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ABSTRACT 

An understanding of drivers’ route choice behavior on the expressway-arterial network is 
important in the ramp metering efficiency studies. Field studies have shown that drivers 
divert to alternative routes after the installation of ramp metering on the network. An efficient 
ramp metering rate scheme should be determined by considering the drivers’ route choice 
behavior. This paper proposes an optimal ramp metering scheme that adopts the probit-
based ideal stochastic dynamic user optimal (p-SDUO) model to describe the drivers’ route 
choice behavior. The probit-based model is chosen in light of its capability to overcome the 
limitations in logit-based model. The p-SDUO is formulated as a fixed point problem which is 
solved by using the method of successive averages (MSA). A modified cell transmission 
model (MCTM) is used to simulate the traffic propagation on the network. MCTM is 
appropriate for this study since it can capture the horizontal queue and shockwaves; fulfill 
first-in-first-out principle and model dynamic traffic interactions across multiple links. A non-
linear optimization model, with p-SDUO as constraints, is developed to optimize the ramp 
metering operation. The objective of the model is to find the optimal ramp metering rate 
scheme that minimizes the total travel time of the expressway-arterial network. The proposed 
model is tested with an illustrative case study of I210W expressway-arterial network in 
Pasadena, California. A comparison study of no-metering and with-metering case is carried 
out. The results show that the proposed model could find a better solution compared to the 
initial one. There is significant number of drivers diverted from the expressway to the arterial 
streets when the ramp metering is installed. In addition, drivers would consider the queuing 
condition at the on-ramps and choose to enter the expressway through the less congested 
on-ramps. 

 
Keywords: Ramp Metering, Stochastic Dynamic User Optimal, Cell Transmission Model, 
Probit Model, Genetic Algorithms 
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INTRODUCTION 

Ramp metering regulates vehicles at the on-ramps from entering into the expressways by a 
proper metering rate pattern. It is a practical traffic control strategy to mitigate traffic 
congestion on the expressway-ramp system. A survey study carried out by Cambridge 
Systematics (2000) have demonstrated the benefits of ramp metering, such as increasing 
expressway’s throughput, reducing total system travel time and enhancing traffic safety. 
Papageorgiou and Kotsialos (2002) gave a comprehensive study on how and why ramp 
metering improves traffic flow. They showed that by using ramp metering, the expressway 
mainline throughput can be increased for about 10-15% which in turn decreased the travel 
time. Theoretically, ramp metering is effective only if the traffic volume on the mainline 
expressway at the section immediately upstream of the ramp is less than the capacity. Under 
this condition, the application of ramp metering could ensure that the traffic volume delivered 
downstream of the ramp does not create a bottleneck due to the excessive demand from the 
upstream. While it is impossible to control the vehicles traveling on the expressway, the best 
choice is to regulate the entry vehicles from ramp. By ramp metering, it could break the 
“platooning” of entering vehicles for a more efficient merging. It could also reduce the 
demand of the expressway-ramp system by encouraging the diversion of vehicles to the 
surface streets (Wu 2001).  
 
There are three types of ramp metering operations, namely fixed-time, reactive or responsive 
and coordinated ramp metering. Fixed-time ramp metering strategies defined the ramp 
metering rate pattern using the historical flow and demand pattern of the expressway-ramp 
system, without real-time measurement. Wattleworth and Berry (1965) were the first 
researchers to propose this type of ramp metering algorithm. The drawbacks of the strategy 
can be easily pointed out. Demands on the network are not constant but change with 
different time period. The occurrence of unexpected events may perturb the traffic condition 
on the road, which lead to travel time variance with the historical data. Reactive or traffic 
responsive ramp metering can address these limitations well. The metering rate pattern will 
be adjusted according to the real-time traffic condition on the expressway-ramp network 
system. For example, ALINEA proposed by Papageorgiou et al. (1991) is a typical example 
of this type of metering strategy. If a few of vicinity ramp meters are considered and 
coordinated, the strategy is termed as area wide coordination strategy. For example, ZONE 
(Lau 1997), METALINE (Papageorgiou et al. 1997), and FLOW (Jacobson et al. 1989) are 
typical examples of this type of strategy.  
 
The research studies on the optimization of the effectiveness of ramp metering operation can 
be divided into two categories, i.e. the practical and theoretical studies. In practical studies, 
simulation models are used as the modeling tool to describe the traffic flow. The objective of 
most of the studies aims to evaluate the effectiveness of the ramp metering algorithm used. 
To name a few, Hellinga and Van-Aerde (1995) evaluated the effectiveness of ramp metering 
implementation using INTEGRATION; Lahiti et al. (2002) attempted to quantify the impact of 
simple ramp metering on average speed using CORSIM at the merge influence area under 
different traffic and geometric conditions; Hasan et al. (2002) used MITSIM to evaluate and 
compare the effectiveness of ALINEA and FLOW algorithms; Chu et al. (2004) employed 
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PARAMICS to evaluate three metering algorithms, namely ALINEA, BOTTLENECK and 
ZONE. In theoretical study, the objective is to find the optimum ramp metering rate scheme 
that can improve the efficiency of ramp metering operation. Optimal control theory is widely 
used to find the optimal ramp metering rate scheme. Papageorgiou et al. (1990) adopted the 
linear quadratic (LQ) optimization technique, a well known method of Automatic Control 
Theory to derive control strategies for traffic responsive and coordinated ramp metering. 
Zhang et al. (2001) extended the study by introducing the nonlinear feature in the control 
strategy. In addition, Zhang et al. (1996) provided an in-depth study on the benefits of ramp 
metering by formulating the ramp metering system using optimal control theory. They found 
that ramp metering does not improve the total travel time for a uniformly congested 
expressway unless there is diversion to alternative roads. Kotsialos and Papageorgiou 
(2004) adopted a constrained discrete time nonlinear optimal control problem in the 
formulation of coordinated ramp metering system. Yang and Yagar (1994), on the other 
hand, used bi-level programming model to solve the ramp metering problem. One of the 
significant limitations of the theoretical studies is employing simple traffic models to describe 
the dynamic of traffic flow. For example, Papageorgiou et al. (1990) and Zhang et al. (2001) 
adopted LWR model, Chang and Li (2002) adopted Payne model, and Kotsialos and 
Papageorgiou (2004) adopted the second order model, Metanet. These are point queue 
models which are limited in describing the real queue situation especially at the on-ramps. In 
addition, most of them do not consider the effect of on-ramp control on drivers’ route 
selection (Bellemans et al. 2003; Hegyi et al. 2002; Kotsialos et al. 2002). Nevertheless, in 
the real situation, a significant number of drivers have rerouted due to the installation of ramp 
meters (Wu 2001). The accuracy of the ramp meter study might be affected if the drivers’ 
route choice is not incorporated in the ramp metering optimization study. 
 
