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Abstract  

This paper proposes an efficient solution algorithm for realistic multiobjective median shortest 
path problems in the design of urban transportation networks. The proposed problem formulation 
and solution algorithm to median shortest path problem is based on three realistic objectives viz. 
route cost or investment cost, overall travel time of the entire network and total toll revenue. The 
proposed solution approach to the problem is based on the heuristic labeling and exhaustive 
search technique in criteria space and solution space of the algorithm respectively. The first labels 
each node in terms of route cost and deletes cyclic and infeasible paths in criteria space imposing 
cyclic break and route cost constraint respectively. The latter deletes dominated paths in terms of 
objectives vector in solution space in order to identify a set of Pareto optimal paths. The 
approach, thus, proposes a noninferior solution set of Pareto optimal paths based on 
nondominated objective vector and leaves the ultimate decision to decision-makers for purpose-
specific final decision during applications. A numerical experiment is conducted to test the 
proposed algorithm using artificial transportation network. Sensitivity analyses have shown that 
the proposed algorithm is advantageous and efficient over existing algorithms to find a set of 
Pareto optimal paths to median shortest paths problems.  
 
Keywords: Median shortest path problem; Pareto optimal paths; Feasible paths; Dominated paths  
Topic area: C6 Network Design, Optimal Routing and Scheduling  
 
1. Introduction  

The better design of transportation networks in recent years has initiated the need to consider 
simultaneously several objectives in the analysis and solutions of shortest path problems. 
Transportation networks are huge investment infrastructure facilities whose design requires 
careful planning of the networks considering multiple and realistic objectives. The single 
criterion model is not enough to take into account many relevant aspects of reality and thus, 
multiobjective models seem to be more realistic. Steenbrink (1974) has claimed that “it is 
impossible to define a reasonable objective for transportation network optimization problem in 
which all relevant factors are included completely and consistently”. Transportation network 
design problems are often combinatorial optimization problem and solving them with respect to 
more than one objective adds another dimension of difficulty. The conflicting natures of 
attributes make the problem formulation and algorithm even more difficult. The problems are 
compounded by the inability to generate efficient and adequate algorithms. Inclusion of multiple 
and conflicting vector of objective functions introduces another concept of multicriteria decision 
making and the concept of single optimal solution is no longer applicable. According to 
Coutinho-Rodrigues et al. (1999), there is no single optimal path in multiobjective path problem 
but rather, a set of nondominated solutions from which the decision maker select the most 
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satisfactory. Current et al. (1987) have said that the most fruitful use of multiobjective 
programming lies in its implementation as a method to generate and analyze options rather than 
as a method to determine the most desirable option directly. From this set of Pareto optimal paths 
(POP), decision-makers upon specific applications make the final decision of the optimal path. 
Common multiple objectives to be considered for MSP in designing transportation network 
include route cost or construction cost (RC), overall travel time of the entire network (OTTEN), 
toll revenue (TR), social costs, environment, aesthetics, hazardous, regional equity, political goal 
of user satisfaction and so on.  

However, generating and presenting the whole set of options to a decision maker, in general, is 
not effective way because those options may be very large. Generating a set of more feasible 
options rather than all feasible options with efficient solution algorithm is more adequate to 
overcome those drawbacks. In this context, it is necessary to develop an efficient algorithm for 
finding a compromise solution of shortest path (i.e. Median shortest path abbreviated as MSP) 
that can be used for designing real transportation networks. Here, the name MSP is given to 
emphasize a compromise solution among different objectives rather than using only the shortest 
path.  

