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ABSTRACT 

In this paper, we discuss the planning and the realization of last-mile delivery in urban areas. 

Two main prerequisites are identified in order to increase service quality in attended home 

delivery. First, empirical traffic data has to be collected and analyzed, and second, this raw 

data has to be converted into time-dependent data sets for route planning. Thus, an 

optimization framework is designed, integrating telematics based data collection by Floating 

Car Data (FCD), data allocation by Data Mining and the modelling of the time-dependent 

road network typology. The data sets provided are utilized in time-dependent vehicle routing 

heuristics, considering customer time slots. We compare the data sets regarding usefulness 

for time-dependent delivery in terms of a real data example in city logistics. The resulting 

itineraries are expected to meet the customers’ requirements regarding reliability and service 

quality of deliveries, keeping logistics service costs at a minimum. 

 

Keywords: Time-Dependent, Traveling Salesman Problem, Attended Home Delivery, 

Floating Car Data, Vehicle Routing, City Logistics, Information System 

1 INTRODUCTION 

More and more e-commerce businesses compete against each other regarding price and 

service quality. Fast and reliable delivery of goods is a crucial part of service quality. E-

commerce businesses have to ensure an efficient and effective “last-mile” delivery in order to 

meet customers’ requirements while keeping delivery costs low (Agatz et al. (2008a)). Thus, 

planning and realization of customer-oriented delivery is a challenging task. Especially e-

commerce businesses comprising attended home delivery are confronted with complex 

tactical and operational planning problems, since customers must be present when their 

order is delivered. On the one hand, customers expect a choice of narrow delivery time slots. 

On the other hand, time slots confirmed have to be realised on time within cost-efficient 

delivery tours. 
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In this paper, we focus the planning and the realization of last-mile delivery in urban areas. 

We refer to the field of city logistics, which comprises concepts for fast and reliable 

transportation of goods in terms of efficient and environmentally acceptable pickup and 

delivery tours. Logistics service providers have to consider service quality within their 

logistics planning processes, e.g., shorter delivery time, higher schedule reliability and 

delivery flexibility (Windt and Hülsmann (2007)). In urban areas, logistics service providers 

compete against other road users for the scarce traffic space. Here, traffic infrastructure is 

often used to capacity, resulting in traffic jams. This leads to lower service quality and higher 

costs for logistics service providers (Eglese et al. (2006)). 

There are two main prerequisites for the incorporation of service quality into planning 

processes: the availability of adequate planning data and the integration of this data into 

advanced planning methods. Planning data can be extracted from historical traffic data. 

Recently, such data is available from telematics based data sources in large extents. Since 

realistic travel times are one of the most crucial factors for the quality of route planning, raw 

telematics based traffic data must be converted into time-dependent planning data. Average 

travel times provide information for time-dependent delivery in terms of vehicle routing 

problems. 

Common vehicle routing approaches are based on static networks, i.e. on static distance or 

travel time matrices. However, network loads in urban areas are highly fluctuant with respect 

to different network links and times of the day. Hence, city logistics routing cannot rely on 

static travel times. For the most part, a single travel time value per link, as provided by 

today’s digital roadmaps, only insufficiently represents the traffic situation. Thus, time-

dependent travel times must be integrated into time-dependent vehicle routing algorithms in 

order to anticipate typical traffic states. Whereas common vehicle routing is well studied, 

time-dependent vehicle routing is still a field of potential research due to the substantial 

efforts in data processing and the resulting complexity in routing algorithms (Fleischmann et 

al. (2004)). The provision and the integration of time-dependent routing data into advanced 

planning methods are rarely focused. 

In the remainder of this paper, we give an overview of attended home delivery including an 

application example as well as recent approaches regarding time slot management and time-

dependent delivery (Section 2). Subsequently, telematics based data collection and data 

processing are sketched (Section 3). The resulting planning data sets are used for the 

modelling of time-dependent networks, which is a prerequisite for time-dependent vehicle 

routing algorithms (Section 4). Then, a city logistics application is discussed in order to 

illustrate data application by computational experiments (Section 5). Finally, the paper is 

concluded (Section 6). 

2 ATTENDED HOME DELIVERY 

In recent years, business models comprising attended home delivery services have staged a 

comeback. In attended home delivery, customers must be present for delivery due to security 

reasons, goods being perishable, goods being physically large or because a service is 

performed (Agatz et al. (2008a)). Thus, customers expect a choice of narrow, reliable 

delivery time slots, which is usually leading to high delivery costs (Campbell and Savelsbergh 

(2005)). E.g. transportation costs of attended home delivery based on 1-hour time slots are 
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2.7 times greater than costs evoked by unattended delivery (Punakivi and Saranen (2001)). 

