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ABSTRACT 

Journey to work data from the 2001 census at ward level is used together with data on a 

range of socio-demographic variables, rail service levels and bus stop locations to develop 

and calibrate conventional regression models of the propensity to travel to work by rail in the 

area around Cardiff, South Wales.  The best-performing models are then recalibrated using 

Geographically Weighted Regression (GWR), allowing local variations in the effect of the 

independent variables on rail demand to be mapped using GIS, investigated and 

incorporated in the modelling process.  Flow level models of rail demand within the case 

study are then calibrated, and different methods for incorporating spatial parameter 

variations in these models are tested.  Some conclusions are drawn about possible reasons 

for the spatial variations in rail use that have been identified, and the implications for demand 

forecasting for new stations and lines are discussed. 
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1) BACKGROUND 

Rail use will often vary widely between different areas of a city region which are 

demographically very similar and which have comparable rail service levels.  This variation is 

difficult to account for in conventional aggregate rail demand models, as it may result from 

differing local ‘cultures’ of rail use, which cannot be explained using easily quantifiable 

independent variables.  Such variations may therefore have a negative impact on the 

goodness of fit of these models.   

 

UK passenger rail use is currently at record levels and, despite the current recession, 

concerns over congestion and the environment mean that many new railway stations are 

proposed.  For example, a recent report by ATOC (2009) outlined the potential for a large 

number of new lines serving areas currently isolated from the rail network.  However, the 
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construction of any such new lines or stations is dependent on the production of a positive 

business case, which will in turn require accurate forecasting of passenger numbers at the 

new stations.  The main source of information on rail demand modelling in the UK is the 

Passenger Demand Forecasting Handbook (PDFH) (ATOC, 2005), produced by the 

Association of Train Operating Companies (ATOC).  The methods recommended in the 

PDFH for demand forecasting at local stations and suburban stations are rather outdated, 

being largely based on Preston (1991) and related work, but a new integrated methodology 

for investigating the potential for constructing new local railway stations within a given area 

and assessing their likely performance has recently been developed (Blainey & Preston, 

2009).  While this methodology performs well at identifying station sites and forecasting total 

demand from new stations, the procedures for forecasting trip destinations are still in need of 

some refinement.  Part of the reason for the problems encountered in this area is likely to be 

that the loglinear regression models used for forecasting flow level demand are unable to 

account for the spatial variations described above in the propensity to travel by rail. 

 

However, modelling techniques are available which can explicitly incorporate spatial 

variations in the effect of independent variables on rail demand in the model form, and 

therefore improve the explanatory power of the model.  One such technique which seems to 

offer particular promise for enhancing rail demand models is Geographically Weighted 

Regression (GWR), described in full by Fotheringham et al. (2002).  GWR has previously 

been applied in several areas of transport analysis (see, for example, Du and Mulley (2006), 

and Clark (2007)), and in this particular field has been used to enhance national trip end 

models of rail demand at local stations in England and Wales, which can forecast the total 

number of trips made from particular stations to a high degree of accuracy (Blainey, 2010).  

However, GWR has not so far been used to investigate spatial variations in rail demand at 

the city region scale, or to model demand at the flow level, and this paper aims to address 

both these issues.  It describes the development of regression models of the propensity to 

travel to work by rail in the area around Cardiff and the South Wales valleys, and of flow level 

rail demand from the local stations within this area.   

2) WARD LEVEL MODELS 

2.1. Data sources and case study area 

The first stage of this work involved the development of models of the level of rail commuting 

to work.  Attention focused on travel to work because an extensive dataset on commute 

mode choice was available from the 2001 Census, allowing analysis of spatial variations in 

rail use at a more detailed level than would be possible using ticket sales data (the usual 

basis for rail demand models in the UK).  The chosen case study area comprises 6 unitary 

authorities in South-East Wales.  The main reason for choosing this area was because it is 

one of very few large urban areas in the UK where no travelcard ticketing scheme operates.  

Such schemes have a detrimental impact on the accuracy with which ticket sales data can 

reflect actual travel patterns.   Such data had been essential for previous work on local rail 

demand modelling (Blainey & Preston, 2009) and would be required for the later stages of 
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this work (see Section 4), so this case study was an obvious choice on the grounds of both 

model comparability and reliability. 

