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ABSTRACT 

This study is concerned with using multiple approaches for analyzing safety at unsignalized 

intersections. This was investigated by analyzing total crashes, one of the most frequent 

crash types at unsignalized intersections (angle crashes) and crash injury severity. Some of 

the developed methodological techniques in this study are considered recent and have not 

been extensively applied. Massive data collection effort was conducted, and resulted in 

collecting around 2500 unsignalized intersections from six counties in Florida.  

 

The first analysis dealt with applying the Bayesian updating concept for better crash 

prediction. This was investigated by updating the coefficients of the probabilistic negative 

binomial (NB) models. Different non-informative and informative prior structures using the NB 

and log-gamma distributions were attempted. The log-gamma distribution showed the best 

prediction capability. 

 

The second analysis dealt with analyzing crash injury severity using the binary probit 

framework. The important factors found in the fitted probit models were the logarithm of the 
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annual average daily traffic “AADT” on the major road, and the speed limit on the major road. 

It was found that higher severity probability is always associated with a reduction in AADT, 

as well as an increase in speed limits. 

 

Finally, a recently-developed data mining technique (the multivariate adaptive regression 

splines or MARS) was used, which is capable of yielding high prediction accuracy. MARS 

was used to analyze angle crashes. MARS yielded the best prediction performance while 

dealing with continuous responses. Additionally, screening the covariates using random 

forest technique before fitting a MARS model was very encouraging. 

 

1. INTRODUCTION 

According to documented statistics (e.g., FDOT, 2006), intersections are among the most 

hazardous locations on roadway systems. Many studies have extensively analyzed safety of 

signalized intersections, but did not put their major focus on the most frequent type of 

intersections; unsignalized intersections. One important reason is the inadequacy and 

difficulty to obtain data at these intersections, as well as the limited crash counts. 

Unsignalized intersections can be differentiated from their signalized counterparts in that 

their operation takes place without the presence of a traffic signal, and they include 

intersections with stop control, yield control and no traffic control.   

 

This study gives broad comprehensive analysis of crash frequency and severity at 

unsignalized intersections; hence, aiming at achieving four main objectives. The first one is 

improving crash prediction through using a reliability process in terms of the Bayesian 

updating concept. This concept was used for updating the coefficients of the fitted negative 

binomial (NB) models, as well as for reducing uncertainty (or standard error) estimates 

associated with the parameters. The second objective aims at identifying those geometric, 

traffic and driver-related factors contributing to injury severity at unsignalized intersections 

using the binary probit framework. 

 

The third objective aims at improving crash prediction as well, but using a data mining 

technique that could yield high prediction performance, which is the multivariate adaptive 

regression splines (MARS) technique. MARS could efficiently accommodate nonlinearities 

usually found in crash data. For this study’s scope, angle crashes were used in the analysis. 

Finally, the fourth objective aims at introducing some research applications and 

countermeasures as a remedy for alleviating those safety deficiencies identified in this study. 

Hence, the main idea was to present to the readers different ways to deal with crash 

frequency (i.e., total and angle crash frequencies), as well as crash severity analysis on 

locations that were not extensively addressed; unsignalized intersections. For this, the study 

is attempting to provide beneficial information to the readers; both methodology-wise and 

application-wise. 
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2. BACKGROUND 

Traditional NB models are widely used in the prediction of crash frequencies at intersections 

and have been applied extensively in different highway safety studies (Harwood et al., 2000; 

Lord and Bonneson, 2006). The NB model could efficiently accommodate over-dispersion 

observed in crash count data (i.e., variance is greater than the mean); hence, it is more 

preferable than the Poisson model.  

 

Another approach well accepted by safety researchers is the Bayesian framework. A 

Bayesian formulation combines prior and current information to reach a final estimate for the 

expected safety performance of the site being evaluated (Persaud et al., 2009). Empirical 

Bayes (EB) and full Bayes are the two types of Bayesian approaches. The full Bayesian 

approach has been suggested lately as a useful (however complex) alternative to the EB 

approach that can better account for uncertainty in the data. The full Bayesian approach 

provides more flexibility in selecting crash count distributions. The EB concept was 

extensively used in crash analysis, and was originally developed to control the regression-to-

the-mean effect in before-and-after studies evaluating the effects of specific traffic safety 

countermeasures. An example is using the EB approach for testing the reduction of crash 

rates at a certain location when introducing a specific countermeasure (Powers and Carson, 

2004). Also, the EB estimates were used for identifying black spot locations (Saccomanno et 

al., 2001) by computing the difference between the results of some predictive models and the 

EB estimate.  

 

For analyzing injury severity, researchers have employed various statistical techniques, and 

those techniques have been used extensively in traffic safety analysis. Examples of those 

techniques are the multinomial logit, nested logit, and ordered probit models. Abdel-Aty 

(2003) used the multinomial logit, nested logit and ordered probit frameworks to identify 

those factors affecting injury severity at toll plazas. He concluded that the multinomial logit 

model produced poor results when compared to the ordered probit model. Also, the author 

found that the ordered probit model is better than the nested logit model due to its simplicity. 

In addition to toll plazas, he used the ordered probit model to compare those factors that 

affect injury severity at other locations, including roadway sections and signalized 

intersections.  

 

For the ordered probit framework, Quddus et al. (2002) analyzed motorcycle’s injury severity 

using a 9-year crash data in Singapore. An unexpected result found is that a higher road 

design standard increases the probability of severe injuries and fatalities. Kockelman and 

Kweon (2002) used the ordered probit formulation to investigate the risk of different injury 

levels for single and two-vehicle crashes. They concluded that pickups and SUVs are less 

safe than passenger cars for single-vehicle crashes. However, in two-vehicle crashes, they 

found them to be safer for their drivers and more dangerous for the passengers. Duncan et 

al. (1998) used the ordered probit framework to examine occupant characteristics as well as 

roadway and environmental conditions that influence injury severity in rear-end crashes 

involving truck-passenger car crashes. Two models were developed, the first with the basic 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib22
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib38
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib41
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib41
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib43
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4XN0SDS-2&_user=2139851&_coverDate=11%2F08%2F2009&_alid=1123452046&_rdoc=1&_fmt=full&_orig=search&_cdi=5794&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000054275&_version=1&_urlVersion=0&_userid=2139851&md5=959b1de03a0c001bf9c5279e6e646946#bib43
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exogeneous variables, and the second with interactions among those exogeneous variables. 