This study intends to find the optimum ramp metering rate scheme that can optimize the 
efficiency of ramp metering operation. It is formulated as a bi-level programming model, in 
which the upper level is the nonlinear programming model that aims to find the best ramp 
metering rate scheme; while the lower level is a route choice model. An expressway-ramp-
arterial network system is considered in the problem formulation. The arterial streets serve 
as the alternative routes for the drivers who choose to divert from the on-ramps. Besides, this 
study could address some of the limitations of the previous studies. For example, the 
modified cell transmission model (MCTM) (Meng and Khoo, 2009) is employed to describe 
the dynamic of traffic flow. It could capture the horizontal queue formation and dissipation. 
This is important in the ramp metering context considering the need to model the on-ramps 
queue. Besides, MCTM could capture shockwaves; maintain first-in-first-out (FIFO) principle 
and model dynamic traffic interactions across multiple links. A probit-based dynamic 
stochastic user optimal (p-DSUO) is employed to describe the route choice behavior of the 
drivers. p-DSUO assumes the drivers are not identical in making choice decision and do not 
have full knowledge of the network. It models the variation of drivers’ perception with normal 
distribution. The actual route travel time used in the p-DSUO is derived from the MCTM. The 
p-DSUO is then formulated as a fixed point model. By doing so, the bi-level programming 
model for the ramp metering operations can be simplified into a single level optimization with 
pDSUO flow as constraints. 
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PROBLEM STATEMENT 

Consider an expressway-ramp-arterial network system, ( )= ,G N A  where N  is the set of 

nodes; A  is the set of directed arcs denoting the on-ramps, the off-ramps, the expressway 
stretches, and the arterial roads, connecting two consecutive points meeting an on-ramp or 
an off-ramp, namely, ⊂ ×A N N . The network system comprises expressway segments, EA , 

a group of on-ramps with ramp meters, +
onA  or without ramp meters, −

onA , the off-ramps, offA  

and arterial road segments, artA  that stretches parallel to the expressway is linked with it 

through these on-off-ramps. More specifically, + −= ∪ ∪ ∪ ∪on on off E artA A A A A A . Assume R  

and S  denote the sets of origins and destinations, respectively, where ⊆,R S N . Let  rsK  

denote the set of all routes from an origin ∈r R  to a destination ∈s S , namely OD pair rs.  
 
Let [ ]0,T  denote the time horizon for the dynamic ramp metering operations, which is long 

enough to allow drivers departing during the time horizon to complete their trips. The time 
horizon is discretized into T  equal time intervals of δ , namely, ( ) δ δ δ − δ ⋯0, ,2 ,3 , , 1T . Let 

( )rsq t  be the fixed traffic demand between OD pair rs departing from the origin r  during  

time interval [ ]+ δ,t t , { }∈ −⋯0,1,2, , 1t T ; ( )rs
kf t  be route flow on route ∈ rsk K  between O-D 

rs  departing from origin r  during time interval  [ ]+ δ,t t , { }∈ −⋯0,1,2, , 1t T .  Without loss of 

generality, it is assumed that δ = 1 hereafter.  According to the flow conservation law, it 
follows that: 

 
  ( ) ( )

∈

= ∈ ∈ = −∑ ⋯, , , 0,1,2, , 1
rs

rs
k rs

k K

f t q t r R s S t T                     (1) 

 For the sake of presentation, two row vectors are introduced associated with route 
flows: 
   ( ) ( )( )= ∈ ∈ ∈: , ,rs

k rst f t k K r R s Sf                                                   (2) 

   ( )( )= = −⋯: 0,1,2, , 1t t Tf f                                                               (3) 

Eqn. (2) indicates that the flow on all the used routes k  for OD pair rs  in the expressway-
ramp-arterial network system at departure time t . On the other hand, eqn. (3) denotes the 
route flow on all the departure time during the time period considered. 
 
Given a route flow solution, f  satisfying the flow conservation eqn. (1), referred to as a 
feasible route flow solution, the actual route travel time on route,  ∈ rsk K  for OD pair rs  for 

flows departing at time t  should be a function of the departure time,  t  and the feasible route 
flow solution, denoted by ( )η ,rs

k tf . The objective of the ramp metering operations 

optimization model is to minimize the total travel time as shown in the following equation by 
deciding the optimal ramp metering rate: 
 
                          ( ) ( ) ( )

∀ ∀ ∀

= η∑∑∑ , ,  rs rs
k k

rs k t

F t f tZ f Z                                                   (4) 
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where  ( )( )+= ∈ = −⋯, , 0,1, , 1a onZ t a A t TZ  is a row vector that denote the dynamic ramp 

metering rate solution of all on-ramps time dependent metering rates.  
 