During the order process of typical e-commerce businesses, customers can usually choose 

between several delivery time slots of different length and shipment fees (cf. Figure 1). 

 

 
Figure 1 – Time slot selection (www.peapod.com) 

Examples for order processes in attended home delivery can be discovered at e-grocers like 

Peapod (www.peapod.com) and Albert.nl (www.albert.nl). Peapod is one of the largest 

internet grocers in the U.S. and offers fresh groceries among others. In Figure 1, a 

screenshot from the Peapod website is shown, where a customer concludes the order 

process by choosing a time slot from a day specific time slot list. The single time slots 

overlap and differ in length, shipment fee and availability. E.g. the rather long morning time 

slot between 7:30 AM and 1:00 PM is offered with a discount of $1, whereas the 9:00 till 

11:00 AM time slot is “sold out” at the moment. Further details regarding the Peapod 

application example are analyzed by Agatz et al. (2008a). Details regarding Albert.nl can be 

found in Agatz et al. (2008b). 

The design of an attended home delivery order process depends on two factors. On the one 

hand, customer requirements (e.g. customer demand) must be considered in the tactical 
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design of time slots. Agatz et al. (2008a) discuss the tactical development of time slot 

schedule design. Here, decisions comprise the length of time slots, time slot overlaps, the 

number of time slots offered and delivery charges. In this context, they address the Time Slot 

Schedule Design Problem, which assigns specific time slots to areas defined by zip codes, 

given a set of service requirements.  

On the other hand, the realization of last-mile delivery must be ensured in terms of efficient 

and reliable time slot schedule management, e.g. when to “close” a time slot due to capacity 

or routing restrictions. In this context, Campbell and Savelsbergh (2005) focus the interaction 

of “order promise” and order delivery. They introduce several insertion heuristics, which are 

used to determine whether a delivery request can be feasibly accommodated in any of the 

time slots, based on the set of already accepted customers and expected customers. 

TIME-DEPENDENT DELIVERY 

After ordering, logistics service providers have to realize orders in terms of reliable and 

efficient delivery tours. Here, a crucial component is the anticipation of the time slots’ impacts 

on delivery routes. However, current literature mainly focuses the derivation of profitable time 

slots by demand estimation (revenue management).  

In this paper, we enforce the allocation of reliable customer time slots from a routing 

perspective. A customer could set a time slot while ordering, which would only be accepted if 

it was feasible in terms of an efficient delivery tour. Alternatively, the logistics service provider 

could propose convenient narrow time slots, also based on feedback from time-dependent 

vehicle routing. Thus, a high service quality could be assured as early as in the ordering 

process, still maintaining realizability of delivery. 

The prerequisite for reliable time-dependent delivery is the allocation and application of 

routing data in time-dependent vehicle routing approaches. Time-dependent information 

about typical traffic states support the determination of reliable itineraries. This allows for the 

derivation of reliable, narrow customer time slots. In recent years, a few authors have come 

up with approaches for information systems providing such routing data: 

 For city logistics, Fleischmann et al. (2004) design a traffic information system. Flow 

and speed data are collected in a field test with stationary measurement facilities and 

specially equipped vehicles in the metropolitan area of Berlin, Germany. The data is 

then aggregated and utilized in savings and insertion route construction methods. 

 Eglese et al. (2006) refer to Floating Car Data (FCD) for time-dependent routing in a 

supra-regional road network in the UK. The FCD originate from a communication 

network consisting of trucks and coaches. Data is transmitted via text messages 

(SMS) and stored as a “road timetable” in a central database. 

 Van Woensel et al. (2008) consider queuing theory to provide time-dependent travel 

time estimates. They refer to a tabu search approach to solve the time-dependent 

capacitated vehicle routing problem. Donati (2008) focuses on ant colonies to solve 

time-dependent vehicle routing problems heuristically. Both publications are more 

focused on large area networks. 