Diversities of existing journals and articles dealing with multiobjective design of networks are 
from the field of operation research, economics, logistics, management science and industrial 
engineering, which are not sufficient to deal realistic transportation network problems. In the past 
few decades there has been a growth of research to incorporate multiple objectives to shortest 
path problems in transportation networks (Current et al., 1985, 1987, Martins, 1999). A brief 
summary of these types of problems can be found in Current and Min (1986). Hansen’s (1980) 10 
bicriterion path problems are based upon total path length and individual arc length. The 
conflicting objectives like OTTEN and TR are not considered in the formulation. Martins (1984) 
presented multiple labeling approach to generate non-inferior solutions set based on some linear 
combination of path cost parameters. The solution does not include conflicting objectives like 
OTTEN and TR obtained from the path.  

Current et al. (1987) proposed a bicriterion median shortest path problem (MSPP) considering 
path cost and access cost as two conflicting objectives. This algorithm is good enough to 
understand the concept of conflicting objectives and obtain a compromise solution. The same 
problem is solved by Park and Nepal (2002) using heuristic vector labeling approach. However, 
in both works, the access cost is defined as the cost required for the total node demand to reach to 
the nearest node on the MSP. The objective is not realistic for designing real transportation 
network because all node demands of the entire network do not approach to the MSP. It depends 
on the distance from their node to the path and moreover, only those demands that can decrease 
their travel times from origin to destination by the use of MSP approach to the path and others do 
not. Thus, OD matrix is the essential input in order to determine the reduction in the travel times 
of all demands of all nodes to reach their destinations. Thus, OTTEN serves the reality in the 
transportation networks, which is the most important objective or aim of urban transportation 
planner to achieve. The purpose of improving path or providing expressway or providing 
improved network services is to reduce the OTTEN. Furthermore, Current et al. (1987) has 
solved by integer programming formulation using double sweep method of k-paths generation 
and exhaustive search for minimum access cost to these paths in order to obtain POPs. The 
algorithm is inefficient in the sense that generation of the entire noninferior solution set from k-
path generated in the solution space of multiobjective shortest path problem is computationally 
intense. The solution approach by Park and Nepal (2002) seems to be more efficient than Current 
et al.’s (1987) with respect to computational time and memory space in computer. However, the 
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considered objectives are not realistic and useful for transportation networks. Thus, defining a 
realistic objectives and proposing an efficient solution algorithm to MSPP for transportation 
networks is an area of current research, which is the subject treated in this paper. MSPP discussed 
in this paper is the special type of one-to-one node problem that deals with the efficient solution 
of three conflicting objectives viz. RC, OTTEN and TR. The RC attribute consists of the sum of 
all arc costs (construction cost or improvement cost of MSP), OTTEN attribute is the travel time 
of all demands of all nodes to reach their destinations and TR attribute is the revenue that can be 
obtained from the demand served by the MSP.  

The objective of this research work is to develop an efficient algorithm to MSPP by defining 
realistic objectives for transportation networks and conduct sensitivity analysis. The proposed 
algorithm is based on the combined heuristic labeling and exhaustive search technique. The basic 
notion of the proposed algorithm is taken from Aneja et al. (1979), Current et al. (1987), Park et 
al. (2001) and Nepal (2002). The cyclic and infeasible paths are deleted for each path of each 
node based on the cyclic break (CB) and route cost constant (RCC) and a number of acyclic 
feasible paths are generated from O to D. The exhaustive search technique based on the objective 
vector (RC, OTTEN, TR) is employed on these acyclic feasible paths in order to delete all 
dominated paths and obtain a set of POPs. The concept of RCC is introduced in order to delete 
the far infeasible paths (far infeasible paths are those paths that have the RC attribute 
significantly greater than the shortest route from origin to destination).  

This paper first introduces the notations used in this paper and formulates the problem 
considering above-mentioned objectives. Secondly, the proposed algorithm is discussed in detail 
along with an example network. The application of the proposed algorithm and analysis of the 
results are done using Current et al.’s (1987) transportation network and hypothetical OD 
demand. Lastly, summary and concluding remarks are followed.  
 
