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ABSTRACT 

This paper deals with a container port capacity expansion problem in which the projected 
demand shows a relatively high level of uncertainty. An important characteristic of most 
capacity expansion problems is the recognition of economies of scale when considering 
infrastructure investments. In many problems, backlogging of demand is not permitted and 
since the demand tends to increase on the long run, excess capacity will be usually observed 
in certain periods of time. In our analysis, the objective is to minimize the net present value of 
investments on ship berths along the lifespan of the project, plus ship costs and berth 
operating costs. Ship waiting times are estimated with an appropriate queuing model. In the 
literature concerning container terminals, an Erlang queue / /kM E c  is usually assumed, 
where c  is the number of berths working in parallel. In the last years container ship size has 
been steadily increasing, and this trend is likely to continue in the future. With increasing 
costs, ship waiting times must be kept within reasonable limits. Ship waiting times are 
introduced in the model as constraints which are based on best maritime practices among 
leading container terminals of the world. Adopting a continuous time representation, the 
optimization model assumes stochastic demand evolution and employs a Dynamic 
Programming formulation in order to find the best epochs to install new berths. Finally, the 
model is applied to the container terminal of the port of Rio Grande, south of Brazil. 

Keywords: port planning, capacity expansion, dynamic programming 

1 INTRODUCTION 

The optimization of logistics activities within maritime container terminals has attracted the 
attention of researchers and practitioners for more than forty years. Novaes and Frankel 
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(1966) analyzed the generation of unitized cargo (container, pallet, roll-on, roll-off) in a port 
and its relation to liner shipping, with the aid of a bulk queue model. In 1968, the World Bank 
issued a seminal working paper on the optimum determination of berths at a port (De Weille 
and Ray, 1968). Taborga (1969), in his pioneering work on port planning, applied dynamic 
programming and queuing models to define the optimal epochs to add new berths to the 
terminal, and at same time choosing the best port technology with the objective of 
maximizing seaport returns. The economic appraisal of port investments was analyzed by 
Goss (1967). Over the past recent years, the typical operating scheme of a container 
terminal has changed significantly. Larger container ships that call a modern port are often 
“classified ships” (Daganzo, 1990; Huang et al., 2007), in the sense that an appropriate berth 
slot is allocated to the vessel prior to its arrival. A non-classified ship, on the other hand, may 
have to wait until a berth of appropriate length becomes free to accommodate it. This means 
that the classical queuing models, that assume a first-in, first-out servicing discipline, are no 
long adequate to represent this kind of port operation. New empirical approximate queuing 
approaches have been proposed to partially bypass this kind of limitation (Jagerman et al., 
2004; Huang et al., 2007; Morrison, 2007). In parallel, a number of researchers have relied 
on simulation techniques in order to plan resource utilization at a container terminal (Legato 
and Mazza, 2001; Kia et al., 2002; Shabayek and Yeung, 2002), thus bypassing the queuing 
formulation drawback. But one serious limitation of the simulation approach in the context of 
developing countries is the lack of reliable data to be fed into the model. For instance, at the 
container terminal (Tecon) of the Port of Rio Grande, in southern Brazil, although classified 
ships do benefit from the time slot practice (reserved quay space), there is no reliable data 
that would permit a robust analysis of the effects of ship classification on waiting time and 
quay usage. 

The use of containers for intercontinental maritime transport has dramatically increased 
around the world in the last decade. From about 150 million twenty feet equivalent units 
(TEU) in 1996, the world container turnover has reached 496 million TEU in 2008. A further 
increase is expected in the upcoming years. Although the flow of container in Brazil is 
approximately 1% of the world movement only, the participation of containers in the country’s 
foreign trade has increased more than 11% a year in the period 1996-2008 (Rebelo et al., 
2008). 

Brazil is following a trajectory of economic growth. Part of this growth is fueled by 
international trade, which is expected to continue to increase in line with Brazilian economic 
expansion. In such a scenario, port container terminals play an important role and represent 
a key asset of Brazil’s logistics system. In fact, the country has one of the longest coastlines 
in the world and the existence of container terminals in points of the Atlantic coast is an 
important advantage in international trade. However, in spite of this location advantage, the 
Brazilian port system suffers from some critical problems that contribute to high logistics 
costs throughout the economy. Among other limitations, the lack of harbor capacity, 
excessive ship waiting times, and inefficiencies in the port administration model are worth 
mentioning. Thus, improvements in port efficiency, particularly in container operations, would 
have a major impact on reducing logistic costs in the country. 

Container transshipment to and from hub ports is the fastest growing segment of the 
container port market today (Baird, 2006). Reflecting the international trend, some port 
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authorities in developing countries like Brazil are already considering this operating 
alternative with regard to future development of leading container terminals. But apparently, 
scale economies in South American liner shipping are not significant enough to justify the 
move, as compared to regions such as northern Europe and Asia. 

These factors, among others, indicate that the use of robust operations research models in 
container port development analysis, and in the context of developing countries, is not an 
easy task. Forecasting future scenarios depends on a number of intervening factors, such as 
liner shipping strategies and operating schemes, regional port competition, government 
policies, and technology evolution (Daschkovska and Scholz-Reiter, 2009; Günther and Kim, 
2005; Kim and Günther, 2007). As a consequence, the forecasted demand levels tend to 
show a relatively high degree of uncertainty. The inexistence of reliable operational data, on 
the other hand, precludes the use of more detailed methods of analysis such as simulation 
techniques, for example. And third, the inefficiencies in port administration are reflected in 
historical short-term solutions, without a long-term planning of port development. 

The objective of this paper is to present a robust, yet simple approach to develop a long-term 
container terminal planning model that will only require the basic data available in most 
developing country ports. The first part, analyzed in Section 2, is a mathematical formulation 
which allows for the introduction of demand volatility in the capacity expansion model. 
Section 3 presents the queuing model developments that allow estimation of ship waiting 
times. Section 4 is dedicated to describe the container terminal of the Port of Rio Grande, 
Brazil, to analyze its operational data, and define the planning decision structure to be 
implemented into the optimization model. The structure of the model is analyzed in Section 5, 
including the description of a dynamic programming model used to minimize the net present 
value of berth and ship costs associated to the container terminal. The dynamic approach to 
solve transport and logistics problems is receiving increasing attention in the literature 
(Scholz-Reiter et al, 2009). Finally, in Section 6, the application of the model to the container 
terminal in question is presented and the results are discussed. 

