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ABSTRACT 

The presence of a short lane at an intersection regulated by traffic lights directly influences 
the movement’s saturation flow. It can be verified that the saturation flow falls off during the 
green time period when the last vehicle stored in the short lane crosses the stop line. This 
variation in saturation flow is not considered in Webster’s delay equation developed in 1958. 
To overpass this issue, some authors tried to arrange simple adaptations to the design 
process, based on the referred equation. However, these methodologies could differ from the 
values that minimize the intersection delay, because Webster’s expression is not valid for the 
specific problem of movements with short lanes. 
 
This paper describes the development of an expression that resulted from the adaptation of 
Webster’s delay model to movements with short lanes. It starts by explaining the important 
steps of the work of Webster concerning to the delay equation and then focuses on the 
adaptation of the deterministic and stochastic terms of his expression. 
 
The result is a new expression, valid for under-saturated conditions, that allows the 
estimation of delay for movements with short lanes. It can be verified that Webster’s equation 
is a particular case of this new expression. 
 
Topic for submission: Traffic Theory and Modelling. 
 
Keywords: traffic lights, short lane, delay, Webster. 
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1. INTRODUCTION 

In 1958, Webster published an important paper with the results conducted at the Road 
Research Laboratory (UK), into the delays at fixed-time traffic signals and into its optimum 
settings (Webster, 1958). From his work resulted a semi-empirical expression to estimate the 
average delay per vehicle using a single approach to an intersection controlled by fixed time 
traffic signals, for under-saturated conditions (x<1). 
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d – average delay per vehicle on the approach; 
C – cycle time; 
λ – proportion of the cycle that the signal is effectively green (g/C); 
q – arrival flow; 
s – saturation flow; 
x – degree of saturation, ratio between average number of arrivals per cycle and the 

maximum number of departures per cycle  (x=q/λs). 
 

The Webster’s expression is based on two models: an uniform arrival based delay model that 
estimates the value of the deterministic parcel of delay (first parcel of equation) and an 
random arrival based delay model that estimates the value of the stochastic delay (second 
parcel of equation). The third parcel of the equation is a calibration factor that allows the 
adjustment of the theoretical values to the ones obtained by simulation. 
 
The models used by Webster to develop expression (1.1) consider that, during the effective 
green time, the vehicles are discharged at a constant rate, denominated by saturation flow. 
This premise compromises its application to situations where the saturation flow falls down 
suddenly to a lower rate, which is the case of the existence of a short lane at the approach. 
Consequently, Webster‘s equation for the optimum cycle, that results from the two first terms 
of expression (1.1) (see Webster, 1958), has the same limitation. For that, Webster’s 
optimum cycle equation cannot be used to optimize intersections with movements including 
short lanes. 
 
The scope of this paper is to define a delay equation valid for movements with short lanes, 
based on the adaptation of the two theoretical models of Webster’s equation. These are 
sufficient to define a methodology that estimates the optimum signal settings, which is the 
next result of the research carried out. 
 

2. DEFINITION AND CHARACTERISTICS OF A SHORT LANE 

2.1 Definition 

A short lane is a geometric element that consists in a lane with limited length, which is 
insufficient to feed the discharging of vehicles during effective green time, causing an 
instantaneously decrease of the movement’s saturation flow. The reduction of saturation 
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flow, denominated by short lane effect, occurs when the last vehicle stored in the short lane 
crosses the stop line. 
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Figure 1: Representation of short lanes (design cas es) 

 
During the design of an intersection, namely at places where insertion space is very limited, 
short lanes can be used to increase the number of vehicles that potentially can depart during 
the green light signal (see Figure 1). But there are other situations where the short lane effect 
can occur due to temporarily defective service conditions, such as road works or illegally 
parking (see Figure 2). 

 
Figure 2: Representation of a short lane originated  by the presence of an obstacle 

 
Limited length lanes can also be used to segregate different movements that initially were 
associated to the same lane (for example, going forward and turning left, see Figure 3). This 
case will not be considered in this work, because segregated movements have their own 
demand and saturation flow and consequently are analysed in a different way. 

 
Figure 3: Separation of movements using a limited le ngth lane 

2.2 Design elements 

A short lane is defined by three design elements: length, green time and red time. 
 
