected at the head, middle, or tail of each link. To consider the 
dynamic changes of traffic flow according to the traffic conditions, we assumed that 50 percent 
of the drivers used travel time information to change their path. 

 
4.2.2 Estimation results 

The RMSN values in the multi-path network were higher than those obtained for the previous 
case, but overall the DCLS-TGV model estimates were generally accurate. The observed traffic 
volumes and velocities differed, according to locations of the traffic counters. To relate this effect 
to the accuracy of the estimates, the RMSN values for data obtained using three different 
observation locations are shown in Figure 10. The results indicated that the locations of traffic 
counters had a big influence on the estimation results, and that the model worked the best when 
the traffic counter data was located in the middle of each link. 
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Figure 9. Hypothetical Multi-Path Network 

 

 
Figure 10. Effect of the Traffic Counter Location on the Estimation Accuracy 

 
According to recent developments in traffic data collection techniques, probe car data should 

also be considered because the accuracy of these data may be greater than the accuracy of 
roadside observations. The previous paragraph indicated that the accuracy of the model estimates 
varied according to the location of the traffic counters. Therefore, velocity data obtained from 
probe cars were also used to calculate the dynamic link use ratio. Here, six cases were 
considered, with 100%, 50%, 25%, 12.5%, 6.25% and 3.125% probe cars on the network. The 
velocity for each link was calculated from the probe car data. The estimation results for each case 
are compared to each other in Figure 11. 
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Figure 11. Estimation Results for Probe Car and Traffic Counter Data 

 
Figure 11 shows that the estimates obtained using observed data, with the traffic counter 

located in the middle of each link, are better than the estimates made using probe car data. 
However, if we use probe car data, the effect of the traffic counter location can be avoided, 
producing stable estimates. 

 
5 Application to a real world network 

The DCLS-TGV model was applied to a portion of the Hanshin Expressway network, and the 
resulting estimates were compared to a questionnaire survey conducted for the 20th Survey of 
Origin and Destination in 1994. The section between the Tsukimiyama on-ramp and the 
Mukogawa off-ramp on the Kobe Route of the Hanshin Expressway, shown in Figure 12, was 
selected as the research area. The Hanshin Expressway is an access-restricted elevated roadway, 
with traffic detectors located between ramps. The length of the entire research area was about 
27.5 km, and it contained 10 on-ramps and 9 off-ramps. 

The OD traffic volume estimation was performed using the link traffic volume and link 
velocity from the traffic detectors. The 20th Survey of Origin and Destination was performed 
over a 24-hour period between Tuesday, 1st November, 1994, 7:00 A.M. and Wednesday, 2nd 
November, 1994, 7:00 A.M. The results of this survey were aggregated and multiplied to obtain 
unbiased OD traffic volumes between the on- and off-ramps. The observed link and on-ramp 
traffic volumes and the observed link velocities were also collected on the same day to estimate 
the dynamic OD traffic volume. The surveyed OD traffic volume was only an estimate; we do not 
know the true traffic volume. However, if the proposed model obtains results that are similar to 
the surveyed OD traffic volume, our level of confidence in the model estimates will improve. 
For simplicity, the results of the OD traffic volume estimates were aggregated into the blocks 
shown in Figure 12. There are five origin-blocks between A and E, and five destination-blocks 
between B and F. The relationship between the estimated and surveyed OD traffic volumes is 
shown in Figure 13. 
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Figure 12. Research Area 

 

 
Figure 13. Relationship between the Estimated and Surveyed OD Traffic Volumes 

 
Link OD(A,B), shown in Figure 13(a), is the shortest OD pair section, and link OD(A,F), 

shown in Figure 13(b), is the longest OD pair section in the research area. Link OD(A,B) was 
more accurately estimated, and the value of the correlation coefficient, 0.8732, suggests a high 
correlation between the estimated and surveyed values. In contrast, the surveyed OD traffic 
volumes on link OD(A,F) were generally larger than the estimated values, and the correlation 
coefficient was low. All correlation coefficient values between the blocks are shown in Table 1. 

 
Table 1. Correlation Coefficients between the Estimated and Surveyed OD Traffic Volumes 
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According to Table 1, the OD pairs that span long distances, such as OD(A,F) and OD(B,F), 
have low correlation values. The rest of the OD pairs had high correlations between the estimated 
and observed data. There are several possible reasons for this result. First, the surveyed OD 
traffic volumes were estimated from a mail-back survey, and thus do not always express the 
traffic flow accurately. The effect of time lag is another reason. In this study, the prior probability 
was calculated from the latest estimated results over a 30-minute interval. Thus, if the travel time 
between one OD pair was 30 minutes, estimates during an interval of up to 60 minutes before 
were used for the prior probability calculations. As the distance between the OD pair increased, 
the values used for calculating the prior probability could differ from the actual values. To reduce 
the effects of this problem, the prior probability could also be calculated from data obtained on 
prior days, during the same time interval. 

Although some modifications to the model are still required in order to obtain more accurate 
estimates, especially for long distance OD pairs, the results of this study generally support the 
efficiency and practicability of the proposed model. 

 
6 Summary and further studies 

In this paper, we proposed a dynamic OD estimation DCLS-TGV model that can estimate 
dynamic path-specific origin/destination traffic volumes and that does not require predetermined 
path choice ratios. Due to the robust structure of the model, it permits rather large observation 
errors. The model can also be applied to networks where the trip generation volumes are 
unknown, because both the path-specific origin/destination traffic flows and trip generations are 
used as unknown variables. 

The characteristics and performance of the model were verified using two hypothetical 
network case studies. The results demonstrated that the DCLS-TGV model provided more 
accurate estimates than the previous DCLS-NNC model, with increasing observation errors of the 
traffic volume data. Since the model also estimated trip generation volumes, the observed trip 
generation data could be ignored if the observation errors were large. The estimation accuracy 
changed according to the locations of the traffic counters, and the data suggested that the most 
accurate results were obtained when the traffic counters were located in the middle of each link. 
The estimation results utilizing velocity data from probe cars supported the accuracy and 
efficiency of the model when using data obtained from traffic counters located in the middle of 
the links.  

For the purpose of confirming the practicality of the proposed model, it was applied to a part 
of the Hanshin Expressway network. The results were compared with those obtained from an 
origin and destination questionnaire survey. Although the estimation accuracy worsened as the 
OD distance became longer, the estimation results were generally acceptable. 

The series of DCLS models proposed by the authors utilize variable data as much as possible. 
In this study, the traffic flow was estimated using probe car data. More case studies utilizing 
probe car data are required, including calculations of the prior probability of origin-path-specific 
link traffic volume based on this data. The model was applied to an urban expressway network in 
this study, but applications to more complex networks, such as a general surface road network, 
should also be considered. In addition, further improvements to the DCLS-TGV model are also 
possible. For example, the model consists of linear equality and inequality constraints. The 
inequality constraints can be replaced by equality constraints, thereby simplifying the model 
formulation. 
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