2 CAPACITY EXPANSION WITH DEMAND VOLATILITY 

2.1 The Cost Function 

Capacity expansion is the process of adding facilities over time in order to satisfy rising 
demand (Manne, 1961). Capacity expansion decisions generally add up to a massive 
commitment of capital. The efficient investment of capital depends on making appropriate 
decisions in expansion undertakings, in such a way the demand remains satisfied over an 
extended time period, with a minimum discounted lifespan cost. The literature shows, along 
the last forty years, an evolving sequence of capacity expansion models (Manne, 1961, 
1967; Freidenfelds, 1980, 1981; Higle and Corrado, 1992; Bean et al., 1992; Novaes and 
Souza, 2005). The basic way to economically minimize a project lifespan cost is to compute 
its Net Present Value (NPV), where investments and costs are discounted using a 
continuous interest rate r . The project will increase its own value by adopting the investment 
plan that minimizes NPV. The classical NPV calculation presupposes that unknown-risk 



Long-Term Planning of a Container Port Terminal Under Demand Uncertainty and Economies of Scale 
NOVAES, Antonio G. N.; SCHOLZ-REITER, Bernd; SILVA, Vanina M. Durski; ROSA, Hobed 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
4 

future monetary values are summarized by their expected values. Assuming no backlogs in 
demand are admitted, the net present value is given by 

        0
1 0

exp exp exp
Tn

i i T
i t

NPV I I r SV rT C t rt dt
 

         (1) 

where 0I  is the investment at time 0t  , iI  is the value of the money inversion of order i  

 1 i n  , r  is the annual continuous interest rate, i  is the time instant when the 

investment iI  is made,  C t  is the system operating cost at time t , T  is the duration of the 

project, and TSV  is the salvage value of the project at time T . 

The cost functions associated with port operations reported in the literature vary slightly 
among authors (Huang et al., 2007). Usually these equations incorporate ship cost and berth 
operating cost in different forms. One widely used cost function in container terminal analysis 
is (Huang and Wu, 2005; Huang et al., 2007) 

            1 +s q bC t U t t W t t U t      (2) 

where  C t  is the total operating cost at time t ,  sU t  is the ship cost per unit time,  bU t  

is the berth operating cost per unit time,  t  is the mean ship arrival rate,  qW t  is the 

average ship waiting time, and  1 t  is the ship mean berth occupancy time (see Section 

3.1 for more detailed explanation of variables  t ,  qW t  and  t ). The term within 

brackets in the right-hand side of equation (2) represents the ship turn-around time 
expressed as the sum of the ship waiting time and the ship service time. 

2.2 Economies of Scale 

An important characteristic of most capacity problems is the recognition of economies of 
scale, i.e. large installations usually cost less per produced unit than small ones. But, if the 
demand level is continuously rising on the long run and demand backlogging is not 
permitted, excess capacity will occur (Figure 1). Thus, there is a trade-off between scale 
economies and excess capacity cost, leading to a compromised optimal solution. 

 

Figure 1 - The classical capacity expansion process 
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The term “learning curve” effect (Couto and Teixeira, 2005) states that the more time a task 
is performed, the less time it will be necessary to workers do each subsequent iteration. 
Learning curve theory states that as the quantity of units produced doubles, labor costs will 
decrease at a predictable rate. The experience curve, on the other hand, is broader in scope, 
since it encompasses far more than just labor cost. Now, each time cumulative volume 
doubles, value added costs (including construction, administration, logistics, etc.) fall by a 
constant and predictable percentage. Mathematically the experience curve is described by a 
power law function 

    1mI I m   (3) 

where  1I  is the value of the building cost of the first unit,  mI  is the value of the investment 

on the thm  unit, and   is the elasticity of building cost with regard to the number of units built 

in sequence. A experience curve that depicts a 20% cost reduction for every doubling of the 
number of built units is called a “80% experience curve”, indicating that unit cost drops to 
80% of its original level when installing the second item of the series. Let   be the 

experience factor, obtained via (3) as 

    2 1 2I I    . (4) 

Applying logarithms to (4) one has  

 ln ln 2    (5) 

and the total investment related to the installation of m  units in series is 

    1

1

m
m

j

I I j 



  . (6) 

Let im  be the number of berths to be installed simultaneously at time i , and  im
iI  the 

corresponding investment. To incorporate returns to scale in the analysis, we substitute 

variable ( )im
iI  for iI  in equation (1), thus adding the decision variable im  into the model. 

2.3 Capacity Expansion Model 

2.3.1 The linear expansion model 

Manne, in his seminal approach to capacity expansion problems (Manne, 1961) departed 
from a deterministic demand formulation growing at a constant linear rate. Under this 
approach it is assumed that the facility has an infinite economic life and, whenever demand 
catches up with the existing capacity, x  additional unities of same capacity are installed. No 
backlog in demand is admitted. The objective is to determine the optimal capacity addition x , 
and the consequent time interval T  between increments. The time origin is the point 0t , 

followed by regeneration points at 0t T  , 0 2 t T  , 0 3 t T  , that represent instants at 

which the previously existing excess capacity has just been wiped out.  Note that when the 
system has reached 0t T  , the future looks identical with the way it appeared at time 0t . 

The investment necessary to add a capacity increment of size x , is assumed to be given by 

a relationship in the form of a power function, with economies of scale 
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    , 0; 0 1aI x kx k a    . (7) 

The demand, in this case, varies linearly over time and is expressed td t , with 0 . 