They found that there is an increased severity risk for high speed crashes, those occurring at 

night, for women, and when alcohol is involved. 

 

Recently, new pioneering statistical methods for modeling and predicting crashes were 

proposed that are very comparable to NB and Poisson models. Examples of those methods 

are neural networks (Mussone et al., 1999; Abdelwahab and Abdel-Aty, 2002), Bayesian 

neural networks (Xie et al., 2007; Riviere et al., 2006) and support vector machine “SVM” (Li 

et al., 2008). However, neural networks models suffer from their interpretation complexity. 

For this, Bayesian neural networks were introduced, and as an example, Xie et al. (2007) 

applied the Bayesian neural networks in predicting crashes, and found that they are more 

efficient than NB models. Li et al. (2008) applied a simpler technique than the Bayesian 

neural networks, which is SVM, to data collected on rural frontage roads in Texas. They fitted 

several models using different sample sizes, and compared the prediction performance of 

those models with the NB and Bayesian neural networks models. They found that SVM 

models are more efficient predictors than both NB and Bayesian neural networks. 

 

A promising data mining (machine learning) technique explored in this study is the MARS 

technique that was introduced by Friedman (1991). MARS is considered a nonparametric 

technique since it does not require priori assumption regarding the relationship between both 

dependent and independent variables. This technique is effective while analyzing complex 

structures in the data such as nonlinearities and interactions. Crash data are those types of 

data that are characterized by a nonlinear relationship between the predictors and the 

dependent variable. Also, MARS is a regression-based technique, not suffering from the 

“black-box” limitation. 

 

The application of the MARS technique can be found in Put et al. (2004) and Attoh-Okine et 

al. (2003). As an example, Put et al. (2004) concluded that MARS has some advantages 

compared to the more traditionally complicated techniques such as neural networks. Attoh-

Okine et al. (2003) used the MARS technique to develop a flexible pavement roughness 

prediction model, and concluded that MARS allows easy interpretation of the pavement, 

environmental and traffic predictors detected in the model. 

 

From the abovementioned studies, in spite of the fact that the Bayesian concept (particularly 

empirical Bayes) was extensively used in traffic safety analysis, a reliability method based on 

full Bayesian updating to reduce the uncertainties from the predictive models has not been 

extensively applied to date. Hence, the NB and log-gamma likelihood functions were 

examined in this study in the Bayesian updating procedure using informative and non-

informative priors. 

 

Also, to the authors’ knowledge, almost no study addressed injury severity at unsignalized 

intersections, where most studies analyzing safety at unsignalized intersections (e.g., 

Kulmala, 1997; Vogt and Bared, 1998) have focused on exploring those factors affecting 

crash frequency. Therefore, an essential objective of this study is to investigate injury 

severity at unsignalized intersections for exploring the effect of traffic and roadway covariates 
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on crash injury severity. The MARS technique is worth investigation as it has the advantage 

of accounting for nonlinearities in crash data, and for improving prediction.  

   

3. METHODOLOGICAL APPROACHES 

3.1 Bayesian Updating Framework 

The Bayesian updating used both the NB and log-gamma likelihood functions while updating 

the coefficients of the NB models. For applying the Bayesian updating framework with the 

log-gamma likelihood function, the log-gamma Bayesian model of crash frequency is: 

 

ii

T

ii hXC
^

)exp()exp(                                                                                 (1) 

 

where: Ci is the number of crashes, Xi is the vector of variables, 



 is the vector of 

coefficients for these parameters, 
^

  is the best estimate of the crash prediction model, and 

hi = exp( i ) is the error term that has the one parameter gamma distribution with mean = 1, 

and variance  2 equals the over-dispersion parameter. 

 

The NB Bayesian model uses the same functional form as shown in Equation (1); however, 

the error term is described by the NB distribution. The prior distribution of 



 is updated using 

the following formula: 

 

)()()(  pLcf                                                                                              (2) 

where: 



L   is the likelihood function that contains observations regarding the model that 

are used to update the prior joint distribution of parameters 



p  . The resulting posterior 

distribution of the parameters is obtained after determination of the normalization constant c. 

 

The formula used to describe the log-gamma likelihood function in this study is: 

   

)]exp()([)(
^

iiCpL                                                                            (3)                                         

 

In this study, both non-informative and informative priors were explored. For both priors, two 

likelihood distributions were examined, the NB and log-gamma distributions. The informative 

prior uses known information and often result in lower uncertainty in the posterior 

distributions for each of the parameters being updated. The non-informative prior reflects a 

lack of information at the beginning of the analysis and can be used to estimate the joint 

distribution of the parameters



f  . As the parameters 



 considered in this study are 

diffuse, the non-informative prior is a constant and absorbed by the normalization constant c, 

except for the parameters describing the one-parameter log-gamma distribution ( g ) and 

negative binomial distribution ( ). These two parameters are limited to the positive domain; 

therefore the non-informative prior takes the form of 1/ g  and 1/ , respectively. 
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As the informative prior distribution need not be exact to obtain accurate posterior results, it 

is assumed in this paper that the parameters follow a multinormal distribution. This was 

applied for the NB and log-gamma likelihood functions with informative priors. The 

multinormal prior distribution is specified according to: 

 

)]()(
2

1
exp[

)2(

1
)(

1

2/12/











 MMp T

n                              

(4)

      

 

where: M  is the mean parameter vector, 
  is the covariance matrix determined so as to 

have a desirable confidence interval for the updated parameters, and n is the total number of 

parameters being estimated.  

 

For the case of the NB likelihood function updated using an informative prior in Equation (4), 

the authors and the research team selected the mean parameter values based on expert 

traffic engineering judgment and opinion. To illustrate this point, for example, it is expected 

that the logarithm of annual average daily traffic (AADT) increases crash frequency at 

intersections, as shown in Wang and Abdel-Aty (2006), hence, it was assigned a high 

positive sign (e.g., +1). Other new variables such as the presence of right and left turn lanes 

on the major approach were based on the engineering assessment. The presence of a right 

turn lane on each major approach is expected to reduce crash more than the existence on 

one approach only. Hence, the presence of one right turn lane on each approach was 

assigned a value of -1, and on one approach only was assigned a value of -0.5. The 

covariance matrix was assigned values that could yield a 70% confidence interval, by 

assuming the standard deviation is equal to or greater than the parameter mean estimate 

(i.e., a coefficient of variation of one).  

