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ABSTRACT 
 
Motivated by the notion that data needed for the estimation of travelers’ valuation of travel 
time (savings) is scarce, we put forward the idea that these valuations may be derived from 
observed travel time information searches. First, we derive a theoretical model of traveler 
behavior under uncertainty and information availability, which unambiguously links a 
traveler’s decision whether or not to acquire information to his or her travel time valuation. In 
theory, this model provides the opportunity to derive travel time valuations from information 
search. Then, empirical analyses are performed, based on an artificial dataset. The empirical 
analyses show that information search can indeed be used to empirically identify travel time 
valuations: estimated parameters for monetary costs and travel time savings are statistically 
indistinguishable from true values for the majority of generated datasets. Although estimated 
travel time valuations appear to be below the true value, the differences between the two are 
small and mostly insignificant.  
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1. INTRODUCTION 
 
Although for many years now, deriving travel time valuations has received considerable 
interest in the traveler behavior research community (e.g. 1-3), interest in the topic is rapidly 
gaining momentum in recent years (e.g. 4-12). Travel time valuations are of great use to 
transport policy makers that wish to evaluate the benefits of policies and infrastructure 
investments, aimed at combating congestion and inaccessibility of urban centers (e.g. 13). In 
order to derive the value of travel time, which itself is a latent construct, data on travel choices 
is needed: the underlying notion here is that travelers reveal their valuation of travel time by 
choosing among mode-, route- or departure time-options that differ in terms of their travel 
times and costs. Given such data, state-of-the-art discrete-choice analyses are applied to 
obtain econometric estimates of travel time valuations. Traveler behavior researchers are well 
aware that the needed high quality data on actual travel choices is scarce. In fact, this scarcity 
can be seen as one of the main reasons for the increasing popularity of stated choice 
approaches which rely on choices in hypothetical situations (e.g. 10, 11).  
 
This paper proposes another potential solution to deal with the scarcity of data concerning 
actual travel choices. We put forward the idea that travelers not only reveal their travel time 
valuations by choosing from among  mode-, route- or departure time-alternatives, but also by 
choosing whether or not to acquire travel time information.  
 
Picture a scenario where a traveler checks a route’s travel time by visiting an internet-page or 
by calling a traffic information number. By doing so, he provides a signal concerning the 
importance he attaches to travel time. Roughly put, if travel time weren’t important for this 
traveler, he would not have gone through the trouble of acquiring travel information. 
Obviously, things are slightly more complicated than this. That is, not only does the 
acquisition of travel time information provide a signal concerning the importance a traveler 
attaches to travel time, but also concerning his evaluation the route in terms of other 
attributes. For example, should the route be very unattractive in terms of a high level of toll, 
this would make the route relatively unattractive, irrespective of its travel time. Again, the 
traveler will in this situation not put effort (and potentially money) in acquiring travel time 
information. Combining these two notions (travel time information acquisition signals a) the 
importance attached to travel times and b) the evaluation of the travel alternative in terms of 
other attributes including costs), it becomes clear that data on travel time information 
acquisition can in principle be used to (help) estimate travelers’ monetary valuations of time. 
 
Building on previous theoretical research on the value of (travel time) information acquisition 
(14-20), we propose a model that unambiguously links a traveler’s decision whether or not to 
acquire travel time information under conditions of uncertainty, to his or her travel time 
valuation. Using this model, we subsequently show how estimates of travel time valuations 
can be obtained from data on travel time information search patterns. 
 
The outlook of the remainder of this paper is as follows: we first propose our model at the 
individual level and discuss its properties. We then proceed by providing an econometric 
specification that is applicable for estimation efforts based on observed information search 
patterns. Subsequently, we present a fictive example of traveler behavior under conditions of 
uncertainty and information provision. Artificial datasets of travel time information search 
behavior are created using Monte Carlo simulation on a predefined set of travel time 
valuations, and we show how the generated information search patterns can be used to derive 
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these true valuations through model estimation. Finally, we show how the model can be 
extended towards unreliable information, after which conclusions are drawn.   