PROBIT-BASED IDEAL DSUO 

Fixed Point Formulation 

Since there is variation in perception and exogenous factors, actual route travel times are 
perceived differently by individual driver. It is more realistic to assume that driver’s perceived 
actual route travel time is a random variable being equal to the actual route travel time plus a 
random error term, which random error term has mean of zero, namely: 
 
                  ( ) ( ) ( )= η + ξ ∈ ∈ ∈ = ⋯, , , , , , 0,1,2, ,rs rs rs

k k k rsC t t t k K r R s S t Tf f                                  (5) 

 
where ( ) ξ =  0rs

kE t  .  

 
It is further assumed that all the error terms associated with departure time t  for OD pair rs 
follows a multivariate normal distribution, namely: 
 
                                ( )( ) ( )( )ξ ∈ Σ =≻ ⋯: , , 0,1, ,rs rs

k rst k K N t t T0                                       (6) 

 
where ( )Σrs t  is the ( )×rs rsK K  covariance matrix, rsK  represents the cardinality of set rsK .  

The probability of a driver perceiving route ∈ rsk K  as the shortest one among routes of OD 

pair rs  can be expressed by: 
 
 ( )( ) ( ) ( ) = ≤ ∀ ∈ ≠ , Prob , , ,  and rs rs rs rs

k k l rsp t C t C t l K l kC f f f                                       (7) 

 
Eqn. (7) denotes that route k  being chosen by a driver who is traveling on OD pair rs  if the 
driver perceived that the actual route travel time of route k  is the minimum compared to the 
route travel time of all available alternative routes rsK . As such, the route flow solution, f  

fulfils the probit-based ideal DSUO conditions if and only if: 
 
              ( ) ( )( ) ( )= ∈ ∈ ∈ = −⋯, , , , , 0,1,2, , 1rs rs rs

k k rs rsf t p t q t k K r R s S t TC f                           (8) 

 
Eqn. (8) shows the fixed point formulation of the ideal DSUO and is proved as follows: 
 
Proposition: If all the actual route travel time functions,  

( ){ }η ∈ ∈ ∈ = −⋯, , , , , 0,1,2, , 1rs
k rst k K r R s S t Tf , are continuous with respect to the route flow 

solution, f , then the fixed-point formulation (8) has at least one solution.   
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Proof: According to Brouwer’s Fixed Point Theorem, if ֏:P f f , where 

( )( ) ( )( )= ∈ ∈ ∈ = −⋯, : , , , 0,1,2, , 1rs rs
k rs rsp t q t k K r R s S t TP C f  and P  is continuous, there is at 

least one ∈*f f , such that =* *f fP . □  
 
The actual route travel time function is derived from the MCTM. Although it is continuous, it is 
not monotonic w.r.t. flow. Lo and Szeto (2002) pointed out that under certain traffic flow 
condition such as congestion, the actual route travel time function w.r.t. flow is non-
differentiable. Hence, the uniqueness of the solutions still remains an open question. Due to 
this limitation, the solution obtained might not unique.  

An Approximation Solution Method 

One of the main concerns when solving the DSUO is how to define the route choice set. For 
a small network, all the available routes between each OD pair can be enumerated. 
However, if the network size is large, such enumeration exercise may take a lot of time and 
resource. In such cases, one could reduce the route choice set to include only some of the 
prevailing routes that will considered by the drivers. Specifically, those routes that are long 
and less attractive are removed because they are less likely to be chosen by drivers. Since 
not all the routes are considered, the solutions obtained are approximated solutions. 

Determination of sets of routes ∈ ∈ˆ , ,  rsK r R s S  

There are some existing studies on the determination of routes considered by drivers in the 
network loading process. Bovy and Catalano (2007) proposed a doubly stochastic choice set 
generation method to find the route choice set required by DSUO. By carrying out a repeated 
shortest route search, the method guarantees that attractive alternatives will be in the choice 
set with high probability while unattractive ones will have negligible probabilities. Besides, in 
an earlier research, Cascetta et al. (1997), Lo and Chen (2000) proposed that a reasonable 
subset of all the available routes for an OD pair that needs to be considered for a medium-
sized network is 4-7 routes. They showed that by considering this number of routes, it is 
sufficient and representative.  
 
If the number of routes considered is fixed, ˆ

rsK -shortest route algorithm could be applied to 

find the ˆ
rsK -shortest route for each OD pair rs . Lim and Kim (2005) proposed an efficient 

algorithm that can minimize the degree of similarity when finding the ˆ
rsK -shortest route. This 

is guaranteed by defining three parameters in the algorithm, namely overlapped ratio, 
maximum degree of overlapped and link penalty. However, the ˆ

rsK -shortest route algorithm 

adopted in this study is modified from the original one. Instead of using the length of the 
overlapped route to calculate the overlapped ratio, the number of links that is overlapped is 
counted. In such a case, the overlapped ratio is more stable and well defined compared to 
the original version. 
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ˆ
rsK -Shortest Route Algorithm With Route Overlapped 

Let τ
a

rs
k  is the given cost of link a , ∈a A  on route k , ∈ ˆ

rsk K  of OD pair rs , pO  is the 

maximum degree of overlap between links of routes allowable which is predefined. zO  is the 

link penalty, in which 

α
 

=  
  

1
z

p

O
O

 where α  is a positive parameter. Let /
rs
n kol  is the number of 

overlapping links between route k  and n , where ∈ ˆ, rsk n K  of OD pair rs . = − − …1, 2, 1n k k , 

and = /
/

rs
rs n k
n k rs

k

ol
Op

l
 is the overlapping ratio between route k  and n  with rs

kl  is the number of 

links that route k  of OD pair rs  has. When the overlapped ratio between current found route 
and the entire previous route that has been found is calculated, /

max
rs kO  is taken as the 

maximum overlapped degree for the current k  route of OD pair rs . In other words, 

{ }− −= …
/

max 1/ 2/ 1/max  , ,rs k rs rs rs
k k k k kO Op Op Op . Define also Εrs

k  is the link set for the k -th route of OD 

pair rs  which consisted of J  number of links, i.e. { }Ε = … …
1 2
, , , ,

j J

rs rs rs rs rs
k k k k ka a a a  , 

j

rs
ka  indicates 

the link j  for route k  of OD pair rs , where ∈
j

rs
ka A  and rsP is the route set for OD pair.  