The objective function to be minimized is of type (1). Let  NPV x  be a continuous function 

of x  that represents the sum of all discounted future investments looking forward from a 
point of regeneration t . We may write down the following recursive equation (Manne, 1961; 

Novaes and Souza, 2005) 

    a rtNPV x kx e NPV x  . (8) 

The first term on the right hand side of (8) represents the investment cost incurred at the 
beginning of the current cycle. Since it is assumed that the facilities have an infinite 
economic life, the salvage value of the project in this case is nil. The second term represents 
the sum of all installation costs incurred in subsequent cycles, discounted from the next point 
of regeneration back to instant 0t , with a continuous interest rate r . It follows directly that 

    1 exp

akx
NPV x

rt


 
. (9) 

But, since t x  , expression (9) becomes 

    1 exp

akx
NPV x

rx 


 
. (10) 

The optimal expansion size x


 is obtained by minimizing  NPV x  with respect to x , and the 

optimal expansion time interval t  is given by t x     (Manne, 1961,1967). Manne (1961) 

extended his deterministic model to a stochastic demand formulation, with an underlying 
linear growing rate   and standard variation   (Hull, 1997, Novaes and Souza, 2005). Such 

a model is based on Brownian motion theory, specifically the Bachelier-Wiener diffusion 
process in continuous time. One is interested in determining the instant t  where demand first 

exceeds the installed capacity. At that time additional facilities will be supplied. In stochastic 
process terminology, one seeks the first passage time at point x , with probability  ,u t x . The 

following difference equation applies to the problem (Manne, 1961; Novaes and Souza, 
2005) 

      , , ,u t t x pu t x x qu t x x        (11) 

where p  is the probability that one incremental step x  is directed to increasing x , and 

1q p   is the probability that the step x  is directed to the opposing direction. Expanding 

expression (11) according to Taylor’s theorem up to terms of second order, and dividing both 
sides by t , one gets 

 
         2 2

2

, , ,
=

2

u t x u t x x u t xx
q p

t t x t x

   
 

    
. (12) 

The Laplace transform of  ,u t x  is 
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    
0

, , rt

t

U r x u t x e dt






  , (13) 

where r , in this formulation, is both the transformer parameter and the discount interest rate 
(Manne, 1961). Applying the Laplace transform to each side of (12), and recalling the 

boundary condition  0, 0u x  , a second-order linear differential equation with respect to x  

is obtained (Manne, 1961) 

 
     

2

2 2 2

, ,2 2
, 0

U r x U r x r
U r x

x x


 

 
  

 
. (14) 

The characteristic equation of  ,U r x  has two real roots 

 
2

1 2 2

2
1 1

r 
 

 
   

  
 and 

2

2 2 2

2
1 1

r 
 

 
   

  
 (15) 

The general solution of the differential equation (14) is of the form 

      1 2, x xU r x A r e B r e    (16) 

where  A r  and  B r  are constants whose values depend upon boundary conditions of the 

problem (Manne, 1961). After some transformations and simplifications, one gets 

   2, xU r x e . (17) 

Note that 2  is a function of only  ,  , and r  being independent of the quantity x . Since 

 ,u t x dt  represents the probability with which exactly t  years have elapsed between two 

successive points of regeneration (points between which the total demand grows by an 
amount x ), the probability analogue of (8) is (Manne, 1961) 

      
0

,a rt

t

NPV x kx u t x e NPV x dt






   . (18) 

Just as in the deterministic case, the first term on the right hand side of (18) is the present 
cost of installing a facility of capacity x . The second term of (18) is the probability that the 
next point of regeneration will occur in t  units of time, discounting the corresponding cost 
back to the present, and integrating over all t . Departing from (18), and recalling the basic 

definition of Laplace transform (13), one has (Manne, 1961) 

 
 

 1 ,

aNPV x x

k U r x



. (19) 

Substituting (17) for  ,U r x  into (19), one has 

    21 exp

akx
NPV x

x



. (20) 

From (15) it follows that 2 0   for 0   and 0r  . Comparing (10) and (20), it is seen that 

the following equivalence holds 
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2

2 1 2 1r r
 
 


           

     
, (21) 

meaning the linear stochastic model can be solved through an equivalent deterministic model 
in which the original discounting rate r  is substituted by the modified rate r  (Srinivasan, 
1967; Freidenfelds, 1980; Bean et al., 1992; Higle and Corrado,1992). Manne (1961) 
indicated that, in the deterministic model, the optimal expansion size x


 increases as the 

discount rate r  is lowered. For the probabilistic model, Manne (1961) showed that the 

greater the standard variation  , the lower will be the value of r , and the higher will be the 
optimal value x


. 

2.3.2 Generalization to non-linear demand case 

Assume now that  d t , the demand for product or service, is a semi-Markov process 

  , 0d t t   (Bean et al., 1992). One is interested in selecting a sequence of capacity 

expansions to satisfy the demand  d t  over an infinite horizon at minimum expected 

discounted cost using a continuous interest rate r . A continuous semi-Markov process 

  , 0d t t   is said to be transformed Brownian motion with underlying rate   and 

standard variation   if there exists a non-negative increasing deterministic transformation h  

such that     d t h d t , where   , 0d t t   is (linear) Brownian motion with drift 0   

and volatility 0  . The function h  is referred to as the transforming function. Bean et al. 

(1992) demonstrated that if    , 0h d t t   is a transformed Brownian motion as defined 

above, the interest rate r  to be used in the equivalent deterministic problem is given by the 
same expression (21) obtained by Manne for demand following an ordinary (linear) Brownian 

motion. In other words, r  is independent of the transformation h . In more general terms, 

Bean et al. (1992) demonstrated that a stochastic capacity expansion problem may be 
solved via a deterministic problem formulation in which (a) the random expansion epochs 

 x  are replaced by their expected values; and (b) the original continuous discount factor r  

is replaced by its equivalent value r  given by (21). In general terms, capacity expansion 
models with general cost structures and with demand based on a transformed Brownian 
motion can be solved with an equivalent deterministic problem and an equivalent discount 
factor (Bean et al., 1992). 