 

For the log-gamma likelihood with informative prior, M  is the mean parameter vector 

determined from the posterior estimates of the log-gamma likelihood with non-informative 

prior, and 
  is the covariance matrix determined from the same posterior estimates. As 

the unsignalized intersection data were used to estimate these posterior statistics, a set of 

additional 162 three and four-legged intersection data was collected by the research team 

from a neighboring county (Seminole County) and used to populate the log-gamma likelihood 

function for the second updating to avoid using data twice. As an illustration, for the 3-legged 

model, the values 0, 1, 1 and 10.5 correspond to an intersection having no stop sign on the 

minor approach, one right turn lane on each major approach, one left turn lane on each 

major approach and a natural logarithm of AADT of 10.5.  

 

The normalization constant in Equation (2) is computed according to:

  



c  L  p  d 
1

                                                                           
               

(5)
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where the integral is over as many dimensions as the order of 



. There are many numerical 

approaches for computing the posterior statistics, including crude Monte Carlo simulation, 

importance sampling, and Markov chain Monte Carlo (MCMC) simulation. 

 

An importance sampling method of computing the Bayesian integrals is adopted in this study 

based on the approach shown by Gardoni et. al. (2002). To make sure that the importance 

sampling method yielded robust results, an established MCMC algorithm was utilized for 

comparison purposes. Under a sufficient number of simulations for both the importance 

sampling and MCMC methods, there was no significant difference in the posterior statistics. 

Therefore, the importance sampling approach was adopted for the remainder of the study.  

 

The joint sampling distribution is calculated based on a Nataf distribution (Nataf, 1962). The 

mean is obtained from the maximum likelihood estimate of 



 and the covariance is obtained 

from the negative inverse of the Hessian of the log-likelihood function, evaluated at the 

maximum likelihood estimate. For clarification purposes, the functional form of the NB 

prediction model is estimated as: 

 

)exp(  T

ii Xp                                                                                                   (6)            

 

where: ip is the predicted crash count at intersection i; Xi and 



 are previously explained in 

Equation (1). 

3.2 Probit Framework 

Ordered probit, binary probit and nested logit frameworks were adopted in this study for 

analyzing crash injury severity (only the binary probit models are shown to economize on 

space). Florida’s officers classify severity as any of the five levels; property damage only 

(PDO), possible injury, non-incapacitating injury, incapacitating injury and fatal (within 30 

days after the accident). For applying the ordered probit model, the response has the five 

possible levels; whereas for applying the binary probit model, the response is either severe 

or non-severe. Severe injury includes incapacitating injury and fatal injury, and non-severe 

injury included PDO, possible injury and non-incapacitating injury. The functional form of the 

binary probit model is: 

 

  xypLogitLog '

1

0 )0( 



                                                                       (7)                               

 

where: 0 and 1 (=1- 0 ) are the probability of non-severe and severe injuries, respectively; 

y is the response (either “0” for non-severe injury or “1” for severe injury);  is the intercept; 

 is the vector of non-intercept coefficients; and x is the vector of all variables except the 

intercept. 
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Details about the probit method can be found in Abdel-Aty (2003). As for the nested logit 

formulation, please refer to Ben-Akiva and Lerman (1985) and Abdel-Aty and Abdelwahab 

(2004). 

3.3 Multivariate Adaptive Regression Splines “MARS” Technique 

According to Friedman (1991), the MARS method is “a local regression method that uses a 

series of basis functions to model complex (such as nonlinear) relationships”. The global 

MARS model is defined according to Put et al. (2004) as shown in Equation (8). 

 

)(
1

0

^

xBaay m

M

m

m


                                                                                            (8) 

where: 
^

y  is the predicted response; a0 is the coefficient of the constant basis function; 

 

Bm(x) is the mth basis function, which can be a single spline function or an interaction of two 

(or more) spline functions; am is the coefficient of the mth basis function; and  

 

M is the number of basis functions included in the MARS model. 

 

According to Put et al. (2004), there are three main steps to fit a MARS model. The first step 

is a constructive phase, in which basis functions are introduced in several regions of the 

predictors. The second step is the pruning phase, in which some basis functions are deleted. 

In the third step, the optimal MARS model is selected from a sequence of smaller models. 

 

As indicated in Put et al. (2004), the first step for describing the three MARS steps is created 

by continually adding basis functions to the model. Basis functions in MARS consist of a 

single spline function or a product (interaction) of two (or more) spline functions for different 

predictors (Put et al., 2004). Those basis functions are added using forward stepwise 

procedure. Basis functions could have either one left-sided or one right-sided truncated 

function defined by a given knot location, as shown in Equations (9) and (10), respectively.  

 

                                         txxt q  ;)(  

  ])([ qtx                                                                                                         (9) 

                            

                                         0; otherwise                                       

                                        

                                         txtx q  ;)(  

 

  ])([ qtx                                                                                                         (10) 

                            

                                         0; otherwise 
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From Put et al. (2004), the predictor as well as knot location having the most contribution to 

the model, are selected first. Also, at the end of each iteration, the introduction of an 

interaction is checked for model improvement. As shown by Put et al. (2004), the order of 

any fitted MARS model indicates the maximum number of basis functions that interact (i.e., in 

a third-order MARS model, the interaction order of the splines is no more than three).  

 

The second step is the pruning step, where the backward deletion procedure is applied and 

the basis functions with the least contribution to the model are eliminated. The pruning is 

based on the generalized cross-validation (GCV) criterion (Friedman, 1991). The GCV 

criterion is used to find the overall best model from a sequence of fitted models, and to avoid 

the model’s over-fitting. Finally, the third step deals with selecting the optimal MARS model 

based on the prediction characteristics of various fitted MARS models.  

3.4 Random Forest Technique 

Random forest is one of the promising machine learning techniques proposed by Breiman 

(2001) for selecting important variables from a set of variables. This technique showed 

promising results for variable selection (as opposed to classification and regression trees) as 

indicated in Harb et al. (2009). For more details about random forest, readers are 

encouraged to refer to Kuhn et al. (2008) and Harb et al. (2009).  