 
The step-by-step procedure is illustrated as follows: 
Step  0: (Initialization) Set a value for pO , and set = 1rs , which indicate the first OD pair. 

Step 1: (Shortest route algorithm) With any of the existing shortest route algorithm, find the 
first shortest route for OD pair rs ,  set = 1k . Add the links that form the route to Εrs

k , 

and add the route set { }=rs rs
kP p . 

Step 2: (Link cost update)  Examine the links in Εrs
k . Update the link cost by applying the 

penalty on the link. Essentially, τ = τ ×rs rs
k k zO

I I
, where { }= …1,2, ,JI . 

Step 3: (Route search and overlapping ratio calculation)  
 Step 3a: (Proceed to next route) Set = + 1k k . 
 Step 3b: (Find shortest route) With link label setting algorithm, find k - shortest route.  
                          Add the links that form the route to Εrs

k , and add the route set { }=rs rs
kP p . 

 Step 3c: Calculate degree of overlap, = /
/

rs
rs n k
n k rs

k

ol
Op

l
, where = − − …1, 2, 1n k k .  

 Step 3d: Find the maximum overlapped degree from these routes, /
max
rs kO . 

Step 4: (Route convergence test) If  >/
max
rs k

pO O , proceed to Step 5. Otherwise, proceed to 

Step 2. 
Step 5: (OD pair convergence test) If =rs RS , where all the OD pairs have found the routes, 

terminate the algorithm. Otherwise, set = + 1rs rs , proceed to Step 1. 
In Step 1, any algorithm can be adopted to find the shortest route at each iteration, such as 
the link label setting algorithm and Dijkstra algorithm (Dijkstra 1959). In step 2, it could be 
seen that the link cost of the previous shortest route is increased by applying the penalty 
charges. This will deter these links from being chosen as members in the subsequent 
shortest route search. From Step 3c, the degree of overlap has the value of [ ]0,1 , where 0 
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means no overlapped. If the route found is exactly the same as the previous one, the 
overlapped degree is 1. Hence, pO  is defined such a way to control the number of ˆ

rsK -

shortest route found. For instance, if only one route is needed, = 1pO . Proper tuning of the 

parameter is thus very important. 

Derivation of Covariance Matrix ( )Σ ∈ ∈ = ⋯ˆ , , , 0,1,2, ,rs t r R s S t T  

Sheffi (1985) has shown the derivation of the covariance matrix for the probit-based model 
used when performing the static version of the stochastic user equilibrium model. The 
concept however could be generalized into the dynamic case shown herein. Considering two 
routes, k  and l , where ∈ ˆ, rsk l K  of OD pair rs  available for drivers to choose from during 

departure time t , the covariance matrix to describe the overlapped of the routes is presented 
in the following equation: 
                          ( ) ( )( ) ( )

∈

ξ ξ = θ δ δ ∈∑ 0
, ,

ˆ, ,  ,rs rs rs rs rs
k l kl a a k a l rs

a A

Cov t t t t k l K                                       (9) 

where δ ,
rs
a k  is a binary parameter which takes value of 1 if route k  of OD pair rs  comprise 

link a , and it takes value of 0 if it is not; 0
at  denotes the free flow travel time of link a . By 

doing so, eqn. (9) actually indicates that the covariance between the perceived travel times 
of two routes is the summation of the free flow travel time of the common links that shared by 
two routes. The ( )θrs

kl t  in eqn. (9) is interpreted as the drivers’ variance of the perceived 

travel time over a road segment for both routes k  and l  of OD pair rs  at departure time t . 
This parameter may change according to the different departure time t .  It is clear that this 
study used the link free flow travel time to compute the covariance matrix for the overlapped 
route. Historical link travel time can be used if they are available.  

Actual Route Travel Time: Determination and Properties  

To obtain the actual route travel time on any used route of any OD pair, the development of a 
dynamic traffic flow model that can characterize traffic flow condition is utmost importance. 
This study adopted the modified cell transmission model (MCTM) to imitate the traffic flow 
condition. Details of MCTM can be found at Meng and Khoo (2009). Given the OD demand 
for the expressway-ramp-arterial network system, the MCTM is called to calculate the actual 
route travel time, η , where ( )( )= η ∈ ∈ ∈ = −⋯, : , , , 0,1,2, , 1rs

k rst k K r R s S t Tη f  by performing 

the DSUO assignment. By adopting the method introduced by Lo and Szeto (2002), the 
actual route travel time ( )η ,rs

k t f  of flow ( )rs
kf t  can be computed through cumulative counts at 

the origin cell r  and destination cell s . Figure 1 shows the cumulative count curves, ( )χr
k t  

and ( )χs
k t  on route k  between OD pair rs . ω  denotes the arrival time of the packet of 

traffic. The actual route travel time experienced by traffic departing at time t , ( )( )rs
kf t , is the 

horizontal distance between the two cumulative curves as shown in the figure. Since time is 
discretized, there is no guarantee that the entire packet of flow will arrive at the destination in 
the same clock tick of time. Hence, the travel time averaging scheme is introduced so that 
the entire departing traffic has one uniquely determined average actual route travel time. 
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Eqn. (10) calculates the average actual route travel time: 

                             ( )
( ) ( )

( )

( )

( ) ( )

− −χ

χ −
 χ ν − χ ν
 η =
χ − χ −

∫
1 1

1
,

1

r
k

r
k

t s r
k ktrs

k r r
k k

dv
t

t t
f                                     (10) 

where  
 ( ) ( ) ( )= χ − χ −1rs r r

k k kf t t t                                                                                    (11) 

 
Eqn. (11) defines the departure flow at time t .  
 