2.3.3 First passage time 

The Laplace transform of the probability distribution  ,u t x , given by equation (17), allows to 

compute the expected value and the variance of the first passage time to the level x . One 

has (Novaes and Souza, 2005) 

    
0

,

r

U r x x
E

r






  


   and (22) 
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         
22 2

2

2 3

0

,
var

r

U r x x
E E

r

   
 



  
        

. (23) 

For the general case with     d t h d t  one has (Novaes and Souza, 2005) 

    h x
E 


   and     

2

var E
 


 
  
 

. (24) 

3 QUEUING MODELS APPLIES TO CONTAINER PORT PLANNING 

3.1 The Mathematical Approach 

Researchers and practitioners have applied queuing models to port planning for more than 
forty years (Novaes and Frankel, 1966; De Weille and Ray, 1968; Taborga, 1969; Noritake, 
1978; Noritake and Kimura, 1983; Huang et al., 2007). The first papers dealt with general 
cargo operations, with no product specialization, for which the queue / /M M c , in Kendall’s 

notation (Page, 1972), was usually employed. For this type of queue, ship arrivals are 
Poisson distributed, the service time is represented by an exponential distribution, there are 
c  service units (berths) working in parallel, and the queue discipline is first-come, first-

served. Novaes and Frankel (1996) utilized bulk queues in their research work, but the 
objective of the analysis was not to compute ship waiting times, but the cargo generating 
process at the port. Along the years, the handling of cargo at ports became more and more 
specialized. As a consequence, the queue models that best fit the ship waiting time process 
have changed, with the Erlang 

1 2
/ /k kE E c  and the / /kM E c  types being the most 

commonly used in port planning (Huang et al., 1995; Kozan, 1997; Huang et al., 2007). 

Let   be the mean ship arrival rate at the terminal and   the mean service rate. The 

average berth utilization factor   is given by c    (Saaty, 1961; Page, 1972) and it 

must be less than the unit to let the queue attain a steady state solution. For the queue 
/ /M M c , the mean waiting time can be expressed mathematically in an explicit form. It is 

customary to represent the mean waiting time as a dimensionless figure, expressing it as a 
fraction of the mean service time. For the queue / /M M c  one has (Saaty, 1961; Page, 

1972) 

  1q      for  1c   and (25) 

    2

0 1 !
c

q c c c      for 1c   (26) 

where q  is the mean waiting time expressed as a fraction of the mean service time qW , and 

0  is the probability of having zero elements in the waiting line, given by 

 
   

 

0
1

0

1

! ! 1

j cc

j

c c

j c


 












. (27) 
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Practical results for the queuing system with general independent interarrival times, a 
general service-time distribution, and c  servicing units in parallel, denoted / /GI G c  in 

Kendall’s notation, cannot be expressed mathematically in explicit form (Cosmetatos, 1976). 
However, some particular configurations of the queue / /GI G c , have been solved 
mathematically. For instance, the queue / /1M G  can be solved with the Pollaczek-

Khintchine equation (Saaty, 1961) 

 
  21
2 1

s
q s

E t
W v



   

 (28) 

where qW  is the average waiting time,  sE t  is the average service time, and sv  is the 

coefficient of variation of the service time distribution function, given by  s ts sv E t . 

The mathematical solution for the queue / /M D c , with Poisson input and constant service 

times is analyzed by Saaty (1961) and Page (1972), but the process, based on an iterative 
numerical computation, generates rounding errors that will build up in the calculation of the 

steady state probabilities   , 0,1, 2,P j j    of the number of units in the queue (Page, 

1972). Thus, the values obtained with the direct mathematical approach are used as initial 
values for an iterative procedure intended to improve the quality of the results. By the same 
token, the queue / /D M c , with constant interarrival times and negative exponential service 

time distribution, can be also solved mathematically in a similar way, yielding the steady state 

probabilities   , 0,1, 2,P j j    which are computed at points in time where customers arrive 

(Page, 1972). On the other hand, the queue / /D D c , with constant interarrival time and 

constant service time, is a trivial case where no queuing occurs, unless the service system is 
overloaded (Page, 1972). 

A particular case of the series / /GI G c  is based on the Erlang distribution, whose 

probability density function is 

      1 1 !, 0, 1, 2, ,k k xf x x e k t k        (29) 

where x  is the random variable under analysis,   is the mean arrival rate, and k  is the 
order of the distribution. The Erlang distribution can be viewed as being composed by k  

phases, each phase formed by a negative exponential distribution with the same average 
length 1  . The value of k  must be an integer, and for 1k   the distribution repeats the 

negative exponential distribution. The mean and the standard variation for the Erlang 

distribution (29) are  E x k   and x k  , respectively. 

In general, the Erlangian queue is represented by 
1 2

/ /k kE E c , where the interarrival times 

and service times are distributed according to Erlang distributions of order 1k  and 2k , 

respectively. Page (1972) proposed an interpolation formula to get the waiting times for the 
queue 

1 2
/ /k kE E c , based on the combination of the extreme cases / /M M c , / /D M c , 

/ /M D c  and / /D D c . This interpolation approach will be presented in Section 3.2. More 

complex queues can also be treated mathematically. The reader is referred to Saaty (1961) 
and Takács (1962). 
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3.2 Approximate Methods 

For more complex applications, involving / /GI G c  queues with general independent 

interarrival times and a general distribution of service time, it is customary to use numerical 
tables or approximate formulas to estimate mean waiting times. Page (1972) proposed an 
interpolation formula using the numerical results of the four extreme cases represented by 
the queue cases / /M M c , / /D M c , / /M D c  and / /D D c . As explained, the resulting 
queue length for the / /D D c  case is nil. Expressing the mean waiting time as a fraction of 

the mean service time, Page’s interpolation formula is 

 
           1 2

/ / / / / / / /2 2 2 2 2 21 1k kE E c D M c M D c M M c
a s q s a q a s qq v v w v v w v v w      (30) 

where 
 1 2

/ /k kE E c
q  is the relative waiting time for a 

1 2
/ /k kE E c  queue, and  / /D M cq ,  / /M D cq  and 

 / /M M cq  are the relative waiting times for the queues / /D M c , / /M D c  and / /M M c , 

respectively. In (30), av  and sv  are coefficients of variation of the interarrival time and of the 

service time distribution functions respectively, given by 

  a ta av E t   and   s ts sv E t  (31) 

where at  and st  are the ship interarrival time and the service time, respectively. For the 

Erlang queue 
1 2

/ /k kE E c , one has 11av k  and 21sv k . Page (1972) presented 

numerical results in table format, which requires manual interpolation for intermediate values 
of  . Furthermore, Page’s tables are restricted to 10c  . 