2. Notations  
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3. Modeling assumptions  

Prior to the formulation of MSPP based on objectives considered, the following assumptions 
are made. These assumptions are not uncommon to model the transportation network in the static 
and deterministic network environment even though some of them are too simplified. These 
assumptions can be released using appropriate algorithms in some parts of the whole algorithm 
based on the application site.  
. Demand exists only at nodes and must be satisfied;  
. The MSP must pass through the nodes; 
. OTTEN is measured in dynamic measure of the demand-time unit (vehicle-time, passenger-hr, 

passenger-min, passenger-sec etc.) considering sum of link demand multiplied by link travel 
times in all links in the entire network;  

. Total TR is calculated by summing all link demand multiplied by link toll imposed on each 
links on MSP;  

. Free flow speed is assumed. There is no congestion effect. The driver always chooses the 
shortest travel time route from origin to her destination;  

. Link costs are non-negative;  

. The link attributes and OD demands are deterministic and static.  
 
4. Mathematical formulations  

Let G(N,A) be a transportation network with nodes N and links A. Let us denote α as a 
maximum allowable RC of POPs with respect to the shortest route form O to D. Then, the 
problem of identifying MSP is the minimization of objective vector as follows:  
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where,  

 
Constraint (2) ensures that a path is not a feasible path if its RC is greater than RCC. 

Constraint set (3) ensures that origin and destination nodes should lie on MSP and if an arc on 
MSP enters to an intermediate node, one arc on the path should leave that node as well. The 
constraint (4) removes all cyclic paths.  

Optimizing (1) for all objectives is impossible due to their conflicting natures i.e. objectives 
Z1, Z2 and Z3 cannot be minimized simultaneously. To solve (1), heuristic labeling algorithm 
(Dijkstra, 1959) is used to generate all acyclic feasible paths constrained by CB and RCC. In 
order to check the feasibility of the RC, the shortest RC routes between all pairs of nodes are 
calculated using traditional label correcting shortest path algorithm (Moore, 1957). The 
exhaustive search technique is used to delete all dominated  

paths based on the vector of optimizing objectives to all these acyclic feasible paths. Assume 
that the travel time on the links of the MSP after upgrading it to the MSP is not equal to the travel 
time of the links of the existing network before upgrading it to MSP due to improved transport 
service conditions. This assumption is not uncommon because the purpose of proving expressway 
or toll way or making improvements on the existing transportation services is to reduce links 
travel times. This difference in travel times on MSP will change the link demand on all links in 
the entire network. Considering updated value of travel times on the links of MSP, the shortest 
travel time routes between all pairs of nodes are calculated using level correcting shortest path 
algorithm (Moore, 1957). Then, the link demands for all links of the entire networks are 
calculated using appropriate traffic assignment algorithm. OTTEN and total TR are calculated 
using the equations (6) and (7) respectively.  
 
5. Proposed algorithm  

The proposed algorithm is based on the combined heuristic labeling and exhaustive search 
technique. It consists of mainly five steps. In first step, the shortest RC routes between all pairs of 
nodes are calculated using traditional label correcting shortest path algorithm (Moore, 1957). In 
the second step, RCC (α) is determined based on the shortest route from origin to destination. The 
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definition of terminology; cyclic break and route cost constraints are as follows:  
Cyclic break (CB): CB removes cyclic paths in the network. It has significant importance in 

order to delete looping paths at criteria space producing less number of paths to expand during 
node expansion. The repeating nodes or arcs of the same path from origin are not common in 
general practice and driver, generally, does not want to return to the same path /node twice during 
her journey to destination.  

Route cost constraint (α): RCC is defined as the maximum allowable RC of POPs. The route 
cost ratio (RCR) is defined as the ratio of RCC and the RC of the shortest route. The RCC is 
expressed as the RC of the feasible path, which is to some extent greater than the shortest route as 
follows;  

 
For example, let us consider the path that has RC less or equal to 20% (M = 20%)more than 

the RC of the shortest route as feasible paths. Then, the RCC as per the expression above is 1.2 
D
OR and RCR is 1.20. The constraint is meaningful and has logic in the sense that MSPs having 

RCR very far from 1.00 are infeasible because our interest is to find the set of optimal paths, 
which have the RC almost similar to the shortest route from O to D as far as possible. The RCC 
directly removes all lingering paths from probable solution and drastically removes infeasible 
paths at criteria space, making small searching domain.  