 
 
2. MODEL 
 
A prerequisite for being able to use observed information search behavior to derive travel 
time valuations is that information search behavior is modeled in terms of the traveler’s 
valuation of travel time, relative to money. A promising candidate to achieve this link is to 
formulate search for information in terms of a cost-benefit trade-off; the benefits of 
information search being the difference between the expected utility of the current choice 
situation and the expected utility of the anticipated choice situation after having received the 
information (e.g.14-18). In addition to theoretical models of information search at the 
individual level, we need an econometric specification of these models to be able to actually 
estimate travel time valuations from observed information search patterns. A random-utility-
based specification that may be used to this aim has been recently developed by Chorus, 
Walker and Ben-Akiva (20). They propose a model where the unobserved utilities relating to 
travel alternatives (e.g. intrinsic preferences for different travel modes) are captured in the 
utility functions of travel information options.  
 
Our approach to derive travel time valuations from observed information search patterns is 
rooted in these streams of literature. More specifically, we assume i) that a traveler’s decision 
to search for information is based on expected utility maximization, where the expected utility 
of information is composed out of a cost component and a benefit component; ii) that the 
benefit of information search can be written in terms of the difference in expected utility of 
the current and anticipated choice situation; iii) that part of the expected utility of routes and 
the utility of information cannot be observed by the analyst, leading to additive random error 
components for travel alternatives that are represented in the utility of information search. In 
the remainder of this section, we will specify our model at the individual level, discuss its 
properties, and provide an econometric formulation. For reasons of simplicity, we consider a 
choice situation where a traveler chooses from among two routes. 
 
2.1.  Individual level model 
 
Consider a choice situation between two routes i and j. Assume that, in the spirit of Lancaster 
(21), a traveler perceives both routes as a bundle of travel time and travel cost (toll). Travel 
times are modeled by assuming that a route can experience a good and a bad day. If a route 
experiences a good day, travel time equals TT. On a bad day, travel time equals TT + TTΔ  
minutes. If both routes experience a good (or a bad) day at the same time, travel times are 
(perceived) equal. A constant 0β  reflects an intrinsic preference for route i over j. Let the 
utility of i and j be specified through the following linear additive functions: 

 and . Here, 0i toll i goodU toll goodβ β β= + ⋅ + ⋅ i 0j toll j good jU toll goodβ β β= + ⋅ + ⋅ tollβ  reflects 
the travelers (dis-)utility of a unit of toll. goodβ  represents a traveler’s preference for a good 
day (good = 1) over a bad day (good = 0), or in other words the utility he or she derives from 
saving  minutes travel time. Assume now that the traveler is uncertain whether on this 
particular day route i experiences a good day (  = 1), or a bad day with a  minutes 
higher travel time (  = 0). The traveler is certain that route j currently experiences a bad 

TTΔ

igood
igood TTΔ
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day, i.e. = 0. We denote the perceived probability that route i experiences a good day 

as . The expected utility the traveler derives from choosing route i is then written as: 
jgood

)i

0 tollβ β= +

(p good

iU
 

( )i i goodE toll p good β⋅ + ⋅        (1) 
 
The expected utility she may derive from the current choice situation as a whole is then given 
by the maximum of the expected utility of route i and  j.  
 
Let an information search possibility exist concerning the value of  (i.e. the traveler 
may search for information whether or not route i experiences a good day). The expected 
utility of the anticipated choice situation after having received the information, EU +  then 
be formalized as follows: the individual knows that, given fully reliable information, she will 
receive the message “route i experiences a good day” with probability p  and the 

message “route i experiences a bad day” with probability 1-

igood

,

( igood

 can

)
( )ip good . For example, should 

our traveler ex ante believe that the probability that route i experiences a good day equals 
95%, we assume that when acquiring fully reliable information she expects to receive a 
message, saying that indeed route i experiences a good day, with 95% probability as well. She 
also knows that, after having received one of these messages, she will maximize her utility 
when choosing between route i and route j. The following equation gives the notational 
representation of this argument:  
 

( )i ( )( )0 0

Utility of  on a bad dayUtility of  on a good day

max , 1 max ,toll i good j i toll i j

ii

E toll U p good toll Uβ β β β β
⎧ ⎫

U p good
⎧ ⎫⎪ ⎪ ⎪= ⋅ + ⋅ + + − ⋅ + ⋅ ⎪

⎨ ⎬ ⎨
+

⎬
⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎪

 

 
(2) 
 
As proposed earlier in this Section, we now conceptualize the expected utility of information 
as the difference between the expected utility of the current choice situation and that of the 
anticipated choice situation, minus the cost  of information search: . 
Information is searched for when .  