 

4. DATA COLLECTION AND PREPARATION 

The analysis conducted in this study was performed on around 2500 unsignalized 

intersections (specifically 2498) collected from six counties in Florida. The county selection 

was based on its geographic location to represent the Northern, Southern, Central, Eastern 

and Western parts. These data are considered the most comprehensive data collection effort 

in Florida. 

 

Randomly-selected state (major) roads (SRs) were selected in each of the six counties, then 

the 2498 unsignalized intersections were then identified along these SRs using “Google 

Earth” and “Video Log Viewer Application”. This application is an advanced tool developed 

by FDOT, and possesses two video perspectives, the “right view” and the “front view”. The 

“right view” provides the opportunity of identifying whether a stop sign and a stop line exist or 

not. The “front view” identifies the median type as well as the number of lanes per direction 

clearly. The Geometric, traffic and control fields of the collected intersections were merged 

with the Crash Analysis Reporting System “CAR” database for the 4 years “2003-2006”. 

 

From the 2498 unsignalized intersections, 1955 were 3-legged intersections, and 543 were 

4-legged. For the crash summary, 6088 crashes occurred in “2003-2004”, of which 3900 

occurred at 3-legged intersections, and 2188 occurred at 4-legged intersections. Moreover, 

6446 crashes occurred in “2005-2006” (4169 and 2277 crashes at 3 and 4-legged 

intersections, respectively). 
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New important roadway and traffic covariates were explored in this study that were not 

extensively examined before. Examples of those new roadway covariates are the existence 

of crosswalks on the minor and major approaches, effect of various minor approach control 

types (e.g., stop sign, no control and yield sign), various sizes of intersections, intersection 

type (whether it is a regular unsignalized intersection, access point or ramp junction), various 

median types on the major approach (open, closed, two-way left turn lane, etc.), distance 

between unsignalized intersections and signalized ones (from both the upstream and 

downstream aspects), distance between successive unsignalized intersections, and left (or 

median) shoulder width. Figure 1 illustrates the upstream distance measure between 

unsignalized and signalized intersections. An important traffic covariate explored in this study 

is the surrogate measure for AADT on the minor approach, which is represented by the 

number of through lanes on this approach. The AADT on the minor approaches was not 

available for most of the cases, since they are mostly non-state roads.  

 

 

Figure 1: Upstream Distance Measure between Unsignalized and Signalized Intersections 

 

Three and four-legged intersections were analyzed separately in this study since both 

intersection types have different maneuvers and operating characteristics (Jonsson et al., 

2009). For the Bayesian updating analysis, the use of the NB framework was appropriate 

since data over-dispersion was detected. As for the severity analysis, for either 3 or 4-legged 

dataset, the percentage of non-severe injury was around 90%. 

 

5. RESULTS AND DISCUSSIONS 

5.1 Bayesian Updating Analysis 

Before applying the Bayesian updating analysis, two NB crash frequency models at 3 and 4-

legged intersections were fitted. The two years “2003-2004” were used for calibrating the 

models, and the two years “2005-2006” were used for prediction and for examining the 

updating performance. Of the identified factors affecting total crash frequency at unsignalized 

intersections were AADT on the major road, existence of stop signs, configuration of the 

intersection, number of right and/or left turn lanes, median type on the major road, and left 

and right shoulder widths. Afterwards, the full Bayesian updating approach was used to 

Upstream distance 
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update the coefficients of the models using the log-gamma and NB likelihood functions for 

each of the non-informative and informative priors. Hence, four Bayesian-structure models 

were examined; non-informative prior with a log-gamma likelihood function, non-informative 

prior with an NB likelihood function, informative prior with an NB likelihood function, and 

informative prior with a log-gamma likelihood function. 

 

Mathematica (Wolfram Mathematica 6) was used to perform the Bayesian updating 

procedure for both the 3 and 4-legged NB models. There is no built-in code for executing the 

Bayesian updating concept; hence this was done by writing a code for estimating the 

posterior estimates of the parameters. The main objective was to update the distribution of 

the parameters in the NB model for more accurate prediction of crashes and to reduce 

uncertainty of the associated predicted crashes. The before and after updating mean 

parameter estimates for the NB and the four Bayesian updating structures for the 4-legged 

model are shown in Table 1. 

 

From Table 1, the coefficient estimates using the non-informative and informative priors with 

NB as the likelihood function are close to those before updating. On the other hand, using 

the non-informative prior with log-gamma as the likelihood function, as well as the second 

Bayesian iteration structure led to different coefficients for some parameters. Also, it is 

noticed that structure 4 led to the least standard errors (bolded values) for the parameters, 

compared to the other three structures. The Bayesian model with structure 4 (with log-

gamma as the likelihood function) is the best Bayesian-structure model, since it has the 

lowest AIC (and DIC) value.  

 

Comparing the standard errors (a surrogate measure for uncertainty) for those parameters 

from the fitted NB model before updating and the best Bayesian-structure model (structure 4) 

after updating shows that there is always an uncertainty reduction after updating the 

parameters. The highest uncertainty reduction is 61.39% for the “log_AADT” variable. Also, 

to assess the prediction performance of the four Bayesian models after updating and the NB 

model before updating, three measures of effectiveness (MOE) were used; mean absolute 

deviance (MAD), mean square prediction error (MSPE) and the overall prediction accuracy, 

as shown in Table 2. 
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Table 1: Parameter Estimates for the 4-legged Model Before and After the Bayesian Updating Framework (for 4 Different Structures) 

 

 

NB Model Before 

Updating 

Non-informative 

Prior (Log-gamma *) 

(Structure 1)  

Non-informative 

Prior (NB *) 

(Structure 2) 

Informative Prior  

(NB *) 

(Structure 3) 

Second Bayesian 

Updating Iteration 

Using Posterior from 

Structure 1 

(Log-gamma *) 

(Structure 4) 

Parameter Variable Description Estimate 
Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 

Intercept  -13.4765 5.1569 -5.3639 2.6324 -14.0285 5.6094 -11.4059 3.3946 -9.8359 2.0104 

stop_sign_mnr 2 
One stop sign exists on each minor 

approach 
0.5636 0.2606 0.5567 0.2225 0.5799 0.2748 0.5012 0.2143 0.3355 0.1984 

stop_sign_mnr 1 
One stop sign exists on one of the 

minor approaches 
--- a --- --- a --- --- a  --- a  --- a  

major_RT 2 
One right turn lane exists on each 

major road direction 
0.6775 0.3673 0.4828 0.3193 0.6839 0.4379 1.083 0.2358 0.5388 0.2755 

major_RT 1 
One right turn lane exists on only 

one major road direction 
-0.6274 0.3725 -0.2075 0.3027 -0.6384 0.391 -1.028 0.2774 -0.286 0.2473 

major_RT 0 No right turn lane exists --- a --- --- a --- --- a  --- a  --- a  

minor_through 2 
Two through movements exist on 

both minor approaches (one on 

each minor approach) 