The length defines physically the short lane and its value (Lsh) corresponds to the distance 
between the point where the lane is large enough to accommodate a vehicle and the interior 
limit of the stopping line. The value Lsh can be converted in number of vehicles using the 
expression (2.1), where j is the average length that a vehicle occupies in a traffic line. Nsh is 
denominated by storage capacity of the short lane and is useful to keep expressions 
uncomplicated. 
 

 sh
sh

L
N

j
=  (2.1) 

 
The green time is related to the number of vehicles that potentially can depart in each cycle 
(Nmax). For a normal lane, that is a lane without length limitations, the value of Nmax is given 
by expression (2.2). 
 



Development of a delay equation valid for movements with short lanes and based on the 
Webster’s model for traffic lights 

SANTOS, Gonçalo; SECO, Álvaro; NEVES, José  
 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
4 

 maxN g s= ×  (2.2) 

 
For a short lane, the value of Nmax has a upper limit that corresponds to the number of 
vehicles that physically can be stored inside the short lane (see expression (2.3)). 
 

 ( )max min ; shN g s N= ×    (2.3) 

 
For Nmax to be equal to Nsh, it is required that the green time has the exact value to discharge 
all the vehicles that the short lane can store, at the rhythm of the saturation flow. This value 
is calculated by expression (2.4). In other words, the short lane contributes to the flow of 
vehicles until g=g’. 

 ' sh

sh

N
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=  (2.4) 

 
g’ – green time during which the short lane is contributing to the flow of vehicles; 
ssh – saturation flow associated to the short lane (equal to the saturation flow of a 

normal lane with the same characteristics of the short lane). 
 
The red time allows the accumulation of vehicles at the approach. To maximize the use of 
the short lane, it is important that the red time given to the movement is sufficient to let 
vehicles occupy the entirely storage capacity of the short lane. This happens when the red 
time value is equal or greater than the minimum value given by expression (2.5). 
 

 min
shN n

r
q

×=  (2.5) 

rmin – minimum red time; 
q – arrival flow (demand); 
n – number of lanes of the considered movement. 

2.3 Saturation flow of a movement including a short  lane 

The behaviour of a short lane can be illustrated considering two sets of lanes (example 
adapted from Akcelik (1981)): set (1) includes the short lane with length Lsh; and set (2) 
includes the remaining lanes, which lengths are big enough to not be considered as short 
lanes (see Figure 4). Admit that all vehicles move forward and that the demand at the 
approach allows the existence of a continuous flow during the discharging of vehicles. 
 

2

1

Lsh

 
Figure 4: Example to explain the behaviour of a sho rt lane 
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During the green time period g < g’, all lanes are contributing to the flow of vehicles that 
cross the stopping line. For this case the saturation flow of the movement is equal to the sum 
of the saturation flows of sets 1 and 2. This value is designated by smax. 
 
At the end of this period, the storage capacity of the short lane is empty and the saturation 
flow assumes the value of the remaining lanes (set 2), designated by smin. This value is 
verified until the end of the green period. 
 

smax

smin

g' (g-g')

g

s

t

 
Figure 5: Variation of the saturation flow during gr een time 

 
Considering the behaviour described before, the value of the saturation flow of a movement 
including a short lane is based on the existence or inexistence of an instantaneously 
reduction of the flow of vehicles during green time period. Therefore, to determine the 
saturation flow of a short lane, it is important to know if there is short lane effect. This 
verification can be made based on the model that characterizes the variation of the 
saturation flow during the green time period (see Figure 5) and using expression (2.4): 
 

If g ≤ g’, there isn’t short lane effect; the saturation flow is determined using the same 
procedure as for normal lanes; 

 
If g > g’, there is short lane effect; the saturation flow of the movement (savg) depends 
on the value of green time and is calculated by a weighted average of the minimum 
and maximum saturation flows, taking in account its durations. 
 

 
' '

max min min1
 

= + − = + 
 

sh
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Ng g
s s s s

g g g
 (2.6) 

 
 

3. THE EQUATION OF WEBSTER  

To develop a new expression is necessary to look at the work of Webster and try to 
understand the foundations of the models that are behind his equation. As referred above the 
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equation of Webster has three terms (see expression (1.1)): the first term is based on a 
model that considers vehicles arriving at a uniform rate, the second term models the random 
arrival of vehicles, and the third term gives an empirical correction of the values. 
 