( )1r
k tχ −

( )r
k tχ

1t − t 1ω + 2ω +ω

( )s
kχ ω

η

1η +

 2η+

( )rs
kf t

 
 

Figure 1 The traffic cumulative curve (Source: Lo and Szeto (2002)) 

 
Lo and Szeto (2002) showed that the actual route travel time function, η  obtained using eqn. 

(10) is continuous w.r.t. to the flow, f . However, it is also shown that the actual route travel 
time function may not be continuously differentiable with respect to f . This may cause 
inexistence of solution for the probit-based DSUO assignment. In addition, it is indicated that 
the average actual route travel time is not monotonic with respect to the route flow by using 
MCTM. Thus, the solutions (if exist) may not be unique. An approximated solution or a 
tolerance-based solution could only be found due to this limitation. Szeto and Lo (2005) 
developed a tolerance-based deterministic dynamic user optimal (DDUO) principle, which 
allows the declaration of the user optimal flow even if the travel times of the used routes 
between the same origin-destination pair are not exactly the same. This could be regarded 
as a special case to the traditional DDUO.  
 
This tolerance-based concept is applied here for the fixed point problem indicated in eqn. (8). 
The exact equality of the left hand side and the right hand side of the eqn. (8) could not be 
obtained in some cases. The solution is declared found if the difference between both sides 
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is small enough, which can be pre-determined as a theoretical gap. It is shown in the 
following equation: 

                                  ( ) ( )( ) ( ){ }φ = −max ,rs rs rs
k k rsf t p t q tC f                          (12) 

where φ  is the theoretical gap. 

Method of Successive Averages (MSA)  

There are many methods available for solving the fixed point problem. To name a few: 
Ishikawa algorithm, Mann algorithm, Krasnoselskij iterations and so on (Berinde 2007). MSA 
is one of these methods that also can be adopted to solve the fixed point problem. It is 
adopted in this study to solve the fixed point formulation of the DSUO model with a 

predefined partial routes, ˆ
rsK  and the relevant ×ˆ ˆ

rs rsK K  covariance matrix of ( )Σ̂rs t . In 

addition, Monte Carlo simulation method is adopted to perform the probit-based ideal DSUO 
loading, in which the probability of drivers choosing each route ∈ ˆ

rsk K  is computed.  

The step-by-step procedure of MSA is shown as follows: 
 
Step 1: (Initialization) 

Step 1a: Define ˆ
rsK -shortest route choice set for each OD pair rs  based on the link 

free-flow travel time using the method present earlier.  

Step 1b: Initialize the departure flow, ( ) ( )rs n
kf t  for each route k  in the partial route 

choice set, ˆ
rsK  for each OD pair rs  at each departure time t  randomly. The 

flow assigned must fulfill the following equation: 

    ( ) ( ) ( )
=

=∑
ˆ

1

rsK
rs n

rs k
k

q t f t                                                             (13) 

 
                      Set = 1n . 

Step 2: (Calculate actual route travel time) Load the departure flow ( ) ( )rs n
kf t to the MCTM. 

Run the MCTM to propagate traffic across the cells until all the vehicles arrived at the 
destinations. Compute the actual route travel time according to eqn. (10) for each 
traffic flow depart at time t  for route k  of OD pair rs .   

Step 3: (Compute probability of route) Using Monte Carlo sampling method, sample the 
drivers’ perceived actual route travel time according to eqn. (5), compute the 
probability of each route of OD pair rs  being used by drivers, namely, 

( ) ( )( ),rs n rs
kp tC f . 

Step 4: (Compute auxiliary flow, ( ) ( )ɶrs n
kf t ) Calculate the auxiliary flow based on the 

probability using the following equation: 
 

   ( ) ( ) ( ) ( )( ) ( )= ∀ɶ ,     , ,rs n rs n rs
k k rsf t p t q t k rs tC f                                     (14) 

 
Step 5: (Calculate the flow for next iteration)  The flow for next iteration is computed by the 

following equation: 
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             ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+  = + − ∀ 
ɶ1 1       , ,rs n rs n rs n rs n

k k k kf t f t f t f t k rs tn                          (15) 

 
Step 6: (Convergence checking) If convergence criteria are satisfied, stop. Otherwise, set 

= + 1n n  and proceed to Step 2. 
 
The stopping criteria of the algorithm in Step 6 are based on the calculation of the average 
absolute error shown in eqn. (16). There are two stopping rules that can be adopted based 
on this, one is to stop the algorithm when the ∇  in eqn. (16) is smaller than φ  in eqn. (12), 

or to stop the algorithm when the ∇  in eqn. (16) is stable over N  iterations. In this study, the 
latter rule is adopted.  

 

                         

( ) ( ) ( ) ( )( ) ( )
∀ ∀ ∀

∀

−
∇ =

∑∑∑

∑

,

ˆ

rs n rs n rs
k k rs

k rs t

rs
rs

f t p C t q t

K T

f
                                   (16) 

A solution exists if the actual route travel time used in eqn. (10) is continuous w.r.t. flow. The 
solution however is not unique because the actual route travel time is not monotone. MSA 
could solve the problem and produce a tolerance-based solution. Hence, it is stable.  
  

