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Abstract 
This paper presents a methodology for the incorporation of Automated Vehicle 

Identification (AVI) data into Origin-Destination (OD) estimation and prediction. AVI 
technologies facilitate the collection of useful data, such as point-to-point travel times and 
subpath flows. A framework for the incorporation of AVI data into the well-established 
Origin-Destination (OD) estimation and prediction process is presented. Improvements are 
proposed both for the formulation and the inputs to the OD estimation and prediction 
model. Furthermore, as the OD estimation and prediction process is often used in a traffic 
estimation and prediction context, approaches to incorporate AVI data into other areas of 
the dynamic traffic assignment framework are outlined. Performance and computational 
issues are also considered, and results of a case study are presented to demonstrate the 
approach. 
 
Keywords: OD flows estimation and prediction; Automated vehicle identification (AVI) 

systems; Kalman filter  
Topic area: D5 Data Collection Methods 

1 Introduction 

Traffic congestion -and all its side-effects and adverse impacts- is a key problem of 
many urban areas. Indeed, traffic conditions are rapidly declining in most urban areas 
worldwide and the trends do not show any signs of reversal. While several approaches 
have been proposed for the mitigation of traffic congestion, better management of the 
existing infrastructure through control strategies and dissemination of relevant information 
to drivers appears to be the most promising approach. A key component of such an 
approach is Dynamic Traffic Assignment (DTA) systems that reside at Traffic 
Management Centers (TMC). Such systems have estimation and prediction capabilities 
and are capable of generating and evaluating guidance and control strategies.  

DTA systems typically comprise two main functions (Ben-Akiva et al., 2002):  

• State estimation; and  
• Prediction-based information generation 
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During the state estimation phase, real-time information is combined with historical 
data to capture the traffic conditions that are prevailing in the network. Detailed traffic 
information that is obtained through the instrumented portions of the network is used to 
infer the conditions in the parts of the network for which no real-time information is 
available. This is achieved through an iterative simulation of demand-supply interaction 
designed to reproduce real-time observations from the surveillance system.  

The role of the prediction-based information generation process is to generate 
unbiased and consistent traffic information for dissemination to travelers. Information 
based on predicted network conditions (i.e. anticipatory information) is likely to be more 
effective than information based on current traffic conditions because it accounts for the 
evolution of traffic conditions over time which is what travelers will experience. A 
detailed treatment of the demand-supply interactions within a state-of-the-art DTA system 
can be found in Ben-Akiva et al. (2002).  

One of the key components of dynamic traffic assignment is the Origin-Destination 
(OD) estimation and prediction process (Ben-Akiva et al., 2002). OD estimation combines 
historical and real-time information to obtain dynamic -i.e. time-dependent- demand 
tables. Furthermore, OD prediction exploits estimated behavioral patterns to anticipate the 
short-term evolution of demand (Antoniou et al., 1997). Based on the predicted demand, it 
is possible to generate and evaluate response strategies and generate anticipatory guidance 
(Bottom, 2000).  

Traffic information is usually collected through traffic sensors. While several 
technologies have been introduced (microwave/acoustic sensors, cameras, etc), the most 
common implementation is inductive loop detectors. Such detectors can provide counts of 
individual vehicles crossing the sensor location, as well as occupancy and -using some 
assumptions- possibly speed data. The problem of state estimation is an under-determined 
problem, as a relatively small number of measurements is used to infer a much larger 
number of demand flows. To overcome this issue, researchers use data from other sources. 
Ben-Akiva (1987) and Ben-Akiva and Morikawa (1989) suggested frameworks for 
statistical methods to efficiently combine data from diverse sources and applied them in 
the estimation of origin-destination matrices. A usual source of data in this context is 
travel demand surveys, that provide a priori or historical estimates of the demand flows. 
While historical data provide important information on the structure of the traffic patterns, 
however, it is the surveillance data that ultimately provide information about the 
prevailing traffic conditions.  

A promising advancement in data collection for traffic networks has been the use of 
Automated Vehicle Identification (AVI). The underlying principle is based on the 
identification of individual vehicles equipped with an appropriate device (often called 
probe vehicles) in various locations in the network. Analysis of the space-time information 
collected from this group of vehicles can provide information on their travel patterns, 
which may then be -cautiously- extrapolated to provide information for the entire 
population.  