-1.0664 0.3851 -1.2026 0.3475 -1.0578 0.4379 -0.602 0.2025 -1.1567 0.2807 

minor_through 1 
One through movement exists on 

one minor approach only 
--- a --- --- a --- --- a  --- a  --- a  

major_MDT 4 
A two-way left turn lane median on 

the major road 
0.4737 0.2412 0.5101 0.2049 0.4874 0.2486 0.2217 0.1217 0.3732 0.1464 

major_MDT 1 An open median on the major road ---a --- ---a --- ---a  ---a  --- a  

log_AADT 
Natural logarithm of the section 

annual average daily traffic on the 

major road  

1.3501 0.4761 0.6270 0.2412 1.3995 0.5127 1.1693 0.3118 1.0465 0.1838 
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NB Model Before 

Updating 

Non-informative 

Prior (Log-gamma *) 

(Structure 1)  

Non-informative 

Prior (NB *) 

(Structure 2) 

Informative Prior  

(NB *) 

(Structure 3) 

Second Bayesian 

Updating Iteration 

Using Posterior from 

Structure 1 

(Log-gamma *) 

(Structure 4) 

Parameter Variable Description Estimate 
Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 

SLDWIDTH_num 
Right shoulder width on the major 

road (in feet) 
0.0818 0.0503 0.0802 0.0402 0.0826 0.0567 -0.0029 0.0092 0.0936 0.0325 

ISLDWDTH_num 
Left shoulder width near the 

median on the major road (in feet) 
-0.1443 0.1023 -0.0657 0.0763 -0.1728 0.1145 -0.1618 0.072 -0.0912 0.0631 

Dispersion  0.2889 0.1321 0.3521 0.066 0.4218 0.1779 0.3717 0.1582 0.2696 0.0345 

AIC 
b
  283.65 111.26 184.15 190.1 42.96 

DIC 
c
  --- 112.67 184.02 180.37 30.52 

* Used likelihood function 
a Baseline 
b Akaike Information Criterion  
c Deviance Information Criterion 
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Table 2: MOE Values for the Five 4-legged Models (Before and After Bayesian Updating) 

 
Before Bayesian 

Updating 
After Bayesian Updating 

MOE 

NB Model 

Before 

Updating 

Non-informative 

Prior (Log-gamma) 

(Structure 1) 

Non-

informative 

Prior (NB) 

(Structure 2) 

Informative 

Prior (NB) 

(Structure 3) 

Second Bayesian 

Updating 

Iteration Using 

Posterior from 

Structure 1 (Log-

gamma ) 

(Structure 4) 
MAD 

1
 1.79 1.79 1.80 1.80 1.71 

MSPE 
2
 5.55 4.98 5.52 6.33 4.98 

Overall 

Prediction 

Accuracy 
3
 

0.68 0.92 0.71 0.81 0.84 

1 
frequencycrashedictedfrequencycrashActual

sizeSample
MAD Pr

1
 

     2 
2)Pr(

1
frequencycrashedictedfrequencycrashActual

sizeSample
MSPE  

 

3 Overall prediction accuracy is estimated by dividing the total predicted crashes by the total observed crashes at the collected 

intersections in the prediction dataset “2005-2006” 

 

From Table 2, the two best models are structures 1 and 4 (for the log-gamma likelihood 

function). It can be noted that structure 1 has the highest overall prediction accuracy (0.92), 

followed by structure 4 (0.84); however, structure 4 was deemed the best Bayesian-structure 

model, as it has a lower MAD value and there is little difference between both prediction 

accuracies. This indeed demonstrates the importance of using the log-gamma likelihood 

function as a valid distribution for updating the parameters. Thus, in conjunction with previous 

findings, these results show the significant effect of applying the Bayesian updating approach 

to increase the prediction accuracy, with structure 4 being the best Bayesian model. 

5.2 Crash Injury Severity Analysis 

To achieve the second objective for exploring those geometric, traffic and driver-related 

factors affecting crash severity, the binary probit framework was used, as shown in Table 3. 

From Table 3, regular unsignalized intersections are those intersections having distant 

stretches on the minor approaches; whereas access points include parking lots at plazas and 

driveways that are feeding to the major approach. For the size of the intersection (e.g., 2x4), 

the first number represents the total number of approach lanes for the minor approach, while 

the second represents the total number of through lanes for the major approach. 
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Table 3: Binary Probit Estimates for 3 and 4-legged Unsignalized Intersections 
 Three-Legged Model Four-Legged Model 

Variable Description Estimate 
a
 P-value Estimate 

a
 P-value 

Intercept -0.5872 (0.8890) 0.5089 0.6682 (0.6980) 0.3384 

Natural logarithm of AADT on the major road -0.1015 (0.0592) 0.0866 -0.1643 (0.0651) 0.0117 

Natural logarithm of the upstream distance to the nearest signalized intersection  0.0528 (0.0255) 0.0383 N/S b  

Natural logarithm of the downstream distance to the nearest signalized intersection  0.0639 (0.0265) 0.0161 N/S  

No stop line exists on the minor approach 0.1133 (0.0629) 0.0718 N/S  

A stop line exists on the minor approach --- c  N/S  

Posted speed limit on major road < 45 mph (72.4 km/hr) -0.1252 (0.0633) 0.0481 -0.2547 (0.0722) 0.0004 

Posted speed limit on major road >= 45 mph (72.4 km/hr) --- c  --- c  

Skewness angle <= 75 degrees N/S  0.3183 (0.1178) 0.0069 

Skewness angle > 75 degrees N/S  --- c  

No right turn lane exists on the major approach -0.2139 (0.1413) 0.1302 -0.1964 (0.1106) 0.0758 

One right turn lane exists on only 1 major road direction -0.2363 (0.1464) 0.1066 0.0133 (0.1236) 0.9142 