c IEU EU EU c+= − −
0IEU ≥

 
2.2.  Model properties 
 
Before discussing how the model presented above can be formulated econometrically, let us 
elaborate on how the proposed model captures some basic intuitions concerning traveler 
behavior. First, let us consider how traveler information search is influenced by a traveler’s 
intrinsic preference for a route, and its performance in terms of travel costs. We would expect 
that the expected value of information about travel times (good versus bad days) is relatively 
high when route i and j are perceived as comparably attractive in terms of the total of their 
other attributes (intrinsic preferences and costs). In such a situation, whether or not route i 
experiences a good day will likely determine the traveler’s choice. When one of the two 
routes is superior in terms of intrinsic preferences and/or costs, we expect a traveler to be less 
interested in knowing route i’s travel time, since knowing it will probably not change her 
preference for the superior route.  
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The following fictive example illustrates how our model of expected information value 
captures this intuition. We assume the following settings, based on the choice-situation 
described above: a traveler chooses between two routes i and j. The traveler perceives the 
probability that route i experiences a good day, ( )ip good , as .5 and is certain that route j 
experiences a bad day. His or her valuation of avoiding the extra TTΔ  minutes travel time 
associated with a bad day, denoted goodβ , equals 5. Information I concerning the value of 

 can be obtained at no costs (i.e., igood 0c = ). We now vary the performance of route i 
relative to routed j in terms of its alternative specific constant (ASC), representing the 
traveler’s intrinsic preference for i. We also vary the difference in toll (positive values 
indicating that i is more expensive than j; we assume toll 1/ unitβ = − ). We observe how this 
affects the expected value of searching for information concerning the value of .  igood
 
Figure 1 shows how the expected value of information, given our conceptualization, is low or 
even non-existing in situations where either i) route i is substantially more expensive than j 
AND the traveler holds a strong intrinsic preference for j, OR ii) route i is substantially 
cheaper than j AND the traveler holds a strong intrinsic preference for i. In situations with no 
strong differences in intrinsic preferences or toll, or where they cancel out, expected value of 
information is relatively high. Note that in fact, since we assumed that route j experiences a 
bad day, the expected value of information is highest when j is slightly more attractive than i 
in terms of toll and intrinsic preference. Completely in line with intuition, our model predicts 
that travelers derive the most value of information search concerning uncertain travel times 
(good versus bad day) when the information will determine their choice between the two 
routes. 
 
Second, let us consider how information search concerning uncertain travel times is 
influenced by the degree of uncertainty and the traveler’s valuation of travel times. We would 
expect that the more uncertain a traveler is concerning route i’s true travel time, i.e. the 
occurrence of good or bad days, the more she will be inclined to search for information, 
ceteris paribus. We also expect that the higher the traveler’s value of time, the more she will 
be inclined to search for travel time information, ceteris paribus. In notation, we would expect 
that higher values for goodβ  induce higher expected values of information and that when 

 approaches either 0 or 1, the expected value of information decreases.  ( ip good )
 
Figure 2 visually shows how our model captures these intuitions, by plotting the expected 
value of information against travel time valuation and the level of uncertainty. We adopt the 
following settings: there is a small intrinsic preference for route j over i ( 0 3β = − ), both routes 
are toll-free. We vary  within [0,1], and ( ip good ) goodβ  (the traveler’s valuation of avoiding 
the  minutes of extra travel time associated with a bad day) between 0 and 7.5. As 
expected, expected information value is low or non-existing when the individual is relatively 
certain that route i does (not) experience a good day, and for low values of 

TTΔ

goodβ . In these 
situations, there is little uncertainty, and the uncertainty that does exist does not influence 
traveler choice due to the low valuation of travel time. However, when  approaches 
.5, and 

( ip good )
goodβ  increases, the expected value of information increases as well: travel time 

becomes more important, and its value more uncertain, so the information becomes more 
valuable. Again, the proposed model of expected information value appears to behave in line 
with our intuitions regarding the behavioral determinants of travel information search. 
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Summarizing, the proposed model of expected information value appears to provide an 
intuitive account of traveler behavior. This provides first confidence that the model may be 
applied to derive travel time valuations from observed information search patterns. However, 
in order to become applicable for data-analysis, we need an econometric specification of our 
individual-level model of information search. Such a specification is presented in the 
remainder of this Section. 
 