The incorporation of multiple data sources into the OD estimation and prediction 
framework is expected to improve the observability of the system, i.e. the ability to 
determine the state of the system from a set of observed measurements. A larger number 
of surveillance system measurements improve the ability of the system to isolate and 
identify the contributions of OD flows to traffic flows.  

The remainder of this paper is structured as follows. Section 2 presents an overview 
of AVI technologies, as a background to the subsequent developments, while Section 3 
presents a review of related literature. Section 4 presents the proposed extended OD 
estimation and prediction framework. Section 5 describes a case study that demonstrates 
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the feasibility of the proposed approach. Finally, in Section 6 conclusions are drawn and 
future research directions are outlined.  

2 AVI - overview and principles of operation 

This section presents an overview of AVI systems, their basic principles of operation, 
and data that they can provide, focusing on the impact that this data may have on OD 
estimation and prediction.  

2.1 Classification of AVI technologies 

There are several ways to organize and categorize AVI systems. Table 1 presents a 
categorization of AVI technologies along two key dimensions. First, based on their 
coverage of the network, AVI systems can be separated by whether they can track vehicles 
throughout the entire network (e.g. GPS systems or cell phone tracking systems) or 
whether they are limited in identifying them in particular locations of the network (e.g. tag 
identification sensors, or license plate recognition systems).  

Table 1. Classification of indicative AVI technologies by scope 

 Spatial coverage 

  Area-wide Short-range 

All vehicles N/A License plate 
recongition Vehicle 

coverage Equipped 
vehicles 

GPS-based 

Cell phone tracking 

Transponder  

Detection 

 

Another dimension is whether some sort of cooperation is needed from the side of the 
driver for the system to be able to locate and identify a vehicle. Transponder-identifying 
systems and GPS systems, for example, require the driver to have an activated device in 
their vehicle. On the other hand, license plate recognition systems do not require any 
cooperation from the drivers, given that all vehicles should -by law- have their license 
plate in a visible position. This distinction can also be interpreted as whether the system is 
able to locate all vehicles or only a subset of the vehicles.  

2.2 Principles of operation 

AVI applications are based on the detection and identification of individual vehicles 
in several locations as they traverse the network. A basic concept in processing probe 
vehicle (or AVI) data is the matching of subsequent detections. When the equipped 
vehicle approaches the first sensor, its unique signature is recorded by the sensor and 
transmitted to the central data collection facility, along with the sensor ID and the time-
stamp of the detection. A similar process takes place when the same vehicle approaches all 
downstream sensors. Data is collected in a central facility, where it is processed and the 
necessary information is extracted.  

Thus, equipped vehicles effectively become probes that provide a packet of raw 
traffic information during each detection. Each raw data instance comprises three tokens:  
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1. vehicle location: the location of the equipped vehicle during the detection (e.g. 
surveillance camera or transponder detector location, GPS unit or cell phone 
coordinate);  

2. vehicle signature: a unique identifier of the tracked vehicle, through which 
multiple detections of the same vehicle in subsequent sensor locations can be 
associated; and  

3. vehicle tracking time-stamp: providing the time that the detected vehicle crossed 
the reporting sensor location. 

The vehicle signature is dependent on the type of AVI system. For transponder based 
systems the ID of the transponder can be used. Similarly, for GPS applications a unique 
identifier associated with the GPS device can be used, while the license plate is the de-
facto signature in license plate recognition applications. In order to appease privacy 
concerns, these vehicle signatures can be scrambled at the sensor, thus ensuring that the 
actual vehicle information can not be reconstructed. An analysis of the privacy concerns 
associated with the use of ETC transponders is presented by Ogden (2001).  

Raw data from all sensors are collected in a central location where they are stored. A 
wealth of information can be inferred from this raw data. By comparing the time-stamp of 
successive readings of a particular vehicle’s (scrambled) signature, the system can 
compute the travel time experienced by that vehicle for the network portion between the 
two sensor locations. Based on the individual travel times experienced by probe vehicles 
detected by the same set of sensors, estimates of the time dependent subpath travel times 
can be obtained. Investigation of the way that vehicles detected by one sensor are 
distributed among downstream sensors can provide valuable information regarding route 
choice fractions in various decision points in the network.  