 Ehmke et al. (2009) analyze huge amounts of FCD for the determination of traffic 

quality as well as typical traffic states. They introduce a “data chain” in order to 

describe empirical traffic data collection and data analysis. Due to the complexity of 



DATA ALLOCATION AND APPLICATION FOR TIME-DEPENDENT DELIVERY IN URBAN AREAS 
EHMKE, Jan Fabian; MATTFELD, Dirk Christian  

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
5 

time-dependent routing data sets, they cluster routing data while keeping a certain 

level of reliability for the planning of shortest routes. 

In the following, we refer to telematics based data collection in terms of FCD as a 

prerequisite for time-dependent vehicle routing in urban areas. We sketch the important parts 

of data collection and data analysis. The approach by Ehmke et al. (2009) is extended by 

utilizing time-dependent routing data sets for reliable time-dependent delivery. Thus, typical 

traffic states are considered in order to provide a more reliable time slot schedule 

management. 

3 DATA ALLOCATION 

The starting point for time-dependent delivery in urban areas is the collection of traffic data. 

Reliable decisions must be derived from this raw data. Therefore, empirical traffic data has to 

be transformed into time-dependent routing data sets. We sketch the phases of the 

corresponding data chain and focus the main steps in terms of raw data, first and second 

level aggregation and decision. 

 

 
Figure 2 – Data allocation and application in the context of GPS based data collection and time-dependent vehicle 

routing in city logistics (Ehmke et al. (2009)) 

DATA CHAIN 

Varying traffic flows require time-dependent routing decisions in cities. GPS based traffic 

data may be the source for the derivation of such decisions. The corresponding data chain 

ranging from GPS based collection of raw traffic data to time-dependent routing decisions is 

shown in Figure 2. Efficient decisions are enforced by the transformation of raw data into first 

level aggregated data into second level aggregated data. In particular, the elements involved 

are as follows: 

 Data collection: Taxi-FCD is a recent GPS based data collection method that 

provides raw traffic data in urban areas. Taxi-FCD results in a large data volume of 

city-wide traffic data, mainly based on the use of taxis as moving data sources. 

data modelling

data collection data cleaning data integration data mining data evaluation data application
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 Data cleaning: Erroneous data records are removed. E.g. obviously unrealistic speed 

observations due to GPS shadowing effects are filtered. Data cleaning is the 

precondition for reasonable data mining. 

 Data integration: The collected single Taxi-FCD records (empirical traffic data) are 

amended by a common digital roadmap (infrastructure data). The data is integrated 

into one database and aggregated for analysis purposes. 

 Data mining: Aggregated Taxi-FCD is analyzed by means of cluster analysis. Cluster 

analysis is used for the memory efficient allocation of time-dependent travel time 

estimates.  

 Data evaluation: The travel time estimates are subject to evaluation and presentation 

because routing algorithms require realistic travel time estimates. To this end, the 

travel time estimates are visualized in daily courses in order to be compared with 

typical traffic patterns. Furthermore, geographical information systems like Google 

Earth (Google Earth KML 2.0) are involved. 

 Data application: The final step comprises the integration of time-dependent travel 

time estimates in time-dependent city logistics applications. 

RAW TRAFFIC DATA 

In order to derive travel time estimates for city logistics, city-wide data collection is 

necessary. To this end, conventional data collection methods like manual traffic census or 

counting traffic flows by induction loops are of limited use, because they require a 

tremendous amount of effort (Gühnemann et al. (2004)). Typically, no meaningful data 

samples are available for vast parts of the city road network. 

Traffic data can be collected by using telematics systems in terms of FCD. Recently, GPS 

have been propagated and are widely used for routing purposes. The Taxi-FCD project run 

by the German Aerospace Center (DLR) implements the idea of using taxis as mobile data 

sources for the collection of FCD. Here, a fleet of taxis characterized by typically high 

mileage is the basis of the system. The taxis are already equipped with GPS based 

navigation systems used for taxi disposition, hence causing no further costs for data 

transmission. Taxis transmit their current positions approximately every minute via digital 

radio trunking. 

A more detailed description of the data collection method can be found in Brockfeld et al. 

(2007). DLR has developed several map-matching and data handling algorithms. For the 

processing of the raw data, a general overview of Taxi-FCD and its applications see 

Lorkowski et al. (2004) and Lorkowski et al. (2005). More details of telematics based data 

collection and traffic data processing in general can be found in Ehmke et al. (2010). 

PLANNING DATA (FIRST LEVEL AGGREGATION) 

The raw Taxi-FCD records are filtered, integrated into a single database and then 

precalculated in terms of time-dependent aggregation. Here, raw traffic data evolve into 

planning data. The result is a mean FCD speed for each link and time interval, being the 

fundament for the derivation of time-dependent travel time estimates. Furthermore, the level 

of granularity in aggregation must be determined, i.e. the total number W of time intervals. 