Another approximation, valid for the queue / /kM E c , is (Cosmetatos, 1976; Huang et al., 

2007) 

 
 
 

  0
2

1 1 4 5 2
1 1 1

2 32! 1

c

q

k c
W c

k k cc

   


 

           
    

,   (32) 

where 0  is given by (27). Recalling that  c   ,   1s sE t t  and  q sq W E t , 

substituting in (32), and making the necessary simplifications, one has 

 
 
 

  0
2

1 1 4 5 2
1 1 1

2 32! 1

c
c k c

q c
k k ccc

 




           
    

. (33) 

Since most of the main container terminals in the world show a / /kM E c  queuing system, 

the above formula is extensively used in their planning process. Again, q  in (33) expresses 

the ship waiting time as a fraction of the mean service time. 

Another approximate formula (Sakasegawa, 1976; Morrison, 2007), which is applied to the 
general queue / /GI G c , is defined as 

 
 

2 2 1 2 2

2 1

c
a sv v

q
c




    
      

. (34) 
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A numerical comparison was made among the approximations due to Cosmetatos (1976) 
and Sakasegawa (1976), for the queue 3/ /M E c , which is largely used in container terminal 

planning. For c  in the range 1 to 8 , the results of the two methods agreed quite well. On the 
other hand, Page tables are limited to 10c  , which, together with the table format of the 

results, restrict the applicability of his methodology. The literature shows that the queue 
/ /kM E c , adopted by Cosmetatos (1976), fits most container port cases. Thus, Cosmetatos 

formula (33) was selected to be used in the application described in Section 4. 

4 CONTAINER TERMINAL, PORT OF RIO GRANDE, BRAZIL 

4.1 The Tecon 

Brazil follows a trajectory of higher economic growth, with rates that are expected to surpass 
5% per year. Part of the economic growth is fueled by international trade, which is expected 
to continue to grow in line with Brazilian economic expansion. Brazil’s exports by value and 
by volume have grown significantly during the last thirty years.  More importantly, the data 
indicates that export value has increased more rapidly than export volume. For example, the 
index of manufactured goods by value, increased almost 23-fold over the period examined. 
The volume of these exports, however, increased only about 12-fold over the same period of 
time. Overall, the value of total exports grew 50% more than their volume. Thus, the 
opportunity cost of marginal time spent in logistics activities has become higher. In this 
context, time, reliability, just-in-time delivery, and security are critical considerations now. 
Therefore, the ability to trade with other countries and to grow competitively will be 
increasingly intertwined with the country logistics system (Rebelo et al., 2008). 

In this context, ports are a key asset in Brazil’s logistics context, serving the entire coastline, 
one of the longest in the world. However, in spite of the locational advantage, the port system 
suffers from several critical problems that impair its development and contribute to high 
logistics costs throughout the economy. These include equipment obsolescence, 
inefficiencies in labor development and labor allocation, lack of harbor capacity, and 
inefficiencies in the port administration model. Waiting times for berthing are too high and 
yard space is insufficient in several ports (Rebelo et al., 2008).  But it is well known that 
serving large container ships requires the right treatment of several terminal problems, 
including ensuring adequate depth berths, wider and deeper channels, suitable high-speed 
cargo-handling equipment, a highly productive labor force, and good road and rail 
connections to inland destinations (Ircha, 2001). 

The container terminal of the Port of Rio Grande - Tecon - is located in the southern part of 
Brazil, and is operated on a 24-hour/day basis by a private company, Wilson and Sons, since 
1997, under a 25-year concession period, renewable for an equal time, and granted by the 
Brazilian Federal Government. The main products exported  through the Tecon are tobacco, 
thermoplastic resins, shoes, frozen poultry, furniture, leather, and auto-parts. Presently, the 
terminal has three berths, with a total extension of 850.0 m, and 12.5 m depth. The quay has 
four ship-to-shore gantry cranes Superpost Panamax, and three Gottwald HMK cranes. The 
yard covers a paved area of 250,000 sq.meter, with an additional area of 486,000 sq.meter 
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for future expansions. Container ship waiting times are greater than the ones observed in 
other international leading ports of similar capacity. For instance, 33% of container ships that 
arrived in Rio Grande during 2008, waited more than 12 hours, and 14% waited more than 
24 hours. These figures are similar to the results shown by the Port of Santos, the largest in 
the country, where 35% of ships waited more than 12 hours and more than half of these 
waited more than 24 hours in the same time period (Rebelo et al., 2008). In 2008, the Tecon 
operated 356,575 containers, equivalent to 598,196 TEUs. 

4.2 Data Analysis 

Table 1 shows the distribution of containers (both load and unload), and expressed in TEU), 
among the various ship capacity classes, at the Tecon in 2008. About 45% of the container 
flow was performed by ships in the capacity range 1500-3000 TEU. On the other hand, about 
37% of the movement was done by Post-Panamax ships in the capacity range 4000-5500 
TEU. In 2008, the average number of containers loaded + unloaded per ship call was 
approximately 695 TEU. It can observed in Table 1 that the volume of containers operated 
per ship call, in absolute terms, and considering both loading and unloading, tends to 
increase with ship size (column d). However, when one analyzes the ratio between the 
number of TEU operated per ship call, and the corresponding ship capacity, this index drops 
expressively with ship size. For instance, for ships in the range 5000-5500 TEU, the number 
of containers operated per ship call is only 21% of the ship capacity, while for vessels in the 
500-1000 TEU range, the ratio is more than double that figure. 

Another important index, considered when analyzing terminal productivity, is the average 
number of containers loaded/unloaded per ship-hour. Let   represent the fraction of forty-

foot containers on the total number of boxes. The berth productivity index, expressed as a 
number of containers transferred per hour, per ship (load/unload), can be estimated as 

 
   

1

1
TEU

s

n
pr

E t
 


 (35) 

where TEUn  is the mean number of TEUs transferred per ship call (load/unload) and  sE t  is 

the average berth occupancy time. The variable   did not vary significantly in the period 
2001-2009, with a trend toward 0.70 � , value that has been adopted in the application. 

On the other hand,  sE t  can be estimated as a function of TEUn , as depicted in Figure 2, 

and expressed approximately as 

   0.4170.897s TEUE t n . (36) 

It can been seen that there is a decreasing return to scale in terms of the time necessary to 
load/unload a ship, as a function of TEUn . 