Furthermore, origin/destination data can also be obtained from raw AVI data. 
However, this assumes that AVI detections can be made sufficiently close to the origins or 
destination, so that there is no ambiguity as to which origin or destination this vehicle 
belongs to. Extrapolation of the partial origin/destination data that are obtained from the 
probe vehicles to the entire vehicle population can provide time-dependent estimates of 
OD flows.  

Finally, probe vehicle data can be used for the generation of actual paths in a network 
(for example, a library of paths can be generated by adding all paths that were followed by 
at least one probe vehicle).  

2.3 Indicative AVI technologies 

Several technologies can be used for the tracking of probe vehicles in an AVI 
environment, including:  

• In-vehicle Global Positioning System (GPS) receivers  
• In-vehicle transponders (tags) in combination with fixed roadside sensors  
• License-plate recording, using roadside closed-circuit TV (CCTV) cameras  
• Cell phones tracking (or self-reporting) 

A brief description of these technologies follows.  
In-vehicle Global Positioning System (GPS) receivers: The use of GPS receivers 

provides the ability to obtain very detailed, continuous data on the vehicle location. From 
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this information, other data can be inferred (such as speed and acceleration). However, this 
method requires additional equipment on the vehicle and is not very well suited for real-
time operations because the data is collected in the in-vehicle unit and needs to be 
transmitted to a central server from processing. GPS add-ons for wireless Personal Digital 
Assistants (PDAs) overcome this problem, but the cost increases to impractical levels (for 
wide applications) and the cooperation of the driver is needed (Quiroga et al., 2002).  

In-vehicle transponders (tags) in combination with fixed roadside sensors: This 
method provides time-stamped detection of the equipped vehicles in the sensor locations. 
Travel time, path and subpath flows, and path choice information for the equipped 
vehicles can be inferred by matching vehicle tag IDs recorded in several locations. The 
advantages of this approach include the ability to collect data centrally, in real-time, and 
without the active cooperation of the drivers. Implementations that use existing in-vehicle 
transponders (such as the Electronic Toll Collection, ETC, tags (Mouskos et al., 1998)) 
eliminate the need for additional in-vehicle equipment and take advantage of the high 
market penetration of such transponders in some markets (Morris, 1996, Park and Rilett, 
1998). Data obtained from such systems is being used for incident detection (Mouskos 
et al., 1998) and travel time prediction (Kuchipudi and Chien, 2003).  

License-plate recording, using roadside closed-circuit TV (CCTV) cameras: 
CCTV and visual detection technology have improved dramatically during the past years. 
While manual license plate recording data have been used for traffic surveys for many 
decades, the use of optical recognition to automate these measurements has made license-
plate recording a possible source of real-time traffic information. However, detection 
accuracy is still not without problems, especially during adverse lighting and weather 
conditions.  

Cell phones tracking (or self-reporting): Cell phones have been thoroughly 
investigated as a source of incident detection (Mussa et al., 1998, McLean, 1991) and 
travel time information (Smith et al., 2003) with positive results. Despite the high-
penetration of cell phones, this method suffers from the need for driver participation, the 
manual nature of the information processing, as well as the possible reporting bias. If and 
when cell phone tracking becomes available, this method may become a feasible way of 
gathering real-time traffic information. The recent interest in the Enhanced-911 (E-911) 
initiative may provide the platform for such applications.  

While not inherently an AVI technology, it is worth noting that conventional loop 
detectors can also be used for vehicle reidentification and consequently traffic monitoring 
purposes. These approaches use pattern recognition technologies and assign a unique 
“signature” to each vehicle (Oh and Ritchie, 2003, Coifman and Cassidy, 2002).  

2.4 Data considerations 

In general, AVI systems provide information about a sample of the driver population, 
which is analyzed and used as a starting point for the estimation of information on the 
entire driver population. There are several considerations about the inherent biases of the 
data that is obtained from such non-random sampling processes. First, although AVI data 
may give very complete information on the travel patterns of drivers of equipped vehicles 
and the conditions that they experience, the fraction of such users in the total traffic stream 
will generally vary by time of day, vehicle class and facility, and may not always be 
accurately known. The problem then is to infer information about all travelers from very 
detailed observations of a (possibly non-representative) subset of them. The second issue 
concerns the geographic dispersion of the sensors. Due to practical limitations, the number 
of available sensors in most applications will not cover the entire network in such a way 
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that all OD pairs and links are covered. Thus, incomplete information will be provided, 
and the conditions at locations without detectors will have to be inferred from other 
observations and historical information.  