Corresponding to common analysis methods from the area of traffic research (e.g. Pinkofsky 

(2006)), we refer to FCD by establishing 24 time intervals per day (W = 24 x 7). The resulting 
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speed averages are referenced to as “FCD hourly average” (FH). FH is supposed to cover 

expected fluctuations in travel times during 24 hours of the day and 7 days of the week. 

FH based algorithms for vehicle routing must cope with a huge amount of travel time 

estimates. However, limited memory capacities, complex time-dependent vehicle routing 

algorithms and the desire for fast and reliable routing decisions require the reduction of the 

volume of input data without a significant decrease of reliability. The following cluster 

analysis approach responds to these requirements by providing weighted FCD averages in 

terms of second level aggregation. 

CLUSTERED PLANNING DATA (SECOND LEVEL AGGREGATION) 

In this section, the functionality of data mining as important component of the data chain is 

sketched. We perform a weekday dependent clustering of FH data for the efficient allocation 

of time-dependent travel time estimates. The resulting clusters are supposed to characterize 

included links with similar speed variations. Thus, the data input for vehicle routing 

algorithms can be reduced.  

Normalized FH data is clustered by the k-means algorithm (MacQueen (1967)). The k-

means algorithm is a partition-based clustering algorithm, requiring the number k of desired 

clusters and a distance function as input. The algorithm then iteratively minimizes the error 

sum of the data objects’ distances to the cluster centers. A detailed discussion of the cluster 

analysis can be found in Ehmke et al. (2009). 

 
Table 1 – From the cluster analysis resulting discount factors (example with k = 4) 

Cluster 0-1 1-2 … 3-4 … 8-9 … 16-17 … 22-23 23-24 

1 0.71 0.76 ... 0.79 ... 0.25 ... 0.23 ... 0.59 0.65 

2 0.64 0.65 ... 0.63 ... 0.52 ... 0.53 ... 0.64 0.64 

3 0.43 0.46 ... 0.55 ... 0.30 ... 0.27 ... 0.38 0.41 

4 0.78 0.76 ... 0.77 ... 0.48 ... 0.45 ... 0.71 0.75 

 

Clustering of normalized FH data leads to a compact representation of time-dependent travel 

time estimates in terms of discount factors. The discount factors represent typical speed 

variations that are used for the derivation of time-dependent travel time estimates. The main 

idea is to look up a link’s discount factor and then weight a robust speed figure (e.g. average 

speed or maximum speed). Thus, the resulting data set is referenced as “Floating Car Data 

Weighted Averages” (FW). 

An example result of clustering is given in Table 1. Each cluster represents a group of links. 

Each link is associated with its groups’ representative vector of 24 discount factors. Thus, 

time-of-the-day specific link speeds can be derived by using the time-of-the-day specific 

discount factor and weighting it by its link’s mean speed. This leads to enormous savings 

regarding input data for vehicle routing. 

RELIABILITY OF PLANNING DATA SETS 

The reliability of FH and FW data sets is evaluated by simulation experiments. Ehmke et al. 

(2009) plan routes with the routing data sets presented and then “realize” these routes by 
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simulation of the planned routes. Therefore, they recalculate the planned routes based on 

“true” travel times for specific days and time slots in order to incorporate varying travel times 

in route planning. They then compare planned itineraries to simulated itineraries in terms of 

robustness and reliability. 

Concerning the actual realisation of the fastest itinerary, FH and FW data sets are superior in 

contrast to static route planning. FH data provokes reliable and robust routes, whereas FW 

data results in slightly worse routing decisions due to cluster analysis based aggregation. 

Nonetheless, FW data is much more efficient due to the tremendously reduced volume of 

input data for planning algorithms. 

In the following, the planning data sets are applied to time-dependent optimization. 

4 TIME-DEPENDENT OPTIMIZATION 

In this section, the integration of time-dependent routing data sets into advanced planning 

methods is discussed. Therefore, we give a short overview of the modelling of time-

dependent networks, which is a prerequisite for time-dependent vehicle routing, and build an 

optimization framework adapted to the requirements of attended home delivery. In this 

context, two simple heuristics for the calculation of efficient, time-dependent delivery tours 

are introduced. 