 
 
Table 1 - Port of Rio Grande Tecon: Container movement per ship capacity class 
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(a) 
Ship capacity 

(TEUs) 

(b) 
Number of TEUs 

(load/unload) 
(2008) 

(c) 
% in each 

class 

(d) 
Average nº of 

TEUs operated 
per ship call 

(e) 
Ratio between # of 
TEUs per ship call, 

and ship capacity (%) 

0-500 10,144 1.7 344 73 

500-1000 4,524 0.8 342 46 

1000-1500 36,070 6.0 473 34 

1500-2000 107,043 17.9 572 33 

2000-2500 68,996 11.5 659 28 

2500-3000 92,785 15.5 630 23 

3000-3500 15,298 2.6 655 20 

3500-4000 31,518 5.3 705 19 

4000-4500 86,853 14.5 960 22 

4500-5000 25,121 4.2 797 17 

5000-5500 108,821 18.2 1,093 21 

5500-6000 4,700 0.8 1,156 20 

6000-6500 6,323 1.1 889 14 

TOTAL 598,196 100.0 695 (Average)  

 

As a general rule, the container ships travelling southbound in the Atlantic East Coast of 
South America stop in Santos and proceed directly to Buenos Aires, Argentina. In the way 
back, they stop in Montevideo (Uruguay) and, next, in Rio Grande. Thus, the vessels arrive 
at Tecon with a light load, generally carrying only the containers embarked in Buenos Aires 
and Montevideo, plus the units to be discharged at the Tecon. One important characteristic 
of the Rio Grande’s Tecon operation observed in the last years is that the growth of demand 
is satisfied mostly by increasing the number of ship calls, instead of augmenting the number 
of containers per stop. As a result, the Tecon depth of 12.5 m is not a restriction today and 
probably not in the near future too, but it could be a severe constraint if the shipping lines 
substantially change their operating strategy such as, for instance, the establishment of a 
hub pole in Rio Grande (SCP, 2005). 

Figure 3 shows the monthly evolution of the Tecon throughput from March 2001 to June 
2009. From March 2001 to December 2003 the throughput (expressed in TEU) grew at an 
average rate of 22% a year. Due to the recent international crisis, the Tecon throughput has 
been increasing at a lower rate, but the trend has been changing during the first part of 2010. 

The volatility of the monthly series of throughput, from March 2001 to June 2009, is now 
computed. To do this (Hull, 1997) we convert these absolute monthly values 

  , 0,1, 2,D t t    into relative returns      1 , 0,1, 2,u t D t D t t    , and then taking 

the natural logarithms, thus forming a series 

      ln ln 1 , 0,1,2,u t D t D t t           . (37) 

The standard deviation of  u t  in the series is 0.176m  . Converting it to annual basis, 

one gets the demand volatility 12 0.61mCV    which will be used in our analysis. 
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                   Figure 2 - Relationship between  sE t  and TEUn  

 

 

Figure 3 - Rio Grande’s Tecon: Monthly throughput 2001-2009 (TEU) 

Ship interarrival times at the Tecon are considered next. The analysis of 846 container ship 
arrivals in 2008 led to a mean interarrival time of 10.3 hours. Figure 4 shows the fitting result 
of a negative exponential distribution to the data. Ship service time, on the other hand, 
comprises the period of time the vessel effectively occupies a berth. Analyzing the same 
2008 ship sample, the mean service time was 13.7 hours. An Erlang distribution with 6k   

was fitted to the data, as shown in Figure 5. Although similar studies reported in the literature 
have indicated Erlang distributions of order 3 (Huang et al., 1995, 2007), the Tecon result 
can be justified by the shorter spread of the number of containers loaded/unloaded per ship 
call, as compared to other container ports around the world. 
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In the year 2008, the mean ship waiting time, computed for the sample of 846 container ship 
arrivals, was 12.3 hours. Cosmetatos (1976) equation (33) is applied next to the observed 
2008 data. The number of berths was 3c  , the average berth utilization factor was 

0.45  , and 6k  . Applying (27) one gets 0 0.250   and equation (33) yields 0.071q  . 

Thus, the expected ship waiting time is   0.071 13.7 0.97q sT q E t     hours. This means 

that ship waiting time at the Tecon was twelve times the standard figure in 2008. This result 
is perhaps questionable since the third berth was put into service only in October 2008, but a 
report from the World Bank confirms the excessive ship waiting time at the Tecon (Rebelo et 
al., 2008). 

4.3 Planning Decisions 

The objective of the model is to minimize the net present value of the sum of investments, 
ship cost and berth operating cost that occur along the project lifetime, minus the net present 
value of the project salvage value, all represented by (1). To do this, the variables of the 

optimization model are: (a) the instant  1, 2, ,i i n    when the investment iI  in berths is 

made, and (b) the number im  of berths to be installed simultaneously at time i . 

In addition to the objective function (1) to be minimized, one constraint limiting ship waiting 

time is added to the model. Let  qW t  be the maximum tolerable ship waiting time at instant 

t . Thus, the estimated ship waiting time at time t  must respect the constraint 

  q qW t W . (38) 

 

 

Figure 4 - Ship interarrival time distribution 
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Figure 5 - Ship service time distribution 

On the other hand, the berth loading/unloading productivity index is represented by the mean 
number of containers that are loaded/unloaded per ship, per hour. Considering a project 
lifetime of 25T   years, we divided it into five-year periods, as indicated in Table 2, column 

(a). Column (b), of Table 2, shows the maximum ship expected capacity to be observed in 
each period, varying from 6000 TEU to 14000 TEU. Column (c) shows the required berth 
length to receive ships with the capacities listed in column (b). Column (d) indicates the 
mean ship capacity in each epoch. Column (e) shows the expected number TEUn  of TEUs 

operated per ship call in each time horizon. The mean berth occupancy time  sE t  is 

exhibited in column (f). Finally, the berth productivity index, represented by the mean number 
of containers loaded/unloaded per ship-hour, are shown in column (g). These figures are the 
expected coefficients to prevail during the lifetime of the project. 