2.3. Econometric model specification 
 
Assume that an analyst observes information search from N travelers, one choice per traveler 
n, and wishes to derive (average) travel time valuations from these observations. Adopting a 
random-utility framework, we assume that the analyst is only able to observe part of the 
(expected) utility that a traveler derives from the available routes, or from information search. 
That is, these utilities are – from the analyst’s point of view - composed out of an observed 
and an unobserved (random) part. We assume the following distributions for the random 
utility components: n

iδ  represents the part of the utility of route i that is unobservable by the 
analyst and reflects variation across travelers concerning intrinsic preferences for route i over 
route j (the average intrinsic preference is given by 0β ). We assume that n

iδ  is normally 
distributed across individuals: ( )~ 0,n

i N iδ σ . Furthermore, n
Iε  represents the part of the 

utility of information search that is unobservable by the analyst and reflects an inclination to 
(not) acquire information. We assume that n

Iε  is i.i.d. Extreme Value Type I distributed with 

standard deviation 6

n

π . For ease of presentation, we assume also that the level of toll is 
perceived and evaluated equally by each traveler. However, different travelers may attach 
different probabilities  concerning the occurrence of a good day on route i. 
Together, this leads to the following reformulation of equation (2) concerning the expected 
utility of the anticipated choice situation, after having received information:  

(np good )i

 

( ) ( )( )0 0

Utility of  on a bad dayUtility of  on a good day

max , 1 max ,

n

n n n
i toll i good i j i toll i i j

ii

EU

p good toll U p good toll Uβ β β δ β β δ

+ =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪⋅ + + + + − ⋅ + +⎨ ⎬ ⎨
⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

⎪
⎬
⎪

n

  

 
(3) 
 
The expected utility of information becomes n n n n

I IEU EU EU c ε+= − − + . Given these 
formulations, computing the probability that an observed traveler n will search for travel time 
information now involves the evaluation of two integrals: one to integrate out n

iδ  relating to 
the traveler’s intrinsic preference for route i, another one to integrate out n

Iε  relating to his or 
her inclination to search for information.  
 
The distributional assumptions of the random errors result in a mixed binary logit model; the 
closed form solution of the integral associated with n

Iε  (resulting in binary logit) is mixed 
over the probability density function of n

iδ . Acknowledging that the non-random part of the 
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utility of not acquiring information equals zero by definition, the choice probability for 
information search by traveler n may thus be denoted as: 
 

( ) ( )
( ) ( )

exp

exp 1

n
In

in
In

i

EU
n n

ip I
EU

f dδ δ
δ

⎛ ⎞
⎜ ⎟= ⋅
⎜ ⎟+⎝ ⎠
∫        (4) 

 
Let us denote observed information search as n

Iy , assuming it takes one the value 1 when the 
traveler chooses to acquire information, and 0 otherwise (remember that we observe only one 
choice per traveler). We can now estimate the parameters of the choice model, 0β , goodβ  and  

tollβ , by maximizing the (log of) the sample likelihood L for the observed information search 
patterns: 
 

( ) ( )
1

1
1

N n n
In n

n

Iy y
L p I p I

=

−⎛ ⎡ ⎤ ⎡ ⎤= ⋅ −⎜ ⎣ ⎦ ⎣ ⎦⎝ ⎠∏ ⎞
⎟        (5) 

 
The parameter ratio good tollβ β  now gives the econometric estimate of the average monetary 
valuation of (avoiding)  minutes of extra travel time associated with a bad day. Note that 
a negative number is expected as we expect that 

TTΔ

goodβ  is expected to have a positive, and tollβ  
a negative sign. In other words: we estimate the amount of money a traveler would be willing 
to give up in order to achieve a travel time saving (‘exchange’ a bad day for a good one). 
 
The above model theoretically provide us with a tool to derive travel time valuations from 
observed travel information search patterns. However, it is yet unclear whether this theoretical 
notion holds empirically. A look at the sub-section on model properties suggests that the 
assumed relation between travel time valuations and the resulting information search patterns 
is rather subtle and indirect. This certainly holds when compared to the relation, assumed in 
conventional choice models, between travel time valuations and choices among routes. In 
other words, it is not clear whether the parameters (travel time valuations) that underlie a 
data-generating process (information search behavior) that is characterized by the above 
equations can be empirically identified by maximum likelihood estimation based on the 
observed data. In the next section, we will address these questions concerning empirical 
identification by estimating our model of information search on artificial datasets. 
 