MODELLING OF TIME-DEPENDENT NETWORKS 

The determination of efficient delivery tours demands for an adequate representation of the 

typology of the road network, which is usually implemented by graphs that represent the 

relevant extract of the typology. In graphs, customers are represented by vertices, and 

vertices are connected by edges which represent shortest paths between customers in terms 

of distances or static travel time estimates. Each edge is associated with its static cost, 

duration or travel time that has been calculated by shortest path algorithms on the level of 

road network typology. Thus, shortest path calculation serves as “converter” between the 

road network typology and the problem specific model of delivery in city logistics. 

In contrast to static networks, time-dependent networks consider varying travel time 

estimates for each edge due to a more realistic representation of the road network typology. 

Here, travel time is modelled as a function of departure time. Travel time functions are 

distinguished into integer and real valued functions, also known as discrete and continuous 

modelling (Dean (1999)). 

In a discrete setting, time-dependent travel time estimates are usually approximated by 

piecewise-linear functions. Therefore, the time horizon considered is partitioned into an 

appropriate number W of time intervals. In the continuous case, travel time functions are 

estimated based on e.g. empirical traffic data. 

Modelling time-dependent networks based on empirical traffic data does not guarantee “First 

In, First Out” (FIFO) behavior. In FIFO consistent networks, vehicles do not “pass” each 

other, i.e. vehicles arrive in the order they commence an edge (“non-passing condition”, 

Kaufman and Smith (1993), Ichoua et al. (2003)). FIFO networks allow for time-dependent 

shortest path calculation in terms of a trivially-modified variant of any label-setting or label-

correcting static shortest path algorithm like Dijkstra’s algorithm (Dijkstra (1959)). This is due 
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to the following properties, leading to a reduced complexity of time-dependent vehicle routing 

(Dean (1999)): 

 In FIFO networks, waiting at nodes delays arrival. 

 In FIFO networks, one always finds shortest paths which are acyclic. 

 In FIFO networks, one always finds shortest paths whose sub paths are also shortest 

paths. 

More on basic concepts of time-dependent shortest paths can be found in a survey paper by 

Dean (1999). Pallottino and Scutella (1997) give an application driven overview on shortest 

path algorithms. A recent overview on algorithms for both the discrete and continuous case 

as well as a performance comparison is provided by Ding et al. (2008). Furthermore, 

Dell’Amico et al. (2008) introduce an approach for non-FIFO time-dependent networks. 

The routing data sets presented lead to piecewise-linear travel time functions, ignoring the 

FIFO property. Thus, the travel time function jumps between two time intervals, and passing 

may occur if the travel time decreases. Fleischmann et al. (2004) solve this problem by a 

“smoothed” travel time function that transforms non-FIFO into FIFO networks. Here, the jump 

between two intervals is linearized. 

Figure 3 – Construction of the piecewise linear travel time function, including linearization at jumps z1 and z2. 

In Figure 3, the derivation of travel times τli from average speeds vli is illustrated for an 

example link l. The travel time function τl(t) results from the FH or FW routing data set and 

features several jumps at zi. E.g. at z1, the average speed changes from relative low to 

relative high speed, inducing a rather long or rather short travel time, respectively. This 

change is not FIFO consistent; a vehicle starting shortly before z1 would be overtaken by a 

vehicle starting shortly after z1. Fleischmann et al. (2004) handle these jumps by linearizing 

the travel time function in the range [zi – δli; zi + δli]. δli determines the corresponding slope 

-s0, which is not allowed to become larger than s = 1, assuring the FIFO property. In the case 

of increasing travel times, the slope can be chosen freely (here: δli = 1). 

For the FH and FW data sets presented, we implement a FIFO consistent, time-dependent 

road network typology. In the following case study, this leads to 16.8 million travel time 
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estimates (FH) and 100,672 travel time estimates (FW), respectively. In contrast, a common 

digital roadmap would result in 100,000 travel time estimates only (which corresponds to one 

travel time estimate per link). Furthermore, a time-dependent shortest path algorithm is 

implemented in order to provide time-dependent travel time matrices as input for time-

dependent vehicle routing heuristics. 

HEURISTICS FOR TIME-DEPENDENT VEHICLE ROUTING 

Efficient and reliable delivery tours are provided by time-dependent vehicle routing 

algorithms, considering varying travel times. For the exemplary provision of time-dependent 

round trips, we discuss the Time-Dependent Traveling Salesman Problem (TDTSP). Two 

heuristics for the TDTSP are introduced, both based on the idea of finding the next nearest 

customer.  