 

The first set of models developed aimed to forecast the number of rail travellers to work from 

each ward as recorded in the 2001 census.  This data was downloaded for all wards in 

Cardiff, Caerphilly, Rhondda Cynon Taff, Merthyr Tydfil, Blaenau Gwent, and the Vale of 

Glamorgan from the CASWEB online interface for census data, along with data on a range of 

socio-demographic variables which might influence the level of rail use.  This gave a total of 

164 wards, and the number of rail commuters in each ward is mapped in Figure 1 along with 

the rail network in the area.  This shows that, unsurprisingly, the highest levels of rail 

commuting tend to be found in wards containing railway stations, although there are some 

local variations in this pattern. 

 

 
Figure 1: Wards and rail network within case study area 
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2.2. Global regression models 

Conventionally, mode choice tends to be modelled using some form of logit model.  

However, such models are unsuitable for use with GWR and a number of problems had been 

encountered in previous attempts to calibrate aggregate logit mode split models on Census 

journey to work data (Blainey, 2009).  It was therefore decided to test several regression 

model forms, as these should in theory be capable of forecasting rail’s mode share and 

would also allow the later implementation of GWR once reliable models had been produced. 

 

Two forms of the dependent variable were tested with all model types, firstly the total number 

of rail commuters from the ward, and secondly the probability of a commuter from a particular 

ward travelling by rail.  The first models to be calibrated predicted rail commuting based on 

ward population, distance to the nearest station, and train frequency at the nearest station.  

Because some wards are quite sizeable, and some contain several stations, measuring 

access distance and train frequency from a single point could be misleading.  Data were 

available allowing the wards to be spatially disaggregated into smaller units (census output 

areas), and these were used to calculate the average access distance from the ward to the 

nearest railway station and the average train frequency at the nearest station using 

Equations (1) and (2). 
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Where: 

Ais is the average access distance (in km) for an individual living in ward i to their nearest 

station s 

Das is the road distance (in km) from the population-weighted centroid of output area a to its 

nearest station s 

Fis is the average train frequency at the nearest station to an individual living in ward i 

Fas is the train frequency at the nearest station (in distance) to the population-weighted 

centroid of output area a 

Pa is the working population resident in output area a 

Pi is the working population resident in ward i 

a…n are the output areas making up ward i 

 

Linear, semi-log and double-log model forms were tested for predicting the total number of 

rail commuters to work, with the best fit (Radj
2=0.533) given by the semi-log Model 3.  In 

addition to these three forms, logistic regression was also tested for predicting the probability 

of commuters using the train, as it is questionable whether the other forms are suitable for 

use with a probability-based dependent variable.  The logistic regression model (Model 4) 

was found to give a better fit (Radj
2=0.680) than the other model forms, and this was therefore 

adopted as the preferred probabilistic model after this initial stage of the research.  The use 
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of access time rather than access distance as the measure of proximity to railway stations 

was tested with both the preferred model forms, but was found to give inferior results. 
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Where: 

Pit is the number of people resident in ward i travelling to work by train 

Prit is the proportion of the working population in ward i travelling to work by train 

 

In addition to population, data on a number of other socioeconomic variables were obtained 

from the 2001 census via CASWEB.  These included the number of people within each 

National Statistics SocioEconomic Class (14 variables; see Office for National Statistics, 

2005), household car ownership as the number of households owning certain numbers of 

vehicles and as a mean value per ward (6 variables), the number of residents of each ward 

within different age bands (15 variables), the number of residents of each ward attaining 

certain levels of educational achievement (5 variables), and the number of households 

containing dependent children (1 variable).  All of these variables could be included in the 

models either as absolute values or as proportions of the population of each ward. 

 

A further variable likely to affect the likelihood of rail commuting is the level of bus service 

provided in each ward.  It proved extremely difficult to incorporate this factor in previous rail 

demand models (Blainey, 2009; Blainey & Preston, 2010), largely because of deficiencies in 

the available data.  For these models a variable representing the number of bus stops 

located in each ward was tested, as this should give some indication of the bus service 

density present in each case.  Data on bus stop locations was obtained via Google Earth and 

plotted in ArcGIS, allowing them to be allocated to particular wards.  Such a variable is not a 

perfect solution to the problem, as it does not account for differences in service frequencies 

between stops, but no better option was available for this work.  