The growth of the variable TEUn  at the Tecon was admitted to follow the polynomial 

expression 

   2695 19.11 1.0036TEUn t t t    (39) 

with t  expressed in years. The values of  TEUn t  computed via (39) for the time horizons of 

the project are exhibited in column (e), of Table 2. For each t , the value of  TEUn t  is 

computed. Then, with (36), the variable  sE t  is estimated.  Finally, the values of  pr t  are 

computed using expression (35). 

Column (g), of Table 2, depicts satisfactory berth productivity values to be respected along 
the lifetime of the project. In fact, the productivity of Tecon in 2003 was 21 
containers/ship/hour (SCP, 2005), which has improved substantially during the last years, 
reaching about 30 containers/ship/hour in 2008. Thus, the productivity levels indicated in 
Table 2 represent, in fact, feasible targets, and were adopted in the optimization model. 
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Table 2 - Project berth productivity per time period  

(a) 
Time 

horizon 
(years) 

(b) 
Max. expected 
ship capacity 

(TEU) 

(c) 
Berth 

length (m) 

(d) 
Mean ship 
capacity 
(TEU) 

(e) 

TEUn  
(f) 

 sE t  

(hours) 

(g) 

 pr t  Berth 

productivity    

0 5500 280 3250 695 13.7 30 

5 6000 300 3500 816 16.4 30 

10 8000 340 4700 987 17.7 33 

15 10000 360 6000 1207 19.3 37 

20 12000 380 7100 1479 21.0 42 

25 14000 480 8300 1800 22.8 47 
   Containers/ship/hour 

5 THE PLANNING MODEL 

5.1 The Equivalent Discount Rate 

First, the project basic discount rate is computed based on the Capital Asset Pricing Model 
(CAPM) developed by Sharpe and Lintner forty years ago (Campbell et al., 1997). The 
CAPM was developed, at least in part, to explain the differences in risk premium across 

assets. Let '
fr  be the discrete-time, annual rate of return on the risk-free asset. Consider, 

next, a portfolio involving all types of assets traded in the economy. Let '
Mr  be the average 

rate of return of such a portfolio. The risky assets contemplated by the investor have returns 
that are not known with certainty at the time the investments are made. The CAPM asserts 
that the correct measure of risk of the asset is a coefficient called beta. The basic equation is 

  ' ' ' '
f M fr r r r     (40) 

where 'r  is the expected rate of return, '
fr  is the risk-free rate of return, and   is a measure 

of the relative risk of the asset with reference to the whole portfolio (Campbell et al., 1997). 
The risk-free return is the interest rate offered by entities that are entirely creditworthy during 
the period of a loan, such as the rates paid by the US Treasury and by some European 

government bonds. In the Tecon application we have assumed ' 0.036r   or 3.6%  a year, 
' 0.10Mr   and 1.2  , leading to ' 0.1128r  . The corresponding continuous-time discount 

rate is  'ln 1r r  . 

The equivalent rate of return to be used in the model is given by (21). The demand at time 

zero is assumed to be 0 650,000D   TEU. At time 0t   one has a discrete rate ' 0.12  . 

Then '
0 78,000D     TEU and 0.61 78,000 47,580CV       TEU. Applying 

(21) with 0.1069r  , one has 0.1048r  , value to be used in our analysis. As seen in 

Section 2.3.2, the impact of the stochastic behaviour of demand on the results is totally 
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reflected by the discount rate reduction from r  to r  (Higle and Corrado, 1992; Bean et al., 
1992). 

5.2 Investments and Operating Costs 

In 2008, a 250-meter berth was put to service at Tecon, with a cost of US$ 50 million. 
Assuming an additional of US$ 10 million to cover the acquisition of container cranes, and 
dividing the total investment by the berth length, one has a unit cost of US$ 240,000 per 
meter. Further expansion investments were assumed to be proportional to berth length, 
given in column (c), Table 2. Ship costs, on the other hand, will depend on vessel capacity. 
The daily cost of a container ship, in US dollars, is estimated as 

   27486.8 4758 82.1sU t x x    (41) 

where  sU t  is the ship cost, in US dollars per day, and x  is the mean ship capacity, 

expressed in TEU, and divided by 1000.  It is assumed, in the model, that the mean ship 
waiting time constraint Erro! Fonte de referência não encontrada. follows an exponentially 

decaying function, with 12qW   hours at time 0t  , reaching 2qW   hours at 10t   years, 

and 1qW   at 14t   years, with 1qW   afterwards. In fact, due to budget restrictions, 

inefficiencies in port administration, lack of coordination between the terminal and shipping 
lines and cargo forwarders, among other factors, it is expected that Tecon performance will 
not improve in too short a time. 

With regard to berth operating cost, we assume it depends only on the demand level 
(throughput). In our approach, demand is an external variable, not depending on port costs 
and service level. Additionally, no demand backlog is admitted to occur, i.e. the port will 
provide adequate facilities before full congestion may occur. Consequently, the integral 

   
0

exp
T

b

t

U t rt dt


  in expression (1) is constant, and therefore does not affect the 

minimization of NPV . 

It was admitted that a berth investment is linearly depreciated in 30 years, with nil value at 
the end of its lifespan. Suppose a berth is installed at time t , with an investment tI . The 

salvage value of the berth at time T  (when the project ends) is (see Figure 6) 

 B
t

B

T T t
v I

T

  
  

 
 (42) 

for 0BT T t   , and 0v   otherwise, where BT  is the berth depreciation time. 