The TDTSP is defined as follows: find a tour of minimum time that starts from the depot at a 

given starting time, visits every customer exactly once, and then returns to the depot. The 

travel time between two customers or between a customer and the depot depends on the 

time of the day. The TDTSP is an extension of the well known traveling salesman problem, 

which considers the travel time between two points as constant (Schneider 2002). As a 

generalization of the TSP, the TDTSP belongs to the class of problems for which it seems 

unlikely that polynomial-time exact algorithms can be developed (Lenstra and Rinnooy Kan 

(1981)). Thus, the provision of optimal solutions in an acceptable time is only possible for 

small problem instances. For larger practical problem instances, heuristics are needed which 

provide near optimal results in relatively short calculation times. 

An intuitive and simple heuristic is the Nearest Neighbor approach (NN). NN constructs a 

delivery tour beginning with a start vertex (“depot”) and then calculating the current travel 

times to all vertices left (“customers”). The nearest vertex is then added to the tour, and the 

procedure is repeated until all customers have been inserted (“visited”). Due to its simplicity, 

NN can be easily adapted to time-dependent networks by using time-dependent shortest 

path calculation. We implement NN referring to time-dependent shortest path calculation on 

the level of time-dependent road network typology. 

The advantages of NN are its speed and simple adaptability to time-dependent networks. 

Unfortunetaly, NN usually results in rather inefficient delivery tours due to “expensive” 

customers being postponed to the end of a tour.  

Malandraki and Dial (1996) improve the NN approach by proposing a restricted dynamic 

programming heuristic (NNDYN). Referring to the general idea of NN, they build tours by 

appending remaining vertices step by step. In contrast to NN, all partial tours are calculated 

in every step, but only the H most promising tours are retained for further investigation in the 

next step. Thus, exponential explosion of time and storage requirements can be avoided. If 

only the best partial tour is retained (H = 1), the approach corresponds to NN exactly. 

Malandraki and Dial state improvements of 13.8 % in their computational tests compared to 

the NN approach. 

In contrast to the simple and fast calculation of NN, NNDYN demands for a huge number of 

time-dependent shortest path calculations, requiring to the precalculation of time-dependent 

travel time matrices. We implement NNDYN by providing a time-dependent travel time matrix 

for every quarter hour, resulting in 96 travel time matrices for one weekday. Furthermore, we 
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allow for the retaining of H = 100,000 partial tours in every calculation step, considering 

memory limits. 

In the following case study, the routing data sets (FH, FW) and the time-dependent planning 

methods (NN, NNDYN) are integrated. 

5 CASE STUDY  

The applicability of time-dependent routing data sets in time-dependent delivery is 

demonstrated by computational experiments. We investigate a fictional scenario of a city 

logistics service provider in the area of Stuttgart, Germany. Therefore, a large amount of 

telematics based traffic data from this area is analyzed, which serves as input for the 

determination of the time-dependent routing data sets. We introduce the experimental setting 

first and present the computational results afterwards. 

EXPERIMENTAL SETTING 

The experimental setting is as follows: a city logistics service provider schedules itineraries in 

order to deliver to 20 customers, located all over the city of Stuttgart, Germany. Each 

customer expects a narrow, reliable time slot set by the city logistics provider. In order to 

demonstrate the influence of time dependency, the corresponding time-dependent traveling 

salesman problem is solved for 24 different depot starting times on a typical Monday (00:30 

till 23:30). There is a customer service time of 10 minutes for every customer. 

Computational experiments are executed on FCD collected in Stuttgart in the years 2003-

2005, resulting in about 230 million empirical traffic data sets. This empirical traffic data is 

processed as described in the data chain (cf. Section 3), leading to two types of planning 

data sets: planning data from first level aggregation (FH) and clustered planning data from 

second level aggregation (FW). Preliminary experiments have shown that FH data sets lead 

to routes that are more reliable than FW data sets, but they require a tremendous amount of 

computational effort (cf. Ehmke et al., 2010). FH and FW data sets are used for the 

initialization of the time-dependent planning framework as described in Section 4. A time-

dependent topology of the road network of Stuttgart as well as a time-dependent model of 

this road network is implemented. A common digital roadmap serves as the fundament for 

the modelling of the road network in terms of vertices and edges, whereas time-dependent 

edge costs are provided by FH and FW data sets. 