One right turn lane exists on each major road direction --- c  --- c  

No left turn lane exists on the major approach 0.0036 (0.0751) 0.9613 N/S  

One left turn lane exists on only 1 major road direction 0.1124 (0.0607) 0.0641 N/S  

One left turn lane exists on each major road direction --- c  N/S  

15 <= At-fault driver’s age <= 19 (very young) -0.2720 (0.1496) 0.0692 N/S  

20 <= At-fault driver’s age <= 24 (young) -0.2360 (0.1480) 0.1109 N/S  

25 <= At-fault driver’s age <= 64 (middle) -0.1837 (0.1391) 0.1867 N/S  

65 <= At-fault driver’s age <= 79 (old) -0.1401 (0.1591) 0.3785 N/S  

At-fault driver’s age >= 80 (very old) --- c  N/S  

Right shoulder width on the major road 0.0209 (0.0113) 0.0651 N/S  

Daylight lighting condition -0.4425 (0.0864) <0.0001 N/S  

Dusk lighting condition -0.6063 (0.1696) 0.0004 N/S  

Dawn lighting condition -0.3626 (0.2316) 0.1175 N/S  

Dark (street light) lighting condition -0.2314 (0.0971) 0.0172 N/S  

Dark (no street light) lighting condition --- c  N/S  

Access point unsignalized intersections 0.4426 (0.2853) 0.1209 N/S  

Ramp junctions -4.1439 (0.1987) <0.0001 N/A d  

Regular unsignalized intersections 0.4640 (0.2798) 0.0972 N/S  

Unsignalized intersections close to railroad crossings --- c  N/S  

“1x2”, “1x3” and “1x4” intersections 4.8632 (0.1987) <0.0001 N/A  

“2x2” and “2x3” intersections -0.1546 (0.2140) 0.4701 N/S  

“2x4”, “2x5” and “2x6” intersections 0.0419 (0.2064) 0.8391 N/S  

“2x7” and “2x8” intersections 0.1258 (0.2489) 0.6132 N/S  

“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections 0.0174 (0.2199) 0.9367 N/S  

“4x2”, “4x4”, “4x6” and “4x8” intersections --- c  N/S  

Intersection is in Brevard County -0.1314 (0.1216) 0.2798 0.1706 (0.1460) 0.6467 
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 Three-Legged Model Four-Legged Model 

Variable Description Estimate 
a
 P-value Estimate 

a
 P-value 

Intersection is in Hillsborough County -0.1444 (0.1018) 0.1562 -0.0534 (0.1166) 0.0975 

Intersection is in Leon County -0.6443 (0.1109) <0.0001 -0.2390 (0.1442) 0.0109 

Intersection is in Miami-Dade County -0.4746 (0.1070) <0.0001 -0.3263 (0.1281) 0.6467 

Intersection is in Orange County -0.2244 (0.1041) 0.0312 -0.0477 (0.1331) 0.7198 

Intersection is in Seminole County --- c  --- c  

Percentage of trucks on the major road -0.0096 (0.0085) 0.2612 N/S  

Log-likelihood at convergence -1869 -1039 

Log-likelihood at zero  -1971.1 -1095.7 

AIC 3804 2100 
a Standard error in parentheses     b N/S means not significant      c Baseline     d N/A means not applicable   

 

5.2.1 Three-legged Model Interpretation 

From Table 3, as anticipated, increasing the natural logarithm of AADT on the major road 

(which inherently means increasing AADT) significantly reduces severe injury probability. As 

the AADT increases, speed decreases, and hence fatal/severe crashes decrease as well, 

whereas crashes occurring at higher AADT (like rear-end and sideswipe crashes) are not 

generally severe. This is consistent with the finding of Klop and Khattak (1999). 

 

There is a significant increase in severity probability for an increase in the natural logarithm 

of the upstream and downstream distances to the nearest signalized intersection. As the 

distance between intersections increases, drivers tend to drive at (or above) the speed limit 

on that stretch (which is mostly high), and thus accident severity increases as well, which is 

an expected outcome. 

 

Having no stop lines on the minor approach significantly increases severity probability, when 

compared to having stop lines. This is a reasonable outcome, emphasizing the importance of 

marking stop lines at unsignalized intersections for reducing severity.  

 

Lower speed limits (less than 45 mph “72.4 km/hr”) significantly reduce severe injury 

probability, when compared to speed limits greater than 45 mph “72.4 km/hr”. This conforms 

to the study done by Malyshkina and Mannering (2008) and Renski et al. (1998). 

 

An interesting finding is that having 1 left turn lane on one of the major approaches 

significantly increases severe injury probability, when compared to having 2 left turn lanes.  

 

The highest reduction in the probability of having severe injury occurs in young and very 

young at-fault drivers, when compared to very old drivers. This result is consistent with the 

study by Abdel-Aty et al. (1998), who concluded that young and very young drivers are 

associated with fatal injury reduction as well. Although very old drivers tend to drive slowly 

and carefully, their weak physical condition, as well as their higher reaction time could 

explain the higher severity risk. 
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Increasing the right shoulder width significantly increases the severity probability. This can be 

attributed to the fact that wide shoulders encourage to inappropriately using the shoulder; 

hence, there is a high sideswipe and rear-end crash risk, which might be severe at relatively 

high speeds. This conforms to that of Noland and Oh (2004), who found that increasing the 

right shoulder width increases severity. 

 

The highest significant reduction in the probability of having a severe injury occurs at dusk, 

when compared to dark with no street lights. This might be attributed to the relatively lower 

conflict risk. 

 

Although ramp junctions are usually controlled by a yield sign, and merging maneuvers are 

more dominant, those intersection types reduce severe injury than intersections nearby 

railroad crossings.  

 

The highest increase in the probability of severe injury occurs at “1x2”, “1x3” and “1x4” 

intersections, when compared to intersections with four lanes on the minor approach. 

Intersection’s configurations (“1x2”, “1x3”  and “1x4”) could exist at ramp junctions with yield 

signs, where merging and diverging maneuvers are frequent; hence traffic conflicts and 

serious injuries are more likely, especially at higher speeds.  

 

The second highest reduction in the probability of severe injury occurs at Miami-Dade 

County, when compared to Seminole County. Miami-Dade County is the heaviest-populated 

and most urbanized county used in this study (U.S. Census, 2000); thus, more crash 

frequency is expected to occur. However, less severe/fatal injuries could happen due to high-

dense roadways (relatively high AADT).  