The third term was established by a regression analysis using the differences between the 
delay values obtained by simulating traffic behavior at approaches controlled by traffic lights 
(with different values of C, q, g/C and x) and the ones estimated by the first two terms of the 
delay expression (Allsop, 1972). 
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Figure 6: Typical fixed time delay curve (Webster, 1958) 

 
 
The values simulated by Webster and the curves for the delays estimated using the first 
term, the first and second terms, and equation (1.1), are represented in Figure 6. It can be 
seen that the two first terms of the expression (1.1) have a fair agreement with the simulated 
delays for all levels of flow. The addition of the third term improves slightly the agreement of 
the curve, giving a close fit to the simulated values. Webster stated that, the delay for most 
practical purposes can be calculated by expression (3.1), since the empirical term represents 
5 to 15 per cent of the value given by expression (1.1) (Webster, 1958). 
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As a consequence, Webster considered only the first two terms of expression (1.1) to 
perform the minimisation of the total delay at an intersection, which originated the optimum 
cycle equation used to obtain the optimal signal settings. A detailed analysis of the models 
behind the two first terms of Webster’s delay equation is presented bellow. 

3.1 Uniform arrivals model 

The first term (deterministic) considers that vehicles are arriving at a uniform rate. For this 
situation the delay is estimated based on the variation of the cumulated vehicles during time. 
The functions related to the cumulated number of vehicles that arrive with a flow q during the 
red light and the cumulated number of vehicles that depart at a rhythm defined by the 
saturation flow (s) during the effective green time (g), are represented In Figure 7. 
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Figure 7: Variation of the accumulated number of veh icles 

 
 
The expression (3.2) can be defined from the representation of the model. 
 
 [ ]0 0( )q C g t s t× − + = ×  (3.2) 

 
Separating t0 from the other variables, 
 

 0

( )q C g
t

s q

× −=
−

 (3.3) 
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The cumulated delay per cycle is obtained from the area identified by A. 
 

 
[ ] 2

0 0 0 0
( )

( )
2 2 2

C g t st s t s t
D A C g

− + × × ×= = − = −  (3.4) 

 
Replacing t0 by expression (3.3), 
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The average delay per vehicle (d) is calculated by dividing the cumulated delay by the 
number of vehicles that arrive during the cycle.  
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The expression (3.6) is the first term of Webster’s delay equation. 

3.2 Random arrivals model 

The second term of the delay expression introduces the random nature of arrivals, 
considering the possibility of saturation problems during some cycles, characterized by the 
formation of queues. 
 
According to Allsop (1972), Webster, by suggestion of Welding, considered the existence of 
a queuing system between the traffic that arrives at the intersection and the traffic lights (see 
Figure 8), in a way that the number of vehicles arriving next to the signal during each cycle is 
equal to the number of vehicles that depart during green time. A description for what 
happens can be read on Webster (1958): “It is an expression for the delay experienced by 
vehicles arriving randomly in time at a ‘bottleneck’, queuing up, and leaving at constant 
intervals”. 
 
Summing up, the model uses a queue system at upstream of the traffic lights where the 
vehicles arriving randomly are stored, forming a queue. The server of the queue releases 
those vehicles at a constant time interval and the number of vehicles released during each 
cycle is equal to the number of vehicles that can depart during green time. 
 

Server

Uniform arrivals modelQueue system
Arrivals with a Poisson
distribution

Queue

2nd term of equation 1st term of equation

 
Figure 8: Representation of the delay model (1 st and 2 nd terms) 
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The waiting queue system defined is M/D/1 type, according to Kendall notation. This 
corresponds to having a Poisson distribution for the arrival of vehicles, a fixed service time 
and one server. 
 
The value of the service time is established based on the premise previously presented, 
referring that the number of vehicles served by the queue system during each cycle has to 
be equal to the number of vehicles that depart during the effective green time. 
 
This way,  

 s

C
t

sg
=  (3.7) 

ts – service time; 
C – cycle time; 
s – saturation flow; 
g – effective green time. 

 
The equation to calculate the average value of delay for this type of queue system was 
presented by Kendall in 1951, based on the Pollaczek-Khintchine formula (Allsop, 1972). 
 
The system is analyzed by dividing time in certain instants, denominated by regeneration 
points, corresponding to the end of service, that is, the moment immediately before the 
departure of vehicles (Kendall, 1951). Remember that service time is deterministic and the 
time interval between regeneration points is equal to ts seconds. Considering two 
consecutive regeneration points t and t+ts, it is possible to establish a relation between the 
number of vehicles in the system at those two time instants (see Figure 9 and expression 
(3.8)). 
 
 ( )' max 1;0n n p= − +  (3.8) 

 
n – number of vehicles in the system at the regeneration point t ; 
n’ – number of vehicles in the system at the regeneration point t + ts ; 
p – number of vehicles that arrive to the system during the time interval [t ; t + ts]. 
 