THE OPTIMIZATION MODEL 

The nature of the ramp metering operation allows it to be formulated as a bilevel 
programming model, in which the upper level problem aims to find an optimal metering rate 
that minimizes the total travel time while the lower level problem addresses the drivers’ route 
choice decision behavior. Due to the fact that DSUO is chosen to formulate the lower level 
problem and it is formulated as a fixed point problem, the bilevel programming model of the 
ramp metering operation problem could be converted into a single level optimization model 
by adopting the DSUO flow as a constraint. Given any feasible metering rate solution, Z , the 
DSUO flow obtained from the network system is actually subjected to the metering rate used. 
In other words, the DSUO flow is a function of the metering rate given. Mathematically, eqn. 
(2) and eqn. (3) could be rewritten into: 

                            ( ) ( )( )= ∈ ∈ ∈ˆ, , : , ,  rs
k rst f t k K r R s Sf Z Z                                  (17) 

                            ( )( )= = −⋯, : 0,1,2, , 1t t Tf f Z                                               (18) 

The objective of the single level ramp metering optimization model is to find an optimal 
solution, Z  which can minimize the total travel time of the study area. Since the actual route 
travel time can be obtained using eqn. (10) for each route of each OD pairs, the total travel 
time for all the drivers in the study area can be computed. Essentially, the total travel time of 
the drivers in the study area is the summation of all the routes used for all OD pairs during 
the time horizon. Mathematically, it is expressed as: 
                                   ( ) ( ) ( )

∀ ∀ ∀

= η∑∑∑ , ,rs rs
k k

rs k t

F t f tZ f Z                                     (19) 
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To ensure stability of traffic flow at a metered on-ramp, the ramp metering rate may vary after 
multiple consecutive time intervals, but not at every time interval. These multiple consecutive 
periods form a ramp metering period. More specifically, the discretized time horizon 

( ) δ δ − δ ⋯0, ,2 , , 1T  is completely partitioned into N  disjoint ramp metering periods, where 

N  is a positive integer, named by  ( ]−∆ ∆1,l l  , = ⋯0,1,2, ,l N , in which ∆ =0 0 and 

( )∆ = − δ1N T . Having defined these ramp metering periods, the period-dependent ramp 

metering rate pattern is obtained. 
 
To imitate the traffic responsive type of ramp metering operation, the ramp metering rate 
should be adjusted according to the average queuing length of the on-ramp in the previous 
metering period, expressed by,  
             ( ) ( ) ]( +

− −= ρ × ∆ ∀ ∈ ∆ ∆ = ∈⋯1 1,    , , 1,2, , ,a a a l l l onZ t H t l N a A                             (20) 

where ≤ ρ ≤0 1a . aρ  is referred to as the ramp metering ratio which is the decision variable 

to be determined. ( )−∆ 1a lH  is the average volume of vehicle at the on-ramp in the previous 

metering period ]( − −∆ ∆2 1,l l  that can be calculated by 

                     ( )
( ) ( )

( )]( −
− =∈ ∆ ∆ ∈Γ

−
−

 
− 

  ∆ =
∆ − ∆

∑ ∑ ∑
1 1,

1
1

a

i i m

l l m i

l

a a h
it h a

a l
l l

n t y t

H                            (21) 

where ( )
ian t  is the vehicle volume in cell ( ),a i  of arc ∈a A at time t  and ( )

i ma hy t  is the 

vehicle flow on link ( ),i ma h  of the cell-based network, which connects cell ( ),a i  of arc ∈a A  

to cell ( ),b i  of arc ∈b A , from clock tick t  to + 1t . To some extent, eqn. (20) gives a 

dynamic feedback control strategy of traffic flow.  
 
It is now ready to present the single level optimization model for the ramp metering 
operation: 
                                 ( ) ( ) ( )

∀ ∀ ∀

= η∑∑∑min , ,rs rs
k k

rs k t

F t f tZ f Z                                  (22) 

subject to  
                   ( ) ( ) ]( +

− −= ρ × ∆ ∀ ∈ ∆ ∆ = ∈⋯1 1,    , , 1,2, , ,a a a l l l onZ t H t l N a A              (23) 

 
      ( ) ( )( ) ( )= ∈ ∈ ∈ = −⋯ˆ, , , , , , 0,1,2, , 1rs rs rs

k k rs rsf t p t q t k K r R s S t TZ C f              (24) 

As a brief explanation, eqn. (22) denotes the objective function of the optimization model is to 
minimize the total travel time of the study area with the ramp metering rate as the decision 
variables. Eqn. (23) expresses the ramp metering rate constraint, which can reflect the 
dynamic feedback control strategy of the traffic responsive type ramp metering rate modeled 
in this study. Eqn. (24) determines the tolerance-based DSUO flow condition.  
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SOLUTION ALGORITM 

A meta-heuristic method is adopted to solve the proposed single level optimization model of 
the ramp metering operations. Solving the DSUO flow using MSA yields approximated 
solutions. In view of this, meta-heuristics algorithms could be adopted to solve the 
optimization model since these algorithms only require the objective function values to judge 
the solution, without the necessary exact relationship or solution. Genetic algorithm (GA) is 
chosen as the solution method in light of its wide application in the engineering related 
problems (Gen and Cheng, 1996).  
 
A dynamic ramp metering rate solution Z  is encoded into a binary string, of which a 
specified portion represents a metering rate for a particular on-ramp at time t . More 

specifically, the metering ratio, { }+ρ ∈,  a ona A  for the period-dependent ramp metering rate 

schemes shown in eqn. (20) is encoded as the binary strings. The strings then are decoded 
to find the corresponding dynamic ramp metering rate solution by means of eqn. (20). This is 
then embedded into MCTM to compute the corresponding actual route travel time. 