 

In total the data described above provided 83 variables with potential for inclusion in the 

models.  While a significant parameter could be obtained for most of the variables by adding 

them individually to Models 3 and 4, it was obvious that including them all in a single model 

would not give sensible results.  The SPSS backward stepwise calibration procedure was 

therefore used with each of the preferred regression model types (semi-log number of rail 

commuters and logistic probability of commuting by rail) to determine the combination of 

variables which gave the best results.  This procedure works by entering all possible 

variables into the model and then sequentially removing them.  The variable with the smallest 

partial correlation with the dependent variable is considered for removal first.  If the F 

probability is greater than 0.1 then the variable is removed, and the model is rerun.  This 

procedure is then repeated with the independent variable with the next smallest partial 

correlation, and this continues until there are no variables in the model which satisfy the 

removal criteria.  Implementing this procedure showed that the optimal combination of 
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variables was given by Models 5 and 6 which had Radj
2 values of 0.598 and 0.736 

respectively.  
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Where: 

CPi0 is the probability of a household in ward i owning no cars 

CPi2 is the probability of a household in ward i owning two cars 

AgPi0-4 is the probability of a resident of ward i being aged between 0 and 4 

AgPi16-17 is the probability of a resident of ward i being aged between 16 and 17 

AgPi18-24 is the probability of a resident of ward i being aged between 18 and 24 

Qi0 is the number of people resident in ward i with no formal qualifications 

Qi45 is the number of people resident in ward i qualified to level 4/5 

Bi is the number of bus stops in ward i 

 

While these models were not predicting travel to a particular destination, given that central 

Cardiff is the primary centre of employment in the area it seemed likely that proximity to this 

city would have an impact on the propensity to commute by rail.  The addition of variables 

representing this proximity to Models 5 and 6 was therefore tested, with proximity measured 

by mean rail distance, mean rail journey time and mean rail speed (calculated using 

equations (7), (8) and (9) respectively). 
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Where: 

DiC is the average access distance (in km) for an individual living in ward i to the closest 

central Cardiff station via their nearest origin station 

DaC is the distance (in km) from the population-weighted centroid of output area a to its 

nearest station by road and then by rail to the closest central Cardiff station 

TiC is the average rail journey time (in minutes) to a central Cardiff station from the nearest 

station (by access time) to ward i 

TaC is the rail journey time (in minutes) to a central Cardiff station from the nearest station (by 

access time) to the population-weighted centroid of output area a 

RsiC is the average rail speed (in km/h) to a central Cardiff station from ward i via the nearest 

station (by access time) to ward i 

RsaC is the rail speed (in km/h) to a central Cardiff station from the population-weighted 

centroid of output area a via its nearest station (by access time) 
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Using rail journey time as the measure of proximity gave the best model fit, and the removal 

of some insignificant variables gave the preferred ward level models, 10 and 11.  The results 

from calibrating these models are summarised in Table 1.  Some parameter values were 

unexpected, with for example Model 11 suggesting that increasing bus stop density 

corresponds to increased rail use, implying that rail and bus are complimentary rather than 

competing modes in this area. 

 

 ̂                                                                      
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)                                                       

                       

 
Table 1 – Summarised results from calibration of Models 10-11 

Model 10 11 

Parameter Value t stat Value t stat 

Intercept -642.353 -4.285 -0.251 -0.132 

Population 113.986 3.556 n/a n/a 

Access distance -35.102 -9.734 -0.993 -20.820 

Train frequency 31.497 4.144 0.630 6.075 

Prob. 0 cars 41.500 2.024 0.515 1.872 

Prob. 2 cars 66.170 2.773 0.834 2.617 

Prob. age 0-4 n/a n/a 0.754 3.432 

Prob. age 16-17 -38.166 -1.892 n/a n/a 

Prob. age 18-24 -27.311 -2.330 n/a n/a 

Qualified to level 0 -48.943 -2.107 -0.400 -2.889 

Qualified to level 4/5 -18.579 -1.383 n/a n/a 

Bus stops n/a n/a 0.181 1.756 

Time to central Cardiff 14.599 3.254 0.287 5.118 

Radj
2
 0.621 0.757 

 

The prediction errors from Model 10 are mapped in Figure 2, to illustrate any spatial patterns 

in model accuracy which may exist.  There do not appear to be any major variations of this 

kind, although consistent over/underprediction can be seen along some of the valleys, and 

the model seems to be particularly inaccurate in some of Cardiff’s outer suburbs.  Mapping of 

the prediction errors from Model 11 showed a very similar pattern.  However, calculation of 

average deviation values for the number of rail commuters predicted by both models (with 

Model 11 predictions obtained by multiplying the predicted probability of using rail in a ward 

by the ward’s working population) showed that Model 11 gave a far better representation of 

reality (AD=0.506) than Model 10 (AD=1.532) and Model 11 should therefore be preferred.  
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Figure 2 – Prediction errors from Model 97 

2.3. GWR models 

While no major spatial trends in accuracy could be identified from the mapped residuals, it 

still seemed possible that recalibrating the models using GWR might improve model fit.  The 

GWR methodology is integrated into the regression process, which makes it easy to 

integrate spatial characteristics into existing models, such as those described in Section 2.2.  