Unlike conventional traffic sensors, where raw data is often aggregated, it is very 
important to retain the data obtained from AVI applications in their raw form. This raw 
data is necessary for the tag matching process, during which subsequent detections of the 
same vehicle signature are grouped together to describe this vehicle’s trip.  

3 Review of related work 

The problem of OD estimation and prediction has been well studied over the last two 
decades (Cascetta, 1984, Okutani, 1987, Cascetta et al., 1993, Ashok and Ben-Akiva, 
1993, Ashok, 1996, Ashok and Ben-Akiva, 2000, Ashok and Ben-Akiva, 2002). A 
detailed presentation of the OD estimation and prediction literature is outside the scope of 
this paper. In the majority of the relevant literature, OD estimation is based on historical 
demand information and link count data. This review focuses on extensions to the OD 
estimation and prediction framework that utilize richer data.  

Ashok (1996) introduced the notion of direct measurements for the incorporation of 
probe vehicle information in the OD estimation and prediction formulation that he 
proposed. By definition, a direct measurement provides a preliminary estimate of an OD 
flow. A direct measurement can thus be expressed as:  

hh
a
h uxx +=  (1) 

where a
hx  denotes the a priori or preliminary estimate of hx  and hu  is a vector of random 

errors. In the case of information obtained from probe vehicles (with known origin and 
destination), direct measurements may be represented by:  

probe
hh

a
h xEx =  (2) 

where probe
hx  represents the number of probe vehicles corresponding to each OD pair 

departing during interval h. The matrix hE  is diagonal and represents an “expansion” 
factor to account for the fact that probe vehicles constitute only a fraction of the total 
number of vehicles in the network.  

van der Zijpp (1996) combined volume counts with trajectory information obtained 
from automated license-plate surveys for the estimation of OD flows. The model is based 
on split probabilities.A measurement equation for the trajectory counts is specified and 
split probabilities are estimated from combined link volume counts and trajectory counts. 
The estimation of the split probabilities from combined data is performed in a way similar 
to that for the link counts. This method of estimating split probabilities from combined 
data was tested by the author in experiments using synthesized data. These experiments 
showed that using combined data consistently led to lower errors of estimation relative to 
the case where only traffic counts were used.  

Dixon and Rilett (2000) use AVI information for OD estimation. They define the 
boundaries of their network as the AVI sensor locations, thus having direct OD 
information which they use to generate all other inputs to their model, such as link 
volumes, link choice proportions, and OD observations. This assumption, however, is very 
limiting in terms of the applicability of their model. The authors propose several 



 

7

estimators based on generalized least square and Kalman Filtering algorithms and evaluate 
their algorithms on a freeway stretch with on- and off-ramps, (i.e. route choice is not 
considered).  

Mishalani et al. (2003) evaluate the role of various types of surveillance data in the 
real-time estimation of dynamic OD flows at the intersection level. Turning fraction and 
travel time data was collected from video cameras at three adjacent intersections. OD 
estimation using link counts was used as the base case. Additional scenarios involved the 
incorporation of turning fractions at the intersections, travel times, and combination of 
turning fractions and travel time. The main finding of the study was that intersection 
turning fraction data significantly improves the quality of the OD flow estimates, while the 
use of link travel time data in addition to turning fractions can also improve the quality of 
OD flow estimates.  

4 Modeling framework 

The proposed methodology builds upon the OD estimation and prediction framework 
presented by Ashok and Ben-Akiva (1993) and formulated as a state-space model using 
deviations (instead of the actual flows). For a discussion of the advantages of the use of 
deviations (instead of the actual flows) the reader is referred to Ashok and Ben-
Akiva (1993). A state-space model is formulated as a set of:  

• Transition equations; and  
• Measurement equations. 

Denoting by H
hhh xxX −=  the deviation of the vector hx  (representing the number of 

vehicles between each OD pair departing their origins during time interval h) from the 
corresponding updated historical estimate H

hx , the transition equation can be expressed in 
matrix form in terms of deviations as:  

∑
−=

+ +=
h

qhp
hp

p
hh wXfX 1

ˆ  (3) 

where 1
ˆ

+hX  is an estimate of 1+hX , p
hf  is the matrix of effects of pX  on 1

ˆ
+hX , hw  is a 

vector of Gaussian, zero-mean, uncorrelated errors, and q is the degree of the 
autoregressive process.  