 
The step-by-step procedure is shown as follows: 
Step  0. (Initialization) Randomly generate a population of B strings. 
Step 1. (Decoding) For each string, decode the string to get the dynamic time dependent 

ramp metering rate for the on-ramps of the expressway-arterial network, Z . 
Step 2. (Call MSA) Decode each string b in the population and perform the DSUO 

assignment by implementing the procedures shown earlier.  
Step 3. (Fitness function calculation) Compute the value of fitness function defined by eqn. 

(19) for each string. 
Step 4. (Generation of a new population) Repeat the following four sub-steps until the new 

population is completed. 
Step 4.1. (Selection) According to the fitness functions value evaluated in Step 2, use 

the rank selection method to choose two parent strings from the population. 
Step 4.2. (Crossover) With a crossover probability, denoted by cp , cross over the 

parents to form a new offspring according to the one point crossover 
method. If no crossover is performed, offspring is the exact copy of the 
parents. 

Step 4.3. (Mutation) With a mutation probability, denoted by mp , mutate new offspring 

at selected position in string.  
Step 5. (Stopping criterion) If a stopping criterion is fulfilled, terminate the algorithm. Output 

the best solution from the population. Otherwise, go to Step 2.  
There are two termination criteria that can be adopted in Step 4 of the GA. The GA can be 
terminated when it achieves maximum number of generations specified or if there is no 
improvement in the fitness function value for more than the number of generations specified. 
Note that the performance of the GA may rely on the size of population and crossover and 
mutation probabilities.  
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NUMERICAL EXAMPLE 

An illustrative expressway-ramp-arterial network system shown in Figure 2 is used to test the 
applicability of the proposed methodology. It is a hypothetical network based on the I210W 
expressway-ramp network in Pasadena, California (Munoz et al. 2004). It is 22-km long and 
consisted of 21 on-ramps and 18 off-ramps. From the figure, it is observed that the 
expressway mainline is connected to the arterial roads through the on-ramps and off-ramps. 
The arterial roads serve as an alternative road to the expressway-ramp system. The origins 
and destinations nodes are labeled in the figure. In addition, dummy links are created to load 
the demand from these origins into the network. The cell-based network created for MCTM is 
shown in Figure 3. It is shown that the origin cells serve as the big parking lots that store all 
the vehicles that will be loaded into the network system. The vehicles are loaded into the 
network through dummy links/cells. Note that the length of the arterial roads in Figure 3 is not 
to the scale. 
 
The input parameters for the MCTM is such as follows - the free flow speed for expressway 
mainline section, ramps, and arterial roads are 100km/hr, 60km/hr, and 60km/hr respectively. 
The backward shock wave speed is 28km/hr, and the jam densities are 17 veh/km/lane for 
the expressways, ramps, and arterial roads. The size of a cell on the expressway mainline 
segments, ramps, and arterial roads are 0.28km, 0.17km, and 0.17km respectively. The time 
interval δ  is 10 seconds and the time dependent ramp metering period is 5 minutes. The 
capacity of the expressway is set to be 2200 veh/hr/lane while the arterial roads capacity is 
2000 veh/hr/lane. The ramp capacity is 2000 veh/hr for one-lane ramp with speed of 60km/hr 
and 2400 veh/hr for two-lane ramp. This is obtained by referring to the Highway Capacity 
Manual (2000). 
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Figure 2 The hypothetical expressway-arterial network system 
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Figure 3 The cell-based network for Figure 2 
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Assume that there are 6 pairs of origin-destination (OD) trips in the network system with 
assumed demand value. These OD pairs and their demand are presented in Table 1. The 
departure time of the drivers is fixed and is carried out during the first 10 time step of the 
assignment period. The simulation is run until all the vehicles arrived at the destinations, 
which takes about 40 minutes of the simulation time. The k-shortest route between each OD 
pair is found using the algorithm earlier. The shortest route size is shown in Table 1 using 
ˆ

rsK -shortest route algorithm. The value for the parameters is set such as follows: 0.5pO =  

and 2α = . 
 
For the genetic algorithm setting, each ramp metering ratio in eqn.(20), 0 1,a ona A+≤ ρ ≤ ∈  , is 

encoded by a 7-bit binary chromosome.  With a total of 21 on-ramps, the length of a 
chromosome is 147 genes in the GA embedding with the MCTM. In addition, the population 
size is 50 and the algorithm is terminated when the objective function value does not change 
for 3 generations, and the crossover probability and the mutation probability are 0.7 and 
0.03, respectively.  
 
For the Monte Carlo sampling, the value for ( )rs

kl tθ  shown in eqn. (9) is taken as 10 and is 

identical for all overlapped route of all OD pairs at all departure time. The sampling process 
is run for 200 iterations before the probability is computed.  
 

Table 1 The OD pair and the route number 
 

OD Pair 
Origin  
Node 

Destination 
Node 

Route 
Number 

Demand 
(veh/hr) 

1 1 7 20 750 

2 2 7 20 500 

3 3 7 12 200 

4 4 7 14 200 

5 5 7 10 155 

6 6 7 10 195 

Results 

Using the proposed strategy, the result for the hypothetical network is shown in Figure 4. It 
can be seen that GA terminates at the 19th generation when the objective function values 
does not change for 5 subsequent generations. It is found that there is about 11.25% of 
improvement in the total travel time if compared to the initial solution. The resulted ramp 
metering rate obtained is shown in Figure 5. It is found that the percentage of total travel time 
improvement is sensitive to the OD demand level used. The benefit gained will be smaller if 
lighter demand is loaded. 
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Figure 4 The convergence trend of the GA-DSUO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Metering rate solutions 
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MSA Results 

Using the best time-dependent ramp metering rate, i.e. the metering rate that gives the 
lowest total travel time, the DSUO flow is computed by performing the MSA as proposed 
earlier. When the average absolute error of the algorithm, ∇  does not change for 3 
subsequent iterations, the algorithm is terminated and the results are collected. The average 
absolute error shown in the figure is 1 vehicle. The trend of MSA over iterations is shown in 
Figure 6. It is worth noting that, the maximum absolute error observed is 22 vehicles, which 
occurs for the vehicles loaded during the last departure time.  
 