In step 3, labeling algorithm is applied similar to label setting shortest path algorithm 
(Dijkstra, 1959) in traditional shortest path problem. There may be multiple sub-paths for each 
node. The label of each path to each node is set based on the RC of each sub-path. Each sub-path 
at each node is then checked to ensure that the path is acyclic and RCC is satisfied. The sub-path, 
which does not satisfy these two conditions, is deleted. The mathematical expression to infeasible 
path is shown below;  

 
Step 3 ends when all acyclic and feasible paths from origin and destination are obtained. In 

step 4, first generated path in step 3 is taken and travel times of the links on MSP are updated. 
The shortest travel time routes between all pairs of nodes considering updated values of the travel 
time on the links in MSP are then calculated using level correcting shortest path algorithm 
(Moore, 1957). The link demand to each link of the entire network is calculated using appropriate 
traffic assignment algorithm. OTTEN is calculated using links demands and links travel times. 
Similarly, the total TR is calculated by using link demand and link toll. This process is repeated 
for all paths generated in the step 3. In the fifth step, the dominance checking is employed to all 
paths obtained in step 4 based on the objective vector (RC, OTTEN, TR) in order to delete 
dominated paths. The algorithm stops when all POPs from O to D are obtained.  

Consider a simple network as shown in Figure 1 where each link consists of route cost and 
route travel time and each node consist of node number. The OD demand matrix is tabulated in 
Table 1. Traditional label correcting algorithm (Moore, 1957) is used in order to obtain the 
shortest RC routes between all pairs of nodes. The shortest route from O to D has the RC attribute 
{5.5}, that passes via node 2 and shortest RC routes between all pairs of nodes are tabulated in 
Table 2.  
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Figure 1 Example Network 

 
Table 1 OD Demand of the Example Network 

  To Node    
1 2 3 4 5 Total 

1 0 3 5 4 3 15 
2 4 0 7 5 4 20 
3 10 7 0 2 6 25 
4 11 10 3 0 6 30 
5 5 7 14 4 0 30 Fr

om
 N

od
e 

Total 30 27 29 15 19 120 
 

Table 2 Shortest RC Routes between All Pairs of Nodes 
  To Node    
1 2 3 4 5 

1 0.0 2.5 3.0 4.0 5.5 
2 2.5 0.0 2.5 3.5 3.0 
3 3.0 2.5 0.0 1.0 4.0 
4 4.0 3.5 1.0 0.0 3.0 

Fr
om

 N
od

e 

5 5.5 3.0 4.0 3.0 0.0 
 

Considering M as 30 % (assumed), the RCC is 7.15. The label setting algorithm is then 
applied from O (node 1) to D (node 5). When applying labeling algorithm, the label of origin 
node 11

 
= {0} is permanently labeled. The labels of nodes 2, 3 and 4 which are directly connected 