 
3. EMPIRICAL ANALYSES 
 
This section consists of two parts: first, we will generate artificial data concerning information 
search patterns. This is done by feeding a set of true parameters β  (and Monte-Carlo-
generated random error components δ  andε ) in the model presented above, in order to 
simulate information search. Second, we will use the artificially generated data on 
information search for maximum likelihood estimation and investigate whether the obtained 
parameter estimates β̂  correspond to the true β ’s used to generate the data. See Figure 3 for 
a visual overview of this process. 
 
3.1. Data generation 
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We assume the following hypothetical situation: travelers are faced with a choice between 
two routes A and B, and perceive them as a bundle of the attribute TOLL, an attribute denoted 
GOOD_DAY. On average, there is no intrinsic preference for one of the two routes. Route A 
has a higher level of toll than route B, travelers are aware of this difference. The two routes 
can experience good or bad days. If a route experiences a good day, travel time equals TT. On 
a bad day, travel time equals TT +  minutes. If both routes experience a good (or a bad) 
day at the same time, travel times are (perceived) equal. Travelers know that route B currently 
experiences a bad day (GOOD_DAY = 0 for route B) and they attach a probability 
p(GOOD_DAY = 1) to the event that route A experiences a good day; this probability differs 
between travelers, and we assume that they perceive it as independent from the attribute 
TOLL. Traveler preferences are as follows: -1 util per unit regarding the attribute TOLL and 
50 utils for the attribute GOOD_DAY. That is, travelers are willing to pay (no more than) 50 
units for a travel time difference of 

TTΔ

TTΔ  minutes. In case travelers are certain that route A 
has a bad day (p(GOOD_DAY=1) = 0), then route B is preferred, due to the lower level of 
toll. In case travelers are certain that A has a good day (p(GOOD_DAY=1) = 1), the traveler’s 
preference depends on the toll difference between the two computers. Under conditions of 
uncertainty ( 0 < p(GOOD_DAY=1) < 1) route A may or may not be preferred to B, 
depending on the toll difference between the two and the exact value of p(GOOD_DAY=1). 
By replacing the attribute TOLL by TOLL_DIFF (reflecting the difference in toll between A 
and B), we normalize the utility of route B to zero.  
 
Adding n

Aδ  to reflect that traveler n may have an intrinsic preference for route A, we arrive at 
the following expected utility function for route A: = βTOLL_DIFF * TOLL_DIFF + 
βGOOD_DAY * p(GOOD_DAY=1) + 

n
AEU

n
Aδ  . Travelers now face a choice whether or not to acquire 

fully reliable information concerning the value of GOOD_DAY, denoted INFO_SEARCH. 
The information comes at a certain information cost, denoted COST and perceived by 
travelers to equal –4 utils. Note that COST may consist of monetary as well as non-monetary 
components.  
 
Based on the described choice situation, we generate 10 datasets of 200 cases each. Each case 
presents a choice, made by a different traveler, whether or not to acquire the available travel 
time information. The data generation process consists of three steps: 
1. Each case is systematically assigned TOLL_DIFF from the set { }10, 20,30, 40,50 - 

reflecting that A is always more expensive than B. Also, each case is randomly assigned a 
probability p(GOOD_DAY=1) drawn from the 0-1 interval, representing the individual’s 
belief strength that route A experiences a good day.  

2. We then apply Monte Carlo simulation to draw random error components for each case. 
One error component, reflecting the traveler’s intrinsic preference for route A over B, is 
drawn from a standard normal distribution and added to the (expected) utility of route A. 
Two other errors, reflecting the individual’s inclination (not) to search for information, are 
drawn from an i.i.d. Extreme Value Type I distribution with standard deviation 6π , 
and added to the expected utility of (not) acquiring information. 