A

A

B

B

n' (vehic.)

n (vehic.)

p (vehic.)

instant t

instant t+ts

 
Figure 9: Representation of the consecutive regener ation points 
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The expression (3.8) can be rewritten using a factor δ related to n, to guarantee that n’ never 
assume a negative value. 
 

 

' 1

1 se 0

0 se 0

n n p
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 (3.9) 

 
Taking in account the definition of the function δ, it can be established the following relations: 
 

 
2

0n

δ δ
δ

=
=

 (3.10) 

 
 
From the model represented by expression (3.9) and Figure 9, is possible to characterize the 
variable p, which is related to the arrival of vehicles and follows a Poisson distribution.  
 
The average number of vehicles that arrive to the system between points of regeneration, 
E(p), is equal to: 

 ( ) s

qC
E p q t

sg
= × =  (3.11) 

 
The variable q represents the flow of arrivals. 
 
The relation between the number of vehicles that arrive during one cycle (q×C) and the 
number of vehicles that depart during the green time at the saturation flow rhythm (s×g) is 
denominated by saturation degree (x). Having in consideration that, in a Poisson distribution, 
the variance is equal to the average, it comes: 
 
 ( ) ( )E p Var p x= =  (3.12) 
 
The value of E(p2) is obtained from the Konig theorem ( 2 2( ) ( ) [ ( )]Var x E x E x= − ). 
 
 2 2 2( ) ( ) [ ( )]E p Var p E p x x= + = +  (3.13) 
 
The expression (3.9) can be rewritten having in account that the relation between the random 
variables continues valid if the mean values are used. 
 
 ( ') ( ) 1 ( ) ( )E n E n E E pδ= − + +  (3.14) 
 
Assuming the existence of statistical equilibrium, the random variables that represent the 
number of vehicles in the system have the same distribution. 
 

 
2 2

( ') ( )

( ' ) ( )

E n E n

E n E n

=
=

 (3.15) 
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The expression (3.14) can be simplified. 
 
 ( ) 1 ( ) 1E E p xδ = − = −  (3.16) 
 
Squaring both members of the expression (3.9) and using the expressions presented at 
(3.10), it results: 

 
( )

( ) ( )

22

2 2 2

' 1

' 2 1 ( 1) 2 1

n n p

n n n p p p

δ
δ

= − + +

⇔ = − − + − + −
 (3.17) 

 
The variables n and p are independent, that is, the probability of arrival between two 
consecutive regeneration points is independent from the length of the waiting queue. The 
variables δ and p are also independent because δ depends only on n. 
 
Considering the expected values of the random variables, 
 
 ( ) ( )2 2 2( ' ) ( ) 2 ( ) 1 ( ) ( ( ) 1) ( ) 2 ( ) 1E n E n E n E p E p E E pδ= − − + − + −  (3.18) 

 
Assuming again a statistical equilibrium, 
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 (3.19) 

 
 
Considering the expressions (3.12), (3.13) e (3.16), 
 

 
( )
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2( ) 2 1 (1 ) 2 1

( )
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x x x x x
E n
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+ − + + − −
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−
 (3.20) 

 
Simplifying expression (3.20), 
 

 ( )
22

( )
2 1

x x
E n

x

−=
−

 (3.21) 

 
E(n) represents the average number of vehicles inside the system at each regeneration 
point. 
 
Considering the known relation of queuing theory,  
 
 L Wλ= ×  (3.22) 
 

 L – average number of elements in the system; 
 λ – arrival rate (elements/time); 
 W – system average waiting time. 
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It results, 
 ( )E n q W= ×  (3.23) 
 
Changing E(n) by expression (3.21), 
 

 ( )
22

2 1

x x
W

q x

−=
−

 (3.24) 

 
Finally, knowing that the average waiting time of the system (W) is equal to the average 
waiting time in queue (Wq) plus service time (ts), it can be obtained the expression that 
determines the value of the average queue waiting time per vehicle (d). 
 

 

( ) ( )
2 22 2
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 ( )
2

2 1q

x
d W

q x
= =

−
 (3.25) 

 
The expression (3.25) corresponds to the second term of the Webster’s delay equation.  
 

4. DELAY EQUATION FOR APPROACHES INCLUDING SHORT 
LANES 

To estimate the delays correctly for an approach with a short lane, it is necessary to adapt 
the theoretical models of Webster’s expression. 