by the arcs from O would be 21
 
= {2.5}, 31 = {3.0} and 41 = {4.0} respectively and number of 

feasible paths to origin node e(1) =1. These three sub-paths are acyclic and feasible because they 
do not repeat node twice and also they satisfy RC <α . The sets of temporary and permanent paths 
are L = {21, 31, 41} and E = {11} respectively. The first feasible sub-path in L (21) which has the 
least RC from O is permanently labeled and updated. There are three links emanating from node 
2. The sub-path to node 1 is cyclic and hence, it is deleted. The vector labels of nodes 3 and 5 are 
32 = {5.0} and 51 = {5.5} respectively. The sub-path 32 is infeasible because 5.0 + 4.0 > 7.15. 
Hence, it is discarded. The sub-path 51 is feasible because 5.5 + 0.0 < 7.15. Hence, it is kept. The 
sets of temporary and permanent paths are, then, L = {31, 41, 51} and E = {11, 21} respectively. 
The number of feasible paths are e(1) = 1, e(2) = 1, e(3) = 1, e(4) = 1 and e(5) = 1.  
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Select the first sub-path of node 3 (31), with least RC in L is labeled permanently. Expanding 
this sub-path, the sub-path to node 1 is cyclic and labels of nodes 2, 4 and 5 are 22 = {5.5}, 42 = 
{4.0} and 52

 
= {9.0} respectively. The sub-paths 22

 
and 52 are infeasible because they do not 

satisfy RCC and sub-path 42 is feasible because 4.0 + 3.0 < 7.15. Hence delete 22 and 52 and keep 
42. The temporary and permanent path sets are then L = {41, 51, 41} and E = {11, 21, 31} 
respectively. The number of feasible paths are e(1) = 1, e(2) = 1, e(3) = 1, e(4) = 2 and e(5) = 1. 
Updating the first sub-path of node 4 (41), the sub-path to node 1 is cyclic and sub-paths to nodes 
3 and 5 have the labels {5.0} and {7.0} respectively. These both sub-paths are feasible because 
they satisfy α . Now, the temporary and permanent sub-path sets are L = {51, 42, 52} and E = {11, 
21, 31, 41} respectively. The number of feasible paths are e(1) = 1, e(2) = 1, e(3) = 1, e(4) = 2 and 
e(5) = 2.  

The only one sub-path to update, 42 in L , is taken and labeled permanently. The sub-paths to 
node 1 and 3 are cyclic and node 5 has the label 53 = {7.0}. This sub-path to node 5 is feasible 
path because 7.0 + 0.0 < 7.15. Then, the temporary and permanent node sets are, L = {51, 52, 53} 
and E = {11, 21, 31, 41, 42} respectively. The number of feasible paths are e(1) = 1, e(2) = 1, e(3) 
= 1, e(4) = 2 and e(5) = 3. Since the temporary set contains, only the paths from O to D with 
following RC attribute, the approach goes to step 4.  
. 51

 
= {5.5} = 1-2-5  

. 52 = {7.0} = 1-4-5  

. 53
 
= {7.0} = 1-3-4-5  

In STEP 4, the OTTEN and total TR is calculated on these acyclic feasible paths obtained 
from STEP 3 as discussed here. Assume, for this example, that the travel time on the links on 
MSP are 50 % of the existing links and unit toll on the link on MSP. Using all or nothing traffic 
assignment, OTTEN and total TR on paths 51, 52 and 53 are respectively, {384.00,19.00}, 
{370.00, 22.00} and {356.00, 47.00}. Then the objective vector to be minimized of these 3 paths 
are summarized as under:  
. 51

 
= {5.5, 384.00, -19.00} = 1-2-5  

. 52
 
= {7.0, 370.00, -22.00} = 1-4-5  

. 53
 
= {7.0, 356.00, -47.00} = 1-3-4-5  

In STEP 5, the dominated paths obtained from the STEP 4 are removed. Here, the path 53
 

dominates the path 52. Hence, under the assumed conditions, the obtained POPs with attribute 
vector, which are of the output of the algorithm, are:  
. 51 = {5.5, 384.00, -19.00} = 1-2-5  
. 52

 
= {7.0, 356.00, -47.00} = 1-3-4-5  

 
The proposed algorithm is summarized as follows:  
STEP 1. Identify the shortest routes between all pairs of nodes based on route costs in the 
transportation network using traditional label correcting shortest path algorithm.  
STEP 2. Initialize constraints  

2.1  Calculate minimum route cost from O to D 
2.2  Set route cost constraint (α) 

  
STEP 3. Generate all acyclic and feasible paths using label setting algorithm with RC as attribute 
from O to D constrained by α.  