Based on the given framework, the time-dependent traveling salesman problem is solved 

heuristically by NN and NNDYN. In the NN case, results are improved by a time-dependent 

2-opt heuristic. NN works on the time-dependent, FIFO adapted topology of the road 

network, whereas NNDYN requires time-dependent, precalculated travel time matrices. 

Thus, we provide time-dependent shortest paths between all customers for every quarter-

hour, resulting in 96 travel time matrices for one weekday. 

EXPERIMENTAL RESULTS 

In Figure 4, durations of the 24 round trips calculated are compared regarding the total time 

of delivery tours, including customer service times. As expected, tour durations vary in the 

course of the day. NN and NNDYN lead to relatively short round trips at night and in the 
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evening, whereas round trip durations increase throughout the day due to increasing traffic 

flows. E.g. a round trip starting at 3:30 AM is completed after 4:32 hours (NNDYN FH), 

whereas a round trip beginning during morning rush hour at 7:30 AM is finished after 4:50 

hours (NNDYN FH). 

Comparing the quality of NN and NNDYN algorithms, NNDYN is able to find shorter round 

trips than NN in all cases. Round trips build by NN were improved by 2-opt exchanges. 

Nonetheless, NNDYN outperforms NN calculated tours on an average level of 11.2% 

(including 2-opt improvements) and 15.6% (without 2-opt improvements) in terms of pure 

travel time. 

 

 
Figure 4 – Comparison of tour durations and Nearest Neighbor heuristics (duration / start time) 

Regarding the applicability of planning data sets, FW data results in an overestimation of 

round trip travel times of about 7.8% due to the cluster analysis based grouping process. 

Still, FW based itineraries lead to similar results regarding the traffic flow characteristics of a 

typical Monday, keeping memory requirements low and increasing computational speed. 

In Figure 5 and Figure 6, exemplary results of NNDYN are shown for starting times 13:30 

and 19:30, respectively. The order of customers is determined by NNDYN and mapped to 

the road network topology by a time-dependent shortest path algorithm. The position and the 

delivery time of customers is displayed next to each pin, representing a single customer. The 

depot is denoted by pin “(0)” and pin “(21)”. Comparing Figure 5 and Figure 6, the order of 

the customer delivery and the expected time slots change due to evolving travel times, 

leading to the contrary direction of the itinerary and demonstrating the necessity of time-

dependent planning approaches. 

Altogether, computational experiments underline the benefits of sophisticated data allocation 

and application in order to provide more reliable and efficient delivery tours. Customers profit 

from narrow time slots that can be set based on feedback from time-dependent vehicle 

routing. The framework presented allows for an enhancement of common planning methods, 

implying sophisticated data allocation and a consistent, time-dependent topology. 
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6 CONCLUSION 

This paper is about data allocation and data application for time-dependent delivery in urban 

areas. To increase service quality in attended home delivery, two prerequisites are identified: 

the availability of adequate planning data and the integration of this data into advanced 

planning methods. We focus the improvement of deliveries from a routing perspective, and 

build a framework consisting of enhanced data collection, data allocation and modelling of  

time-dependent typology. 

 

 
Figure 5 – Result of NNDYN for starting time Monday, 13:30 (Picture source: Google Earth KML 2.0) 

(customers denoted by pins, position in itinerary in (), arrival times denoted by []) 
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In this context, planning data results from telematics based traffic data. We sum up the 

corresponding data chain that comprises the transformation of raw empirical traffic data into 

two types of planning data. Then, the modelling of time-dependent networks is described in 

detail. The time-dependent calculation of shortest paths is identified as important part of an 

efficient and realistic conversion of the road network typology into time-dependent planning 

models. Two heuristics based on the principle of Nearest Neighbour are discussed. 

 

 
Figure 6 – Result of NNDYN for starting time Monday, 19:30 (Picture source: Google Earth KML 2.0) 

(customers denoted by pins, position in itinerary in (), arrival times denoted by []) 
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Finally, planning data sets and time-dependent planning methods are integrated in a fictional 

case study. Results and benefits of time-dependent delivery are demonstrated exemplarily. 

The NNDYN heuristic outperforms the common NN approach on a level of 11.2-15.6%. 

Further research should discuss more complex approaches in time-dependent route 

planning. The introduced framework is to be extended by a more sophisticated integration of 

time windows in planning methods. Thus, a closer feedback from vehicle routing in order 

processes of home attended delivery could be achieved. 
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