A closer investigation on the comparison of the DSUO flow obtained for the with-ramp 
metering case and the without-ramp metering case show that there is a shift of traffic flow 
from the expressway-ramp system to the arterial streets. Taking OD pair number 2 as an 
example, it has 20 routes for drivers who would like to travel from origin node 2, on the 
arterial road to node 7, on the expressway. For the 20 routes given, drivers have different 
choices of the on-ramps to choose from to enter the expressway. Table 2 presents the entry 
ramps for each route and the DSUO route flow obtained for the ‘with ramp metering’ and 
‘without ramp metering’ case. The values shown in columns 3 and 4 of Table 2 are the 
summation of the vehicles departing from node 2 using respective route over the period of 
time. Note that although some of the routes have the same on-ramp entry points, the routes 
are different. For example, once drivers enter on-ramp 1 using route 1, they will travel using 
the expressway mainline to the destinations. Nevertheless, for route 4, drivers will exit the 
expressway mainline using the off-ramps located at the downstream of the network system, 
and continue their journey to the destination using the arterial roads. Similarly, drivers using 
route 4 exit the expressways through different off-ramp compared to route 6. The same 
explanation also goes to other routes. Besides, an interesting point to note from Table 2 is 
that, no drivers choose to use route 2. This is because route 2 is an arterial road that 
connects between 2-7. No drivers perceived it as the shortest route at any of departure time 
because the design speed of the arterial roads are lower than that set for the expressways. 
 



Optimal Ramp Metering Operations With Probit-based Ideal SDUO Constraints 
Khoo and Meng  

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
20 

0.00

0.50

1.00

1.50

2.00

2.50

0 5 10 15 20 25

Number of Iteration  
Figure 4 The approximated converging pattern for MSA 

 
From Table 2, it could be observed that before the implementation of ramp metering, about 
60% of the drivers choose to use on-ramps 1 and 2. However, when the ramp metering is 
applied, it could be seen that, a significant number of drivers have shifted to other routes. A 
5% increment in the number of drivers could be observed for routes 7 and 8, while other 
routes have slight increment in users. This increment is accompanied by a 15% drop in the 
number of drivers using route 1 and 3. This shows that ramp metering has influenced the 
route choice decision of drivers. The results found are consistent with Wu (2001) findings. 
When it is applied, some of the drivers choose other routes, or other on-ramps to enter the 
expressway mainline. This has confirmed the argument made earlier in this study to support 
the importance of the incorporation of route choice model (DSUO) in the ramp metering 
study. The total travel delay before the ramp metering implementation is 109.1 veh-hr, while 
the best ramp metering solution yields a total travel time of 61.7 veh-hr. This is a saving of 
76% in total travel time. 
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Table 2 Comparison of DSUO flow for the with and without ramp metering case 

 

Route 
number  

[1] 

Entry on-
ramp 
 [2] 

Exit off-
ramp 
[3] 

DSUO flow without 
ramp metering  

[4] 
(veh) 

DSUO flow after 
ramp metering 

 [5] 
(veh) 

Change 
 [5]-[4] 
(veh) 

1 1 N.A. 196 166 -30 
2 N.A. 1 0 0 0 
3 2 N.A. 98 60 -38 
4 1 6 0 5 5 
5 4 7 32 35 3 
6 1 9 2 6 4 
7 5 3 25 45 20 
8 6 10 40 52 12 
9 2 16 1 5 4 
10 4 17 2 5 3 
11 4 10 19 19 0 
12 3 13 13 15 2 
13 7 9 9 10 1 
14 19 N.A. 3 9 6 
15 3 11 11 11 0 
16 5 15 2 4 2 
17 17 N.A. 13 13 0 
18 5 16 16 16 0 
19 4 12 17 17 0 
20 8 13 1 7 6 

Total   500 500  

 

CONCLUSION 

A ramp metering study that considers origin-destination trip information has been considered 
in this study. A non-linear single level optimization model is developed to minimize the total 
travel time of the expressway-ramp-arterial network system while searching for the optimal 
ramp metering rate. A probit-based dynamic ideal stochastic user optimal (DSUO) 
assignment model is adopted to describe the drivers’ route choice decision behavior in 
response to the given ramp metering rate. The DSUO assignment model is formulated as a 
fixed point problem and is considered as one of the constraints of the optimization model. As 
such, the objectives of both parties, the system managers and the drivers, could be taken 
into account. Not all of the available routes for an origin-destination (OD) could be 
considered, especially in the case of a larger size network, where only partial routes are 
considered. In addition, the utilization of the MCTM model as the traffic flow model has posed 
some challenges in determining the exact solution of the probit-based ideal DSUO. As a 
result, the outcome from the MSA is an approximation. Hence, the optimization model is 
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solved by meta-heuristics algorithm which only requires the objective function values without 
the need for exact relationship or  solutions, be known.  
 The illustrative network example presented shows that MSA could solve the probit-
based DSUO assignment model with sufficient accuracy. In addition, GA could solve the 
optimization model to give a better solution compared to the initial solution. A closer 
investigation revealed that DSUO could address the drivers’ route choice decision well. A 
significant diversion of drivers from the expressway-ramp system to the arterial road could be 
observed. Results show that drivers would consider the queuing condition at the on-ramps 
and choose to enter the expressway-ramp system through the less congested on-ramps. It is 
therefore necessary for the system managers to consider the drivers route choice behavior 
during optimization of ramp metering operations. As the future work, the calibration and 
validation of the network should be carried out. 
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