3.1  For all paths of all nodes, let 
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3.2  Choose origin node and initialization 

   
3.3  Determine the next path (for permanent labeling) 

IF  
• L contains all feasible paths from O to D , then GOTO STEP 4 (K- feasible paths 
are generated) 
ELSE  
• Choose any node, i , in L which has the smallest route cost  
• Insert i into E (i.e. E = E + {i}) 
• Delete node i from L (i.e. L = L − {i}) 

3.4  Label updating  
• For all nodes j connected with node i by link ( i, j),  
• Update route cost by  

 
• Cyclic path removing  
IF the path travels through the same node twice, DELETE the temporal sub-path.  

Then, e(j) = e(j)  
ELSE  
• Feasibility checking  
IF , DELETE current temporal sub-path  
Then, e(j)= e(j) 
ELSE Insert the current temporal path as a feasible path. Then, e(j) = e(j) +1  

3.5  STOP Rule  
• IF L contains all feasible paths from O to D , GOTO STEP 4  
• ELSE, GOTO STEP 3.3  

STEP 4. Calculate the OTTEN and total TR for feasible paths in STEP 3.  
4.1  Set n = 1 (i.e. first feasible path), update travel time of each links on this feasible 

path.  
4.2  Determine the shortest travel time routes between all pairs of nodes considering 

updated values of travel times on the path.  
4.3  Calculate link demand of each link of the entire network using appropriate traffic 

assignment algorithm.  
4.4  Calculate OTTEN using link travel time and link demand by equation (6).  
4.5  Calculate total TR using link demand and link toll by equation (7).  

• IF n = K , GOTO STEP 5  
• ELSE, n = n +1, GOTO STEP 4.1 STEP 5. Remove dominated paths and obtain a 
set of POPs.  

 
6. Application of the proposed algorithm  
6.1.  Experimental study design  

The proposed algorithm to MSPP is implemented using Current et al.’s (1987) transportation 
network and artificial set of OD demand. For sensitivity analysis purposes, RCR is varied from 
1.00 to 2.00. The value of RCR equal to 1.00 means generated paths are only accepted when the 
RC of each generated path is equal to the shortest route from O to D. At this value, the obtained 
path(s) is the shortest route from O to D. Similarly, the value of RCR equal to 2.00 means the 
generated paths are feasible only when their RC is less or equal to the double of the shortest 
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route. The value of RCR more than 2.00 is not significant for MSPP because the paths having RC 
attribute significantly more than the shortest route cost are, generally, not of interests for 
transportation network designs. Value of RCR has significant importance only when the values 
are near to 1.00. To examine the efficiency of the proposed algorithm, total generated paths 
(feasible paths), Pareto optimal paths and execution time of the algorithm are tested for different 
cases.  
 
6.2.  Test bed network  
To demonstrate the algorithm of finding MSP, the proposed algorithm is tested and numerical 
results are analyzed using Current et al.’s (1987) network as test bed network and a set of 
artificial OD demand. The network consists of 21 nodes and 39 undirected arcs. The undirected 
arcs are treated as bi-directed arcs with the same attribute value in both directions because the 
coding of the algorithm is for directed network. Thus, in this paper, 21 nodes and 78 directed arcs 
are used for the analysis. The test bed network with link attributes is shown in Figure 2. The OD 
demand matrix is tabulated in Table 3. The MSP used in this paper is based on free flow travel 
time on existing links as well as links on MSP, 50% less travel time in the links of the MSP than 
in links on existing network, all or nothing traffic assignment algorithm and unit link toll. The 
computer code has the flexibility to adjust these values. In order to implement the algorithms 
other than all or nothing traffic assignment, computer code is to be changed accordingly.  
 