The deviation of the vector of observed link flows hy  from the best estimate, based 
on the available assignment matrices and estimated demand, is denoted:  

∑
−=

−=
h

php
p

p
hhh

'
x̂ayY  (4) 

where p
ha  is an assignment matrix of contributions of OD flow px  to link flow hy , and p' 

is the maximum number of time intervals taken to travel between any OD pair of the 
network.  

The measurement equation, which relates deviations in the unknown OD flows to 
deviations in the observed link counts, can thus be stated in matrix form as follows:  

hhhh vXAY +=  (5) 
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where h
hh aA =  is the assignment matrix mapping the drivers that departed in interval h to 

the link counts observed in interval h and hv  is the vector of measurement errors, assumed 
to be zero-mean, uncorrelated as well as uncorrelated with the transition errors hw .  

Ashok (1996) proposed an extension of the OD estimation process to incorporate 
direct measurements of OD flows. By definition, a direct measurement provides a 
preliminary estimate of an OD flow; under some conditions on the location of the AVI 
sensors, it is possible to obtain such measurements for some OD pairs from an AVI 
system. Assuming deviations form, Equation 1 can be written as:  

h
H
hh

H
h

probe
hh uxxxxE +−=−−1  (6) 

An equivalent way of representing Equation 6 is:  

*
hhh

probe
h

hhhh
H
hh

probe
h

uXEY

uEXExEx

+=

⇒+=−
 (7) 

where hE  is a diagonal matrix and represents an “expansion” factor to account for the 
fact that probe vehicles constitute only a fraction of the total number of vehicles in the 
network, H

hh
probe
h

probe
h xExY −=  is the deviation of the vector of observed probe vehicle 

flows probe
hx  from the best estimate, based on the available expansion matrix hE  and the 

historical demand, H
hhh xxX −=  is a vector of deviations of the OD flows for time 

interval h, and *
hu  is a vector of Gaussian, zero-mean, uncorrelated errors. Each entry in 

the matrix hE  represents the inverse of the fraction of AVI vehicles. Thus, matrix 1−
hE  is 

guaranteed to be invertible since it is diagonal with elements > 1.  
In order to be able to specify direct measurements, however, a number of fairly 

restrictive requirements must be satisfied, i.e. AVI sensors must be located close enough 
to origins and destinations so that there is no ambiguity as to which OD pair detected 
vehicles belong to. Additional information can be obtained from the AVI data by grouping 
appropriate pairs of AVI detector locations that define subpaths. Successive AVI 
detections of vehicles in both detectors of the same subpath will then provide flow 
information for this subpath. Similarly to the way that the OD flows are mapped to the link 
counts, it is possible to map the OD flows to subpath flows. An additional measurement 
equation in terms of deviations (in matrix form), reflecting the contribution of the OD 
flows to the subpath flows, can then be written:  

hhhh ηXGZ +=  (8) 

where ∑
−=

−=
h

php
p

p
hhh

'
x̂GzZ  is a vector of deviations in the subpath flows, H

hhh xxX −=  

is a vector of deviations of the OD flows for time interval h, and h is a vector of Gaussian, 
zero-mean, uncorrelated errors. p

hG  is an ( )ODsubpath nn ×  matrix that maps the subpath 
flows observed in time interval h (as obtained by combination of sequential AVI 
measurements of the same vehicle) to the OD flows that departed in time interval p (In a 
way similar to the way the assignment matrix maps the link counts to the OD flows). A 
subpath flow measurement implies that the vehicle has crossed the downstream detector. 
Therefore, flows observed at time interval h imply that they capture vehicles that capture 
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the downstream detector within interval h. For notational simplicity, h
hG  is equivalent to 

hG .  
Equations 7 and 8 can then be used to augment Equation 5, thus providing a single 

measurement equation:  

hphh UAΥ += X  (9) 
where:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

h

probe
h

h

h

Z
Y

Y
Y  , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

h

h

h

h

G
E
A

A  , and 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

h

h

h

h

η
u
v

*U . 