For a ‘traditional’ multivariate global regression model like (12), the corresponding GWR 

model is given by (13) (Fotheringham et al, 2002). 
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Where:  

(ui,vi) denotes the coordinates of the ith point in space 

βk(ui,vi) is a realisation of the continuous function βk(u,v) at point i 

 

In GWR each data point is weighted by distance from a local regression point by fitting a 

spatial kernel in the form of a distance decay function to the data. As the regression point is 

moved across the region this gives unique parameter estimates for each location based on 

the varying data point weightings (Fotheringham et al, 2002).  In other words, when 

forecasting the number of trips made by rail from a particular ward based on the values at 
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that point of the model independent variables, the unique parameter estimates used in this 

forecast will be influenced more by the observed values of the independent variables in 

nearby wards than the values in distant wards.  Software for GWR is available from the 

National Centre for Geocomputation at the National University of Ireland and was used to 

calibrate the models described here. 

 

The best global regression models (10 and 11) were recalibrated using GWR to establish 

whether there was significant spatial variation in the variables influencing rail demand.  A 

Gaussian model form was used, with adaptive kernel bandwidths determined by Akaike 

Information Criterion (AIC) minimisation.  Using adaptive bandwidths means that the number 

of wards considered during local parameter estimation is not affected by variations in ward 

size across the case study area.  Consideration was given to omitting the ‘journey time to 

central Cardiff’ variable, but while this could be seen as being a ‘spatial’ variable and 

therefore one whose effects should be captured by GWR as spatial variation in other 

variables, it seemed reasonable to assume that the relative effects of journey time to central 

Cardiff might not be constant over space, and therefore the variable was retained.  The 

results of the GWR calibration of these models are summarised in Table 2. 

 
Table 2 – Summarised results from GWR calibration of Models 10 and 11 

Model 10 

Parameter Minimum 
Lower 
Quartile 

Median 
Upper 
Quartile 

Maximum 
Monte Carlo 
P-value 

Intercept -1856.242 -995.303 -370.666 -107.844 382.369 0.040 

Population -86.024 29.151 57.943 85.199 202.022 0.980 

Access distance -87.902 -59.783 -30.078 -17.174 -11.579 0.000 

Train frequency -44.320 10.365 26.631 50.884 105.138 0.030 

Prob. 0 cars -76.196 -14.561 8.028 49.130 107.099 0.670 

Prob. 2 cars -73.240 -8.671 13.807 76.422 174.956 0.590 

Prob. age 16-17 -136.831 -81.727 -11.621 26.241 58.436 0.190 

Prob. age 18-24 -91.034 -34.637 -5.822 14.632 54.891 0.750 

Qualified to level 0 -155.928 -28.395 -14.247 8.696 70.824 0.980 

Qualified to level 4/5 -54.630 -13.386 1.023 22.783 68.407 0.870 

Time to central Cardiff -85.706 -27.196 -0.369 21.284 95.750 0.000 

Radj
2
 0.833 F stat 4.461 

Model 11 

Intercept -11.818 -3.001 -1.532 5.140 18.594 0.030 

Access distance -1.164 -0.995 -0.934 -0.842 -0.506 0.020 

Train frequency -0.308 0.343 0.620 0.770 1.458 0.010 

Prob. 0 cars -0.515 0.205 0.482 1.091 2.430 0.260 

Prob. 2 cars -0.387 0.409 0.636 1.031 2.048 0.820 

Prob. age 0-4 -0.296 0.331 0.495 0.846 2.066 0.220 

Qualified to level 0 -1.174 -0.578 -0.268 -0.241 0.291 0.400 

Bus stops -0.255 -0.078 0.105 0.417 0.810 0.110 

Time to central Cardiff -1.875 -0.513 0.016 0.377 1.107 0.000 

Radj
2
 0.839 F stat 2.954 
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Comparison of the Radj
2 values in Tables 1 and 2 show that calibration using GWR gives a 