 
Figure 2 Test Bed Network (Current et al., 1987) 
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Table 3 Origin -Designation (OD) Matrix (10
3
) for Test Bed Network 

 
 
7. Analysis of the results  

This section deals with the computational behavior of the proposed algorithm on certain sets 
of constraints and parameters used in the formulations. Sensitivity analyses of proposed 
algorithm to MSPP with different values of constraints imposed in the formulations are carried 
out in order to evaluate the efficiency as well as the trend of change in parameter values. The 
major parameter values in the algorithms for sensitivity analysis are total number of paths 
generated, number of Pareto optimal paths and execution time of the algorithm. For this purpose, 
RCR is varied from 1.00 to 2.00. As explained already, the RCR value more than 2.00 is not of 
significant importance for transportation network planning and designing. Although the proposed 
algorithm can solve the problem for RCR values more than 2.00, the analyses are performed only 
for 1.00 ≤ RCR ≤ 2.00 because this is the range of RCR, which is important for designing 
transportation networks.  

(i) Analysis of Total Number of Paths Generated, Pareto Optimal Paths and Execution Time 
for Different Values of Route Cost Ratio  

 
Figure 3 Number of Paths Generated, Pareto Optimal Paths and Execution Time 
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As shown in Figure 3, the total number of paths generated as well as the execution time of the 
algorithm increases exponentially with RCR whereas the increase in POPs is almost linear. At 
higher values of RCR (the paths having RC very large then the value of shortest route), more 
numbers of paths are generated and at the same time, there are more inferior solutions. The 
execution time has the same effect because time required to generate few feasible paths by 
controlling total generated paths is less, and also the search time required to calculate OTTEN 
and TR to each of these paths is less which results less execution time for lower value of RCR 
and vice versa. This result signifies the importance of imposition of RCR in the proposed 
algorithm because it shows directly the tradeoff between the number of alternatives and execution 
time required to generate them. Wide range of alternatives can be obtained for higher values of 
RCR but the execution time of the algorithm is high whereas few alternatives can be obtained 
from small values of RCR in less execution time. In simple words, in order to get few alternative 
POPs having RC very similar to the shortest route, the RCR is kept near to 1.00 and for wide 
range of alternatives, the high value of RCR is selected. Generally, for MSPP, only few 
alternatives are of interest and, therefore, the RCR is kept as low as possible and the execution 
time of the algorithm can be reduced significantly. Even if the value of RCR is very small, the 
obtained results are correct but that provides only few alternatives to the decision makers.  
 

 
Figure 4 Percentage of Pareto Optimal Paths w. r. t. Total Paths Generated 

 
The plot between percentage of POPs with respect to total number of paths generated and 

RCR as shown in Figure 4 shows that with the increase in the value of RCR, the percentage of 
POPs with respect to total number of paths generated decreases. For example, for RCR = 1.00, 
there are only two paths generated (two routes have the same RC from O to D) and one of them 
(50%) is POP. For RCR = 1.10, there are 8 paths generated and 4 of which (50%) are Pareto 
optimal paths. However, for RCR = 2.0, there are 1435 paths generated and only 34 of which 
(approx. 2.0 %) are optimal paths. It is obvious from the trend that, by controlling the value of 
RCR, total number of paths generated can be significantly reduced without making more effect 
on POPs. The plot between total number of paths generated (Ng) and the execution time (Te) as 
shown in Figure 5 shows the direct relationship between them. This means, execution time of the 
algorithm can be reduced directly by reducing total number of paths generated without making 
much effect on POPs because the effect on POPs is less for higher values of RCR than on total 
number of paths generated and execution time. Thus, by choosing RCR value judiciously, 
required output of the algorithm can be obtained efficiently.  
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Figure 5 Total Numbers of Paths Generated versus Execution Time 