4.1 Adaptation of the uniform arrivals model 

The deterministic term of Webster’s delay equation is based on a model that considers a 
constant saturation flow during green time. For approaches with short lanes, the saturation 
flow depends on green time, cycle extension and storage capacity of the short lane. This will 
change the potential departure flow, originating three different situations: 
 
Situation A:  ' 'xg g t g< ∧ ≤  
 
The cycle time is not enough to empty the storage capacity of the short lane. In this case, the 
potential departure flow is considered equal to the maximum saturation flow, in other words, 
there isn’t short lane effect (see Figure 10). 
 
As stated before, the value g’, represents the parcel of green time during which the short 
lane is contributing to the departure rate of vehicles. Its value is calculated by expression  
(2.4) using N instead of Nsh (see expression (4.1)), since the number of vehicles that 
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effectively are expected to use the short lane can be different from the number of vehicles 
that potentially can be stored. 
  

 '
sh

N
g

s
=  (4.1) 

 
N - number of vehicles that are expected to use the short lane (theoretically this value 

can be considered equal to Nsh). 
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Figure 10: Variation of the accumulated number of ve hicles for a movement with short lane ( tx<g’<g) 

 
 
The value tx is obtained from the intersection between the lines with slope q and smax 

(designated by x). 
 
 ( ) ( )max max( )x xq C g t C g s s C g t− + = − − + − +  (4.2) 

 
Putting tx at the left side of the equation, 
 

 
( )
max

x

q C g
t

s q

−
=

−
 (4.3) 

 
 
It can be concluded that this model is similar to the one developed by Webster, therefore the 
expression that determines the accumulated delay per cycle is obtained from expression 
(3.5) changing the variable s by smax. 
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And the delay per vehicle is equal to  
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This expression is valid for situations that respect the two conditions bellow. 
 
 ' < ⇒ < ×shg g N s g (4.6) 
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Joining these two conditions, it can be defined a dominium of applicability: 
 

 
( )

max

 −
≤ < ×

−
sh

sh

q s C g
N s g

s q
 (4.8) 

 
 
 
Situation B:  ' 'xg g t g< ∧ >  

 
The cycle time allows the growing of the waiting lines beyond the limit of the short lane. 
Consequently, it is verified an instantaneously decreasing of the saturation flow, from smax to 
smin. The referred variation of the saturation flow is called short lane effect and occurs at the 
instant when the green time given to the movement is equal to g’ (see Figure 11). 
 
From the model represented by Figure 11, it can be verified that: 
 

 ( ) ( )0 max min 0' 'q C g t s g s t g− + = × + −    (4.9) 

 
Working on the expression (4.9) it is possible to obtain t0 in function of the other variables. 
 

 
( )

0
min( )

q C g N
t

s q

− −
=

−
 (4.10) 

 
(Note: as expected, the value of expression (4.9) when t0=g’ is equal to the value given by 
expression (4.2) when tx=g’) 
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Figure 11: Variation of the accumulated number of ve hicles for a movement with short lane ( g’<t0<g) 

 
 
The value of vehicle’s accumulated delay per cycle for a movement including short lane is 
calculated by the area represented by A (inside the lines that represent arrivals, departure 
flows and the time axle). 
 

 ( ) ( )( ) ( )( )2

0 min

1
' ' '

2 sh shD s C g g g t C g s s g = − + + − −
 

 (4.11) 

 
 
Replacing t0 by expression (4.10): 
 

 
( ) ( )( )min

min

1

2 sh

q C g NN
D N C g C g s N

s s q

 − − 
= − + + − −   −  

 (4.12) 

 
 
The average delay per vehicle (d) is obtained dividing the accumulated value of delay by the 
number of vehicles that arrive during the cycle. 
 

 
( ) ( )( )min

min

1

2 sh

q C g ND N
d N C g C g s N

q C qC s s q

 − − 
= = − + + − −  × −  

 (4.13) 
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The resulting expression is valid for ' 'xg g t g< ∧ > . Separating the two parts of the condition 

it can be obtained the following relations: 
 
 ' shg g N s g< ⇒ < ×  (4.14) 

 

 
( ) ( )
max max

 
' sh

x
sh

q C g q s C gN
t g N

s q s s q

− −
> ⇒ > ⇒ <

− −
 (4.15) 

 
The condition of the expression (4.13) can be represented by the following dominium, 
 

 
( )

max

 
min ;sh

sh

q s C g
N s g

s q

− 
< × − 

 (4.16) 

 
Situation C: 'g g≥  
 
For g’ > g, there will not be short lane effect because green time value is insufficient to allow 
the departure of all vehicles stored in the short lane. This case is represented by the model 
on Figure 12. 
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Figure 12: Variation of the accumulated number of ve hicles for a movement with short lane ( g’  ≥g) 
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Once again, this model is similar to the one presented by Webster. This expression can be 
obtained from (3.4) replacing t0 by g and s by smax. 
 