major improvement in fit over the conventional global regression models.  This is confirmed 

by the significant F statistics in Table 2, which indicate that the GWR models fit the data 

better than the global models.  An indication of the spatial variation in the GWR parameters 

can be obtained by comparing the values given in Table 2, but not all this variation is 

necessarily significant.  The Monte Carlo P-values in the final column show whether there is 

significant spatial variation in the parameters, with a value of 0.050 or less indicating that the 

variation is significant at the 5% level.  This shows several parameters in each model 

exhibited significant spatial variation, specifically the intercept, access distance, train 

frequency and time to central Cardiff parameters in both models.  The spatial variation in the 

access distance and frequency parameters is mapped in Figures 3 and 4, along with the 

local t statistics which show where the parameters are significant. 

 

 
Figure 3 – Spatial variation in access distance parameter from GWR calibration of Model 10 

Figure 3 indicates that station access distance has the greatest (most negative) impact on 

rail travel to work in the south of the case study area.  This may be because this area 

includes some wards containing stations with an extremely good rail service to Cardiff, while 

adjacent wards contain no station at all, meaning that the contrast between them is 

emphasised.  The parameter is significant in almost the entire case study area, indicating 

that it is one of the major determinants of rail use for travel to work. 
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Figure 4 – Spatial variation in frequency parameter from GWR calibration of Model 10 

Figure 4 shows that there is a strong contrast between the effect of train frequency in the 

area immediately to the west and north-west of central Cardiff (where it has a strongly 

positive effect) and in the north-east of the case study area, where it appears to have a 

negative effect.  This seems rather unlikely, and may mean that there is a problem with the 

model, but may also result from the particular characteristics of the rail services in this area.  

These wards are served by but not adjacent to the Rhymney branch line, and a number of 

trains on this line turn back before reaching the north end of the valley, meaning that stations 

further south have a higher service frequency.  However, peak trains on the line can be 

extremely busy, and it seems likely that commuters from these wards may travel via more 

northerly stations with a lower service frequency because this means they are more likely to 

get a seat.  This might explain the apparently illogical parameter values, and illustrates the 

capability of GWR to highlight local anomalies and variations. 

 

The prediction errors from the GWR calibration of Models 10 and 11 are mapped in Figures 5 

and 6.  Overall the prediction errors are much smaller than for the global model, with no 

obvious spatial patterns remaining.  However, Figure 5 shows extremely large prediction 

errors (one positive and one negative) for two wards close to central Cardiff, suggesting that 

these possess some unusual features which are reducing forecasting accuracy.  The 

overprediction in Grangetown ward may occur because while the stations within it provide a 

high quality rail service, most commuting will be over short distances to Cardiff city centre 

and Cardiff Bay where the bus provides a more convenient option.  Figure 6 shows that the 
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error pattern from Model 11 is extremely similar to that from Model 10, and the same was 

found to be the case for the spatially varying parameter values. 

 

 
Figure 5 – Prediction errors from GWR calibration of Model 10 

 
Figure 6 – Prediction errors from GWR calibration of Model 11 
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3) OUTPUT AREA LEVEL MODELS 

Geographical variations in the effect of particular independent variables on the likelihood of 

travelling to work by rail may exist at a more local scale than can be captured by ward level 

data.  The calibration procedure described above was therefore repeated using census data 

at the output area level. However, previous work on aggregate logit mode split models using 

this data (Blainey, 2009) encountered problems resulting from the use of the ‘Small Cell 

Adjustment Methodology’ (SCAM) to maintain data confidentiality.  This means that if three 

or less people travel by a particular mode from a particular output area, the figure reported 

will be randomly adjusted to equal zero or three.  This causes particular problems where rail 

is the minor mode, as is the case for most of this case study area.  However, the existence of 

accurate ward level totals for rail use allowed SCAM-related errors to be identified by 

checking if the output area totals summed to give the ward totals.  If a discrepancy was found 

then all output area totals of three or zero were adjusted by the same amount so that the OA 

sum would equal the ward sum, allowing models to be calibrated as before.   

 

As with the ward level models, linear, semi log, loglinear and logit regression forms were 

tested, with double log models found to give the best fit when forecasting both the total 

number of rail commuters from the output area and the probability of a commuter from a 

particular output area travelling by rail.  Backward stepwise calibration was used to 

determine the optimal combination of variables, and this showed that the best fit with the 

observed data was given by Models 14 and 15, although the fit of these models was very