 

Increasing the percentage of trucks on the major road reduces the probability of severe 

injury. This could be interpreted as drivers are very attentive while overtaking or driving 

behind trucks. However, the probit estimate is not statistically significant. 

5.2.2 Four-legged Model Interpretation 

From Table 3, a skewness angle less than or equal to 75 degrees increases severity 

probability, when compared to skewness angle greater than 75 degrees, since sight distance 

is a problem. This illustrates the significant importance of designing intersections with 

skewness angle around 90 degrees, to reduce severe crashes. 

 

As found in the 3-legged model, the highest reduction in the probability of severe injury 

occurs at Miami-Dade County, compared to Seminole County.  

 

As expected, increasing the natural logarithm of AADT on the major road significantly 

reduces severe injury probability. Accordingly, speed limits less than 45 mph “72.4 km/hr” 

significantly reduce severe injury probability, when compared to speed limits greater than 45 

mph “72.4 km/hr".  
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5.3 Angle Crash Analysis Using the MARS Technique 

Angle crashes were specifically used in this analysis since they were the most frequent crash 

type at the collected intersections (also conformed by Summersgill and Kennedy, 1996; 

Layfield, 1996). Two NB models were initially fitted for highlighting those geometric and traffic 

factors affecting angle crash occurrence at 3 and 4-legged unsignalized intersections. The 

significant variables were traffic volume on the major road, the upstream distance to the 

nearest signalized intersection, the distance between successive unsignalized intersections, 

median type on the major approach, percentage of trucks on the major approach and size of 

the intersection. 

 

The MARS technique has three main applications. The first one dealt with a comparison (in 

terms of prediction capability) between the NB and MARS models while treating the response 

in each of them as a discrete variable (angle crash frequency). The training dataset used for 

calibration was 70% of the total data, while the remaining 30% was used for prediction.  

 

The second application dealt with treating the response in the MARS models as a continuous 

one by considering the natural logarithm of crash frequency. This was proposed due to the 

high prediction capability of the MARS technique while dealing with continuous responses, as 

shown by Friedman (1991) and indicated in Kim (2000). 

 

The third application dealt with combining MARS with the random forest technique for 

screening the variables before fitting a MARS model. Thus, important covariates were 

identified using random forest, then fitted in a MARS model, and a comparison between the 

MARS models (with the covariates initially screened using random forest) and MARS models 

(with the covariates initially screened from the NB model) was held. The angle crash MARS 

model at 4-legged intersections with different basis functions’ coefficients using the R 

package is presented in Table 4. From Table 4, there is an increase in angle crashes with the 

increase in the logarithm of AADT (which inherently means an increase in traffic volume). As 

AADT relatively increases, vehicles coming from the minor approach find it difficult to cross 

the major road due to congestion; hence angle crash risk might increase. However, the 

increase is not significant. 

 

Table 4: Angle Crash Frequency Model at 4-Legged Unsignalized Intersections Using MARS 

* Standard error in parentheses      

Basis Function Basis Function Description Estimate * P-value 

Intercept Intercept 2.1314 (5.3912) 0.6928 

Log_AADT Natural logarithm of AADT on the major road 0.6831 (0.5134) 0.1840 

Hills_County Hillsborough County -5.5343 (1.9559) 0.0049 

Orange_County Orange County -1.4406 (0.4560) 0.0017 

Lanes_3 
“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” 

intersections 
-6.3123 (2.2146) 0.0046 

Acc_Point Access points -1.3737 (0.3382) <0.0001 

Hills_County *  Lanes_3 An interaction term 7.4050 (1.8259) <0.0001 
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Also, it is noticed that there is an interaction term. Hence, the two variables forming the 

interaction term should be interpreted together. The interaction term is between Hillsborough 

County and unsignalized intersections with three total lanes on the minor approach. The 

equation representing this interaction term is: “-5.5343 * Hills_County – 6.3123 * 

Size_Lanes_3 + 7.4050 * Hills_County * Size_Lanes_3”. 

 

The interpretation for the formed equation is described as follows: for the case of 

Hillsborough (i.e., Hills_County = 1), the equation becomes: “(-6.3123 + 7.4050) * 

Size_Lanes_3 – 5.5343”. 

 

Hence, the equation can be simplified as “1.0927 * Size_Lanes_3 – 5.5343”. Thus, the 

individual coefficient of “Size_Lanes_3” is “1.0927”. This means that, in Hillsborough County, 

more angle crash frequency are observed at intersections with three total lanes on the minor 

approach, when compared to other intersection sizes used in the analysis (e.g., two lanes).  

5.3.1 Comparing MARS and NB Models 

The prediction comparison between the MARS models and the corresponding NB models, 

while treating the response as a discrete one (i.e., crash frequency), is shown in Table 5 on 

the upper part. From this part, it is noticed that the MSPE values for MARS in the 3 and 4-

legged models are lower than the corresponding NB models. As for the MAD values, they are 

lower for the NB models. However, there is still a good potential in applying the MARS 

technique.  

 

Table 5: Comparison between Various Fitted MARS Models in terms of Prediction 

 Three-legged model Four-legged model 

MARS NB MARS NB 

MARS and NB (discrete response) 
MAD 

1
 1.27 1.07 1.08 0.85 

MSPE 
1
 3.08 3.96 2.95 3.30 

MARS (continuous response)
 2
 

MAD 
1
 1.01 --- 0.69 --- 

MSPE 
1
 0.74 --- 0.61 --- 

MARS with random forest 

(continuous response) 
2
 

MAD 
1
 0.99 --- 0.69 --- 

MSPE 
1
 0.74 --- 0.58 --- 

1 MAD and MSPE values are normalized by the average of the response variable 

2 Response is the natural logarithm of angle crash frequency  

5.3.2 Examining Fitting MARS Model with Continuous Response 

To examine the higher prediction capability of MARS while dealing with continuous 

responses (Friedman, 1991), the two MARS models using the same significant variables 

from the NB models were fitted while considering the natural logarithm of angle crash 

frequency as the response. The assessment criteria for the generated MARS models are 

shown in Table 5 on the middle part. 
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By comparing the MAD and MSPE values of the fitted MARS models on the upper and 

middle parts of Table 5, it is noticed that the MAD and MSPE values shown in the middle part 

are lower. The estimated MSPE values are close to “zero”, indicating a high prediction 

capability. This demonstrates the higher prediction performance of MARS while dealing with 

continuous responses.  