 
(ii) Effect of number of objectives  
In order to examine the effect of number of objectives, the third objective is removed and 

program is run. The output shows that as the number of objective increases, the number of POPs 
as well as the CPU time of the algorithm increases as shown in Figure 6 and Figure 7. For smaller 
values of RCR, the number of POPs and execution time are almost the same for both cases. For 
example, when RCR is 1.00, only one POP is obtained in 0.22 CPU seconds and when RCR is 
1.10, 4 POPs are obtained in 0.38 CPU seconds. However, for higher values of RCR, the effect 
on POPs as well as on execution time is significant. For example, when RCR is 1.20, 7 POPs are 
obtained in 1.10 CPU seconds for three objectives case and 4 POPs in 1.05 seconds for two 
objectives case. Similarly, for the value of RCR = 2.00, 34 POPs are obtained in 47.78 CPU 
seconds for three 3 objectives and 18 POPs in  
44.60 seconds for two objectives.  

 
Figure 6 Number of Pareto Optimal Paths for Two and Three Objective Cases 
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Figure 7 Execution Time of the Algorithm for Two and Three Objective Cases 

 
Thus, the sensitivity analysis of the proposed algorithm shows that imposing CB and RCC 

during the labeling phase of the algorithm (criteria space) is very effective to make the solution 
more efficient in terms of execution time and the memory space in the computer not only for 
generating feasible paths but also for making small searching domain. The set of Pareto optimal 
paths with attributes vector (RC, OTTEN, TR) facilitates the final decision-making.  
 
8. Advantages of the proposed algorithm  

The proposed approach of the MSPP has many advantages than existing approaches. Firstly, it 
defines the realistic conflicting objectives for transportation planning and designs. Secondly, it 
does not need the tradeoff relationship between objective functions like utility maximization and 
can identify the alternative paths with vector of objectives. Thirdly, addition of any other new 
objectives to objective vector does not require intensive modification on the computer codes. 
Moreover, it is based on labeling and search algorithm, which is simple to understand and ease in 
application. Finally, it does not require full k-shortest path problems to generate all paths rather it 
uses CB and RCC to generate only feasible paths. It is expected that the proposed algorithm 
would be the milestone in the planning and designing of transportation network.  

The proposed algorithm has been proposed considering transportation networks design 
problems as a multiobjective shortest path problem, therefore explicitly incorporating the distinct 
evaluation alternative aspects into the formulation. The developed algorithm computes 
nondominated paths by optimizing objective functions in terms of a compromise solution, which 
is the essential decision making tool for multicriteria decision making for many transportation 
network design applications.  
 
9. Summary and conclusions  

This paper presents a theoretical formulation and modeling algorithm for solving MSPP for 
designing static and deterministic transportation networks. Unlike the past practices to solve 
transportation network problems using the existing algorithms from other fields, which are not 
realistic to transportation networks, this study defines the realistic objectives for transportation 
network and solution algorithm for the same. The algorithm itself is also efficient over existing 
approaches because it uses heuristic labeling approach to identify feasible paths in labeling space 
and exhaustive search on these feasible paths in order to determine a set of POPs in solution 
space. Using labeling algorithm deletes the cyclic paths and infeasible paths at each node during 
labeling phase (criteria space) using CB and RCC respectively, which identifies all acyclic 
feasible paths form origin to destination. The exhaustive search on the feasible paths obtained 
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with respect to the objective vector deletes dominated paths resulting a set of POPs. The 
approach is tested and validated using Current et al. (1987) network. It is found from the 
sensitivity analysis that the proposed approach can reduce the total number of generated paths as 
well as execution time by controlling RCR judiciously.  

Beyond the limits of this study, there is much room for expansion. Since the static and 
deterministic transportation networks are the ideal cases in many urban transportation network 
systems, the improvement of the proposed approach to dynamic and stochastic transportation 
network would be more valuable for solving real transportation network problems. The proposed 
approach is expected to modify to include other objectives as safety, comfort, and environmental 
concerns as well as the political goal of user satisfactions. It remains open the practical efficiency 
of the proposed algorithm and, therefore, the model is to be tested for real world transportation 
networks.  
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