 
[ ] 2

max max max
( )

( )
2 2 2

C g g s g s g s g
D A C g

− + × × ×= = − = −  (4.17) 

 
The average delay per vehicle is equal to 
 

 max ( )
2

s gD
d C g

q C qC

×= = −
×

 (4.18) 

 
It is possible to simplify the expression (4.18) taking in account that, for this situation, the 
relation maxs g qc=  is valid. 

 
2

D C g
d

q C

−= =
×

 (4.19) 

 
In conclusion, expression  (4.19) is a particular case of expression (4.5) when maxs g qc=  and 

is valid for shN s g≥ × . 

 
 
The dominium of the expressions presented for the three considered situations, are 
separated by two limits - see Figure 13. This graphic was obtained for a representative 
scenario (q1=900vph, ssh1=1800vph; smin1=1800vph; N1=5; q2=600vph; s2=1800vph; L=10s). 
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Figure 13: Dominium of the deterministic parcel of delay for movements including short lane 
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Considering Figure 13 and what was said before, it is only necessary to consider the limit 
between situations A and B and its expressions (4.13) and (4.5). Consequently, the 
deterministic parcel to calculate the average delay per vehicle at movements controlled by 
traffic lights including short lane is: 
 
 

 

( ) ( )( )

( )
( )

( )

min 0
min

2

max
0

max

0
max

1
 if 

2

 if 
2

and

 

  − − 
− + + − − <    −   

= 
 − ≥
 −

−
=

−

vc

sh

q C g NN
N C g C g s N N N

qC s s q

d

s C g
N N

C s q

q s C g
N

s q

 (4.20) 

4.2 Adaptation of the random arrivals model 

The determination of the stochastic term of the delay for movements that include a short 
lane, can be made directly by expression (3.25), since the queue model used by Webster, is 
located between the arrivals at the intersection and the traffic lights, in a way that is not 
affected by what is happening close to the stopping line. There is only the need to assure 
that the value of the saturation degree is calculated using the correct saturation flow of the 
movement. 
 
Since the saturation flow of a movement with short lane depends on the existence or not of a 
decrease on the saturation flow, from smax to smin during green time, it is possible to define 
two different situations:  
 
a) 'g g> , the maximum saturation flow lasts until the end of green time and therefore its 
value (smax) must be adopted for the determination of the delay stochastic parcel; 
 
b) 'g g< , the storage capacity of the short lane ends during the departure of vehicles. The 
value of the saturation flow depends on the value of green time and is calculated by 
expression (2.6) using N instead of Nsh for the same reasons presented before. 
 

 min= +avg

N
s s

g
 (4.21) 

 
 
Therefore, for cases where there is short lane effect, the stochastic parcel of delay is 
determined by expression (4.22) using the value of savg calculated by expression (4.21); 
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2

 

2 1

avg

avg

qC

s g
d

qC
q

s g

 
  
 =
 

−  
 

 (4.22) 

 
 
And for the cases where there isn’t short lane effect, the stochastic parcel of delay is 
determined by expression (4.23). 
 

 

2

max

max

 

2 1

 
 
 =
 

− 
 

qC

s g
d

qC
q

s g

 (4.23) 

 

4.3 Expression to determine the delay per vehicle f or an approach including 
short lane 

With the information gathered is now possible to write the equation to determine the average 
delay per vehicle (deterministic and stochastic parcel), for a movement with short lane, 
controlled by traffic lights. 
 

 

( ) ( )( )

( )
( )

2

min 0
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2

2

maxmax
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1
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2 1

 +  if 
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  
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s gq C g NN
N C g C g s N N N

qC s s q qC
q

s g
d
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s gs C g
N N

C s q qC
q
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(4.24) 

 
and 
 

( )
0

max

 -

( )
shs q C g

N
s q

=
−

 

 

min= +avg

N
s s

g
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This expression is valid for movements controlled by traffic lights, in general (with or without 
short lane), and can be used as a starting point to optimize the cycle of an intersection 
controlled by traffic lights, following the option of ignoring the third term, like Webster did.  
 
Notice that expression (1.1) is a particular case of expression (4.24) and can be obtained by 
doing the following: N =0 and smin = smax = savg = s. 
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