5.3.3 MARS in Conjunction with Random Forest 

Since the MARS technique showed promising prediction performance, especially while 

dealing with continuous responses, an additional effort to examine screening all possible 

variables before fitting a MARS model was attempted using the random forest technique via 

the R package. The random forest technique was performed with 50 trees grown in the two 

training datasets. This number was found large enough to obtain stable results.  

 

Figure 2 shows the purity values for every covariate in the 4-legged dataset. The highest 

variable importance ranking is the natural logarithm of AADT, followed by the county location, 

then the natural logarithm of the distance between two unsignalized intersections, until 

ending up with the existence of crosswalk on the major approach. The resulted variable 

importance ranking demonstrates the significant effect of the spatial covariates on angle 

crashes, with the distance between successive unsignalized intersections being the most 

significant. To screen the covariates, a cut-off purity value of “10” was used. This leads to 

selecting seven covariates (labelled from “1” till “7” in Figure 2). Four out of seven variables 

were previously found significant in the 4-legged NB model (logarithm of AADT, county, 

logarithm of the distance between successive unsignalized intersections and intersection 

size). Those seven covariates were then fitted using MARS, with the response being the 

natural logarithm of crash frequency, as it revealed the most promising prediction capability. 

 
 

Figure 2: Variable Importance Ranking Using Node Purity Measure 

Node Purity Values 
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To assess whether there is an improvement over the two generated MARS models using the 

significant variables from the NB model, the same evaluation criteria are shown on the 

bottom part of Table 5. Comparing the MAD and MSPE values on the middle and bottom 

parts of Table 5, it is noticed that there is always a reduction (even if it is small) in the MAD 

and MSPE values in the bottom part, hence better prediction accuracy. This demonstrates 

that using MARS after screening the variables using random forest is quite promising. 

 

6. CONCLUSIONS  

This study investigated multiple safety applications at unsignalized intersections using the 

most comprehensive data (around 2500 intersections) collected in the state of Florida. 

Various crash analyses were investigated through analyzing total crashes, crash injury 

severity, and one of the most frequent crash types at unsignalized intersections; angle 

crashes. Broad analysis was conducted and multiple applications were concluded; hence 

making this study a comprehensive one.  

 

This study also presented predictive models with relatively large number of predictors; 

however, this was believed to yield high prediction performance, as shown in the study. 

Since crashes are an interaction between various geometric, roadway and traffic-related 

factors, models representing those factors are more capable of providing high prediction 

performance. This was also shown by El-Basyouny and Sayed (2009), as well as Mayora 

and Rubio (2003). For example, El-Basyouny and Sayed (2009) included also various 

geometric and traffic variables in their fitted accident prediction models. Also, Mayora and 

Rubio (2003) found that the combinations of several factors are better predictors of crash 

rates. The prediction performance mainly relies on the method used, the quality of the data, 

how the data were prepared, and not specifically on the number of predictors in the models. 

 

A reliability analysis (in terms of the full Bayesian updating framework) was used for reducing 

uncertainty in predicting crash frequency at unsignalized intersections caused by the 

probabilistic NB model. A broad exploration of both non-informative and informative priors 

was conducted using both the NB and the log-gamma likelihood functions. It was concluded 

that the full Bayesian updating framework for updating the parameter estimates of 

probabilistic models is promising, and the log-gamma likelihood function is strongly 

recommended as a robust distribution for updating the parameters of the NB probabilistic 

models (yielded 84% prediction accuracy for the 4-legged model). However, the use of the 

estimates from the NB regression models (without updating) still led to acceptable prediction 

accuracy (around 70% for the 4-legged model). 

 

The second analysis attempted to provide deep insight into factors affecting crash injury 

severity at 3 and 4-legged unsignalized intersections using the binary probit framework, and 

it showed several significant traffic, geometric and driver-related factors affecting safety 

characteristics. Traffic factors include AADT on the major approach, and the number of 

through lanes on the minor approach (surrogate measure for AADT on the minor approach). 
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Geometric factors include the upstream and downstream distance to the nearest signalized 

intersection, existence of stop lines, left and right shoulder width, number of left turn 

movements on the minor approach, and number of right and left turn lanes on the major 

approach. As for driver factors, young and very young at-fault drivers were always associated 

with the least fatal/severe probability compared to other age groups. Also, heavily-populated 

and highly-urbanized areas experience lower fatal/severe injury. For its simplicity, the binary 

probit models could be used to model crash injury severity at unsignalized intersections if the 

objective is to identify the factors contributing to severe injuries in general rather than the 

specific injury category.  

 

The third analysis investigated multiple applications of a new methodology “MARS” for 

analyzing angle crashes, which is capable of yielding high prediction accuracy. Those 

significant factors affecting angle crash frequency deduced using the traditional NB model 

were traffic volume on the major road, the upstream distance to the nearest signalized 

intersection, the distance between successive unsignalized intersections, median type on the 

major approach, percentage of trucks on the major approach and size of the intersection. 

 

MARS yielded the best prediction performance while dealing with continuous responses (the 

logarithm of angle crash frequency). Additionally, screening the covariates using random 

forest before fitting MARS model showed the best results. Hence, the MARS technique is 

recommended as a robust method for effectively predicting crashes at unsignalized 

intersections if prediction is the sole objective. 

 

7. STUDY APPLICATIONS  

For the study applications and countermeasures, which are deemed as the fourth objective, 

the results from the different methodological approaches can be applicable to diagnose some 

safety deficiencies identified. From the crash severity analysis, some countermeasures to 

reduce injury severity at unsignalized intersections could be done by designing safety 

awareness campaigns encouraging enforcement on speeding. Also, having a 90-degree 

intersection design is the most appropriate safety design for reducing severity. Moreover, 

making sure of marking stop lines at unsignalized intersections is quite essential. From 

analyzing angle crashes, since the increase in the upstream distance to the nearest 

signalized intersection from the unsignalized intersection of interest decreases angle 

crashes, it is recommended to have a relatively large spacing between signalized and 

unsignalized intersections.  

 

For future direction, validating the Bayesian updating procedure could be investigated at 

other locations rather than unsignalized intersections, such as signalized intersections, toll 

plazas and roadway stretches. Also, using other techniques for variables’ screening (such as 

classification and regression trees “CART”) before fitting a MARS model might be interesting. 
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