3. Finally, using our model, we compute for each case the expected utility n
IEU  of 

information search and based on this utility simulate a traveler’s choice whether or not to 
acquire the available information. For the given model settings, roughly half of the 2000 
hypothetical travelers choose to search for information, denoted INFO_SEARCH = 1. 
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3.2. Model estimation and comparison of estimates with true values 
 
The generated datasets contain four columns each: three independent variables (TOLL_DIFF, 
p(GOOD_DAY=1), COST) and one dependent variable (INFO_SEARCH). We now present 
an attempt to estimate parameters βGOOD_DAY and βTOLL_DIFF (and their ratio: the implied value 
of travel time), by relating these independents to INFO_SEARCH using our econometrical 
model of information search. The likelihood function and estimation process were coded in 
GAUSS 7.0, using the MaxLik-module. Note that calculation of the likelihood function 
involves integration of a binary logit function over a standard normal probability density 
function, for which there is no closed form solution. We compute the integral through 
simulation, using 500 intelligent Halton draws for each case. This number of intelligent draws 
results in a sufficiently high level of coverage of the probability density function and a high 
level of stability of parameter estimates.  
 
It turns out that, notwithstanding the subtlety and indirect nature of the assumed relation 
travel time valuations and information search behavior, we are able to empirically identify 
from the generated data the parameters that were used for data generation. That is, βGOOD_DAY 
and βTOLL_DIFF are empirically identified. As Table 1 shows, estimated parameters and implied 
travel time valuations seem to be very close to the true values (respectively -1, 50, -50),  
although the implied valuations of travel time appear to be slightly below the true value. 
Perhaps more importantly than assessing whether the estimated parameters and travel time 
valuations seemingly correspond to the true ones is to assess whether they are statistically 
indistinguishable from the true values.  
 
We first test, for each of the 20 estimated parameters βGOOD_DAY and βTOLL_DIFF, the following 
hypothesis through a one-sample t-test: the estimated parameter is equal to the true value. See 
Table 1 as well for the results of this test, t = (estimated value – true value) / SE.  
Acknowledging that a significance level of 5% implies that absolute values of t-values smaller 
than 1.96 signal that the hypothesis cannot be rejected, it becomes clear that for 8 of 10 
datasets the estimated parameters appear as statistically indistinguishable from their true 
values. For the two datasets where parameters can be distinguished from their true value at a 
5% significance level, t-values remain close to 1.96.  
 
We go on to test whether the travel time valuations implied by the estimated parameters can 
be distinguished, in a statistical sense, from the true value. First, we estimate the standard 
error of the implied estimates of travel time valuation using the Delta-method for confidence 
bound estimation of parameter ratio’s. Following this method, the standard error of a ratio of 
parameter estimates ˆα̂ β  can be approximated by the following measure:  
 

( )
( )( ) ( ) ( )( )

2
22

2

ˆ ˆ ˆ1 2 ˆˆ ˆSE SE COV , SEˆ ˆ ˆˆ
α α αα α β
β β ββ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ − ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

β̂    (6). 

 
Applying this approximation on our estimation results yields the SE’s for the implied value of 
travel time, as presented in Table 1. Similarly to the significance tests displayed above, we 
test whether the implied value of travel time is indistinguishable from its true value in a 
statistical sense. See Table 1 for the results of this test: it appears that for seven out of ten 
datasets, the estimated value of time is indistinguishable from its true value at a significance 
level of 5%. However, for three datasets, there is a statistical difference between true and 
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estimated value of travel time at any reasonable level of significance. Notably, it appears that 
all estimated travel time valuations are below the true value. We have not found a good 
explanation for this. Notwithstanding this, it appears that the differences between the two are 
small and, as said, mostly insignificant. 
 
 
4. EXTENSION TOWARDS PARTIALLY RELIABLE INFORMATION 
 
In the remainder of this section, we explore how our approach may be extended to cover 
situations where information is (perceived as) only partially reliable.  
 
4.1. Extension towards partially reliable information 
 
Until here, we have assumed that available information is (perceived as) fully reliable. In 
practice, this assumption will not always hold. Information may often be (perceived as) only 
partially unreliable, which is likely to result in lower inclination to search for information than 
our model predicts. Should the model that the analyst uses for deriving travel time valuations 
from observed information search be – erroneously - based on the premise of fully reliable 
information, this would lead to biased estimates. In the following, we show that there is a 
straightforward way to incorporate the notion of perceived information unreliability in our 
model of information search, based on the concept of Bayesian perception updating (e.g. 22).  
 