The complete state-space model would then comprise Equations 3 and 9, where the 
state is defined by the vector pX  of deviations of OD flows from historical estimates.  

The assignment matrix A is the key input in the conventional state space model. It 
maps the OD flows into link counts. A thorough treatment of the intricacies associated 
with this matrix can be found in Ashok (1996) and Ashok and Ben-Akiva (2002). 
Generally, the assignment fractions depend on a large number of parameters, including 
travel times and route choice fractions. The assignment matrix is in general not known and 
in the context of OD estimation within a DTA system it is computed indirectly.  

In the extended problem that is being considered here, two additional matrices 
become important, denoted in the previous section by E and G. We call these matrices 
expansion matrix and AVI-assignment matrix respectively. The analytical computation of 
these matrices is again very difficult. However, these inputs can be computed indirectly, 
similarly to the way that the assignment matrix is computed. Naturally, this introduces a 
degree of uncertainty about the quality of the provided matrices.  

5 Case study 

A case study has been performed to demonstrate the value of additional data sources 
(e.g. information obtained from AVI systems) in terms of improvements in the accuracy of 
the OD estimation and prediction framework. Synthetic data generated from the 
simulation laboratory environment MITSIMLab have been used. MITSIMLab (Yang, 
1997, Yang and Koutsopoulos, 1996) is a simulation laboratory for evaluation of Dynamic 
Traffic Management systems). MITSIMLab represents the “real world” and provides 
measurements. A subset of the loop detector locations have been designated as AVI sensor 
locations. MITSIMLab can provide both aggregate link counts at the sensor locations and 
detailed measurements of the individual equipped vehicles that are detected by the AVI 
sensors. The overall methodology is outlined in Figure 1.  
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Figure 1. OD estimation (and prediction) using synthetic data 

The simple network shown in Figure 2 was used for this case study. Three loop 
detectors are located in the network, which provide regular point measurements. 
Furthermore, sensors that provide AVI functionality are also located in the same locations, 
thus providing subpath information as shown in Figure 2.   

subpath 1

subpath 2

1

2

9 10

7

4

 

Figure 2. Case study network 

OD estimation and prediction is performed both in the base case (no AVI 
information) and in the presence of AVI information. The impact of the additional 
information in the estimation accuracy is assessed, as well as the additional computational 
load that it entails. The demand is generally from left to right or east to west. Six OD pairs 
(8→7, 1→7, 1→10, 8→4, 1→4, and 9→7) load vehicles in the network. Knowledge of 
the true assignment matrix is assumed.  

A high-demand day (i.e. higher than the historical) is assumed. The demand pattern is 
similar to the morning peak. The link flow measurements are corrupted with noise 
(resulting in counts uniformly distributed in [80%,105%] of the true link flows) in order to 
capture the sensor measurement errors. Current AVI technologies report accuracies in the 
order of 99% (Mouskos et al., 1998); hence no measurement error was assumed for the 
AVI data. The assumption of independent measurement errors for the two data sources is 
justified, as the sensors use different technologies with distinct performance 
characteristics. It should be noted, however, that only two of the 6 OD flows are actually 
captured by the AVI systems. This implies that AVI information only contributes to the 
estimation of the OD flows that are covered by the AVI-defined subpaths.  
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Table 2 shows the obtained RMSN values for the OD estimation and prediction (for 
one and two intervals into the future). Furthermore, the results are shown graphically in 
Figure 3.  

Table 2. Overall fit of the OD estimation and prediction 

One-step Two-step
Estimation prediction  prediction

Historical 0.2376 0.2376 0.2376
Link counts 0.1099 0.12 0.1278

Link counts + AVI 0.0932 0.1031 0.1123  

 

Figure 3. Overall fit of OD estimation and prediction 

The estimated and predicted demand for an OD pair that is captured by AVI 
information is presented next. The improvement obtained from the incorporation of AVI 
information is apparent. During the peak period the demand is estimated with less than 3% 
error. Figure 4 shows the estimation results for the entire simulation period, while 
Figures 5 and 6 show the one-step and two-step prediction results respectively.  
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Figure 4. OD estimation results 

One step OD prediction 
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Figure 5. One-step OD prediction results 
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Two step OD prediction 
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Figure 6. Two-step OD prediction results 

6 Conclusions 

A methodology has been presented for the incorporation of additional sources of 
information into the OD estimation and prediction framework. The development of the 
methodology has been based on AVI data, as these are very relevant and likely to become 
widely available soon. Preliminary results from a case study using synthetic data have 
been presented, indicating that indeed the additional information can improve the ability 
of the system to accurately capture prevailing traffic conditions and improve its predictive 
capabilities. The consequences of this finding are significant, particularly for the 
generation of traffic information and anticipatory guidance.  