5.3 The Dynamic Programming Algorithm 

The dynamic programming concept has been broadly used in the literature to solve 
sequential decision problems of all kinds. Specifically, it can be used to optimize decision 
processes over time, which is the case of the problem treated in this paper. Dynamic 
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Programming is, in essence, a general approach to optimization, rather than a mathematical 
algorithm as, for instance, the Simplex method used to solve linear programming problems. 
One essential feature of the dynamic programming approach is the reduction of a 
multivariate problem to a succession of single variable cases. At each stage of the 
optimization process the analysis of the resulting values of these single variables, with the 
appropriate decision rules, defines a policy. The procedures of dynamic programming are 
based on the Principle of Optimality due to Richard Bellman: an optimal policy has the 
property that, whatever the initial state and the initial decision are, the remaining decisions 
must constitute an optimal policy with regard to the state resulting from the first decision 
(Bellman and Dreyfus, 1962). 
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Figure 6 - Salvage value v  of an investment tI  

In the dynamic programming algorithm developed for this application the stages represent 

the instants  0t t T   for which the model analyses the possibility of introducing 

additional berths. The states of the process, on the other hand, represent the number of 
berths that will be available at stage t , including the ones installed at previous stages plus 
the berths to be added at time t . At each stage of the process the minimum number of 

required berths minM  is externally imposed in order to guarantee   1t   and 

   q qW t W t . These restrictions help in reducing computational time, since the model 

investigates only feasible states. Thus, at each stage, the model first computes the minimum 

required number of berths. Let   0ec t   be the number of berths already in operation at the 

beginning of stage t , and let  m t  e the quantity of berths to be added at that stage. The 

following procedure yields the value of minM : 

Step 0: Initialize  ec t  and make   0m t  . 

Step 1: Make      ec t c t m t   and compute        t t t c t       and    q sW t q E t  . 

Step 2: If   1t  ,  or    q qW t W t , then make     1m t m t   and go back to Step 1. 

Step 3: Return  minM c t . 
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Assuming the two operating restrictions are respected, the maximum number of berths to be 
considered in the analysis is imposed by external considerations, mainly budget constraints 
and physical expansion limitations. In the former procedure the average ship arrival rate is 

defined as      360 24 TEUt D t n     and the berth average servicing rate is 

   1 st E t  , where TEUn  is given by (39) and  sE t  by (36). All states that satisfy 

  1t   and    q qW t W t  are feasible and therefore are candidates to be evaluated 

according to the objective function (1). 

The dynamic programming transitions from the generic stage 1t  to the generic stage 2t  are 

depicted in Figure 7. According to this evolving structure, the problem is solved in backward 
steps adopting the following algorithm (Hastings, 1973): 

Step 0: Initialize the values of  0ec , maxM , and other parameters of the problem. 

Step 1: Assign value zero to the terminal states. 

Step 2: Repeat Steps 3, 4, 5 e 6 for each instant t . 

Step 3: Compute minM  and repeat Steps 4, 5 e 6 for each feasible state. 

Step 4: Repeat Steps 5 e 6 for each capacity expansion decision  m t , until the maximum level 

maxM  is reached. 

Step 5: Compute the objective function value for decision  m t , at the present stage t . 

Step 6: If the present decision is better than the previous one, label it as temporary optimal. 

Step 7: Stop. Return the optimal capacity expansion sequence. 

 

t

 ec t

't

minM

maxM

     ec t c t m t 

 m
t



 

Figure 7 - Schematic evolution of the dynamic programming model 
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6 RESULTS AND CONCLUSIONS 

It is assumed that demand, expressed in TEU, will grow at an annual discrete rate of 12.0% 
a year during the first five years, 9.5 % a year during the next ten years, and 7.5% a year 
thereafter. The terminal is already in operation at time 0t  , with three berths and a 
throughput of 0 650,000D   TEU. The project lifespan is 25T   years, and berths and 

transferring equipments (gantry cranes) are assumed to depreciate in 30 years. The 
expected investment required to install a new berth, with the necessary cranes, is 
approximately US$ 240,000 per meter. Depending on the epoch to build a new berth, the 
expected ship size increases in accordance to column (b), Table 2, and the required berth 
length will vary accordingly as shown in column (c) of the same table. It was assumed a 80% 
experience curve (see Section 2.2), with 0.3219  . In order to estimate average ship 
waiting times, the Cosmetatos formula (33) was employed, assuming a 6/ /M E c  queue 

type, with a threshold value of one hour to take into account ship maneuvering, customs, and 
other formal activities when arriving and departing. 

With the above indicated assumptions the resulting optimal expansion plan is exhibited in 
Table 3. Apart from the three berths already in operation at time 0t  , it would be necessary 

to add five new berths, at different epochs during the project lifespan, as shown in Table 3. 
The capacity expansion at year 8, month 6, has benefitted from scale effect: instead of one 
additional berth, the model pointed out an expansion of two berths, with the second costing 
80% of the first one. Figure 8 shows the evolution of the number of berths required along the 
project lifespan. 

In our application the maximum number of berths to be considered in the analysis is ten, 
meaning a total number of decision variables equal to twenty, which correspond to the time t  

of capacity expansion and the number of berths  m t  to be added simultaneously at time t . 

Of course, in terms of dynamic programming this is a small-size problem. When dealing with 
large problems it is possible that the classical dynamic programming approach may be 
limited by dimensional restrictions. In such a case, approximate dynamic programming 
algorithms (Powell, 2007) can be used. 

Table 3 - Optimal capacity expansion results 

Expansion Date Number of berth to 
be installed 

Berth extension to be 
added (m) 

Investment value 
(US$ million) Year Month 

4 3 1 280 67.2 

8 6 2 2300 = 600 129.6 

13 6 1 340 81.6 

22 3 1 380 91.2 

TOTAL 5 1,600 369.6 

 

Although the model described here is theoretically sound, the container market in the 
globalized world has been changing dramatically in the past years. Container ship sizes are 
increasing steadily, and the requirements to build berths, cranes, and incorporate other 
technologies tend to vary substantially in the next decades. On the operational side, a 



Long-Term Planning of a Container Port Terminal Under Demand Uncertainty and Economies of Scale 
NOVAES, Antonio G. N.; SCHOLZ-REITER, Bernd; SILVA, Vanina M. Durski; ROSA, Hobed 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
23 

number of container terminals in the world are being transformed into hub ports, and at least 
one East Coast South American port will probably follow this trend in the future, dramatically 
changing its technical and operating characteristics. With all that in mind, the use of 
economic analysis as the one described here, in which one assumes operating 
characteristics for a long period of time, seems to be not completely satisfactory for 
investment purposes. But the investor could follow a piece-wise dynamic sequence to do the 
analysis, periodically reviewing the assumptions and introducing new factors as they appear 
along time. 

 

 

Figure 8 - Number of berths required along the project lifespan 
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