Assume the exact same choice situation that is described in the model-section above – we 
here focus on the individual-level model for simplicity of notation. Assume that the 
information I concerning the value of attribute  is not (perceived as) fully reliable. That 

is, there is a perceived non-zero probability 
igood

( ): 1 0i ip goodI good = =  that the information I 

received by the traveler states that 1igood =  (route i experiences a good day) when in fact 
. Similarly, there may be a perceived non-zero probability 0igood =

( ): 0 1i igood= =

)

p I good . What are the effects of these non-zero probabilities on the 
expected value of information?  
 
First, the probabilities that govern a traveler’s perception of what message he or she thinks he 
or she will receive when acquiring information will change. In case the information is 
perceived as completely unreliable, the traveler will perceive the information service’s 
messages to be random draws, irrespective of her initial perceptions concerning the uncertain 
attribute  and ( )1ip good = ( 0ip good = . In case of fully reliable information, his or her 
initial perceptions concerning the occurrence of a good day fully determine her perceived 
probability of receiving particular messages: ( ) (: 1i ip I good p good )1= = =  and 

; In general, we can write the perceived probability of 
receiving particular messages as follows: 
( ): 0i p= = (p I good good )0i =

 
( ) ( ) ( ) ( ) ( )

( ) ( )

: 1 1 : 1 1 0 : 1

: 0 1 : 1

i i i i i i

i i

p I good p good p I good good p good p I good good

p I good p I good

= = = = = + = = =

= = − =

0i

 
(7). 
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Note that the following must hold: ( ) ( ): 1 0 : 0 0i i i ip I good good p I good good 1= = + = = =  

and ( ) (: 0 1 : 1 1i i i ip I good good p I good good= = + = = ) 1= . It can be seen that the 
perceived probabilities of receiving partially reliable messages reduce to the probabilities 
associated with the case of fully reliable information when ( ): 1i ip I good good= = 0  = 

( ): 0i ip I good good= =1  = 0. 
 
Besides that information unreliability affects travelers’ beliefs about what message may be 
received when searching for information, it is expected that the unreliability also affects the 
impact of a received message on traveler perceptions concerning the occurrence of good or 
bad days. The more reliable the information is perceived to be, the more a traveler will take 
messages seriously, up to the point that he or she is willing to replace here initial perceptions 
completely by received fully reliable information. Information that is believed to be fully 
unreliable will be disregarded by travelers. Using Bayes’ law of conditional probabilities, we 
arrive at the following general formulation for a traveler’s perception updating process, where 

'p  stands for an updated perception conditional on receiving a particular message (we give 
the probabilities for , subsequent derivation of those for  is 
straightforward):  

1igood = 0igood =

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

' 1 : 1 : 1 1 1 : 1

' 1 : 0 : 0 1 1 : 0

i i i i i i

i i i i i i

p good I good p I good good p good p I good

p good I good p I good good p good p I good

= = = = = =

= = = = = =

=

=

 (8). 

 
Based on the above two equations, it is seen that in case of partial unreliability of information, 
traveler choice after having received the information remains a choice under uncertainty. This 
in contrast to the case of fully reliable information, where all uncertainty is removed upon 

receiving a message. The updated expected utility of route i, denoted '
iEU , is based on the 

updated perceptions 'p  concerning the occurrence of good versus bad days.  
 
Combining our derivations concerning i) what message is expected to be received and ii) the 
effect of received messages on traveler perceptions of the uncertain attribute, we can now 
write the expected utility of the anticipated choice situation after having searched for partially 
reliable information as follows: 
 

( ) ( ){ } ( )( ) ( ){ }' ': 1 max : 1 , 1 : 1 max : 0 ,i i i j i i i

EU

jp I good EU I good U p I good EU I good U

+

=

= ⋅ = + − = ⋅ =

 
(9). 
 
Subtracting from (9) the expected utility of the current choice situation and the costs of 
information acquisition yields the expected utility of searching partially reliable information.  
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As an illustration of the workings of this model extension towards including partially reliable 
information, consider the following choice situation: a traveler chooses between two routes i 
and  j. She perceives the probability that route i experiences a good day  and 
is certain that route j experiences a bad day. The utility associated with a good day, denoted 

( )1 .8ip good = =

goodβ , equals 5. There is an intrinsic preference for route j over i: 0 3β = − . Toll levels of the 
two routes are equal. Thus, the expected utility of the current choice situation equals max (-3 
+ .8 * 5 , 0) = 1. Information I concerning the value of  can be obtained at no costs (i.e., 

). However, information is perceived as only partially reliable in the sense that there is a 
perceived probability that a received message claims that 

igood

good
0c =

1i =  where in fact 0igood = , 
and vice versa.  
 