Future research directions include the incorporation of AVI information to a complete 
DTA system. Besides the enhanced OD estimation and prediction framework, the 
additional information can be exploited on the demand side as improved travel time 
information can be used for more accurate modeling of pre-trip behavior decisions. On the 
supply side there is again a potential for multiple use of the AVI data. First, the direct 
travel time measurements obtained by the matching of sequential readings of the equipped 
vehicles -as they travel through the network- provide an additional source of information 
for the en-route behavioral models. Furthermore, the existence of additional data (in the 
form of actual path and subpath flows and travel times) allows for better (off-line) 
calibration of the supply simulator, and could also be used for periodic steering of its 
parameters in response to the prevailing traffic conditions. One of the key benefits from 
this improvement will be the generation of a better assignment matrix through the use of 
both better parameter calibration and direct information on point-to-point travel 
information. The assignment matrix is the key input to the OD estimation and prediction 
process and a more realistic assignment matrix may significantly influence the ability of 
the system to predict future traffic conditions accurately.  
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Traffic estimation and prediction is a fixed point problem requiring iterations between 
the demand and supply components. In the presence of link counts alone, the only means 
of determining whether the simulated conditions match the observed is through 
comparison of the (observed vs. the simulated) link counts. The number of control 
variables is thus limited and may not cover the entire network sufficiently or uniformly. 
However, in the presence of AVI measurements, it is possible to use the subpath flows and 
travel times as additional observations, thus providing a better coverage of the network. 
Furthermore, observed route choice fractions (obtained by appropriate subpath flows) can 
be used as additional conditions for the validation of the (en-route) behavioral models 
within the supply simulator.  

While this data may significantly improve the off-line calibration process, it may also 
prove to be useful for periodical on-line fine-tuning of the parameters of the supply 
simulator. In particular, given a well-calibrated initial condition of the system parameters, 
real-time information can be used to steer the simulation parameters as required in 
response to variations in the prevailing traffic conditions.  

Furthermore, case studies with real data will provide more convincing evidence on the 
contribution of richer data in the OD estimation and prediction process, and travel time 
estimation and prediction in general. The following paragraphs outline specific directions 
for further research.  

The incorporation of the additional real-time data is expected to improve the ability to 
estimate and predict OD flows accurately. Nevertheless, as indicated by the augmentations 
of the problem’s state-space formulation, the computational complexity also increases. As 
the problem size increases, more efficient algorithms and techniques need to be 
implemented in order to achieve real-time performance. Kalman filtering (Kalman, 1960) 
and (constrained) least squares minimization are two well-established techniques for 
solving the state-space model formulated for the OD estimation and prediction. A square-
root Kalman filter that solves the single data-source time-space model (as defined by 
equations 3 and 5) is described in Antoniou et al. (1997). Least square methodologies for 
the single-source problem have also been formulated and implemented (Brandriss, 2001). 
The suitability of various algorithms and methodologies needs to be investigated, e.g. the 
efficient constrained least square minimization algorithm proposed by Bierlaire and 
Crittin (2001), as well as a Kalman filtering algorithm for real-time applications (Chui and 
Chen, 1999) that does not require direct matrix inversions. The latter algorithm is a 
combination of the sequential and square-root Kalman filter algorithms with the additional 
assumption of a diagonal variance of the measurement equation. Also, trade-offs between 
computational complexity and accuracy can be identified and evaluated.  

The extended OD estimation and prediction framework presented in this paper will 
also need to be further validated, and in particular in terms of its robustness and numerical 
stability. Measurement errors and missing observations are likely to impair the 
performance of the models. It is important to assess their impact to the performance of the 
algorithms. This analysis can be based on random and systematic perturbations of the key 
inputs to the algorithms, including travel time estimates, subpath flows, and assignment 
matrices. Furthermore, the numerical properties of the models when the inputs take 
exceptionally small or large values need also be investigated.  
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