Figure 4 shows the expected information value for varying levels of magnitude of the 
probabilities of receiving incorrect messages ( ): 1i ip I good good 0= = , denoted P_1_false, 

and ( : 0i ip I good good= )1= , denoted P_0_false. It is directly seen that the expected value 
of information increases as the perceived probability of receiving incorrect messages 
approaches zero. As the perceived probability of receiving incorrect messages increases, 
expected information value drops, as would be expected. Note that should the perceived 
probability of receiving incorrect messages approach 1, information value would rise again. 
This is in fact logical, as travelers then know that when faced with a message, they may derive 
the true value of  with certainty: when a message igood : 0iI good =  is received, the updated 
perception consists of knowing with certainty that 1igood = . Information value is lowest 
when the probability of receiving incorrect messages is around .5. In summary, it appears that 
extending the proposed model with Bayes’ law of conditional probabilities makes it possible 
to provide a meaningful account of the way in which travelers deal with partially reliable 
information. 
 
 
5.  CONCLUSIONS 
 
Motivated by the notion that data needed for the estimation of travelers’ valuation of travel 
time (savings) is scarce, we put forward the idea that these valuations may be derived from 
observed travel time information searches. In addition to a theoretical underpinning of this 
idea within an expected utility framework, we provide an empirical example of how this 
process may work in practice. The empirical analyses show that information search can 
indeed be used to empirically identify travel time valuations: estimated parameters for 
monetary costs and travel time savings are statistically indistinguishable from true values for 
the majority of generated datasets. Although all estimated travel time valuations appear to be 
below the true value, the differences between the two are small and mostly insignificant. It is 
also shown how the model can be extended to cover the case of unreliable information.  
 
Directions for further research include: i) incorporating unreliable information in empirical 
estimation efforts, ii) incorporating non-expected utility perspectives on travel choice, and last 
but certainly not least iii) empirical estimation on a dataset of actual travel behavior. 
 
Finally, we wish to acknowledge here that, although this research is rooted in a real world 
problem (putting to use potential data to derive travel time valuations for transport planning 
purposes), the paper has a rather theoretical scope. Notwithstanding this, we feel that, from 
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the perspective of data-efficiency, it makes sense to always try to identify ways to gain insight 
into traveler behavior from (potentially) available data. This paper puts forward one particular 
way of doing so.  
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Table 1: Estimation results 
 

Set 
 

βTOLL_DIFF  
 
 
True = -1 

SE t βGOOD_DAY  
 
 
True = 50 

SE t Value of  
travel time 
 
True = -50 

SE t 

1 -1.04 0.07 -0.57 51.09 3.02 0.36 -49.04 1.19 0.80 
2 -1.09 0.07 -1.27 53.10 2.97 1.04 -48.72 1.09 1.16 
3 -1.15 0.07 -2.08 56.21 3.09 2.01 -49.02 1.08 0.91 
4 -1.02 0.07 -0.36 48.97 2.80 -0.37 -47.80 1.18 1.87 
5 -1.03 0.07 -0.40 49.29 2.75 -0.26 -47.99 1.15 1.74 
6 -1.16 0.09 -1.83 54.57 3.51 1.30 -47.04 0.90 3.29 
7 -1.17 0.08 -2.11 53.62 3.18 1.14 -45.97 0.82 4.93 
8 -1.01 0.07 -0.21 49.58 2.91 -0.15 -48.86 1.17 0.97 
9 -1.14 0.08 -1.76 53.76 3.21 1.17 -47.16 1.05 2.71 
10 -1.07 0.07 -0.93 52.00 3.05 0.66 -48.76 1.24 1.00 
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Figure 1: Information value as a function of attribute values 

 
 

 
Figure 2: Information value as a function of attribute importance and uncertainty  
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Figure 3: Schematic overview of empirical analyses 
 
 

 
Figure 4: Information value as a function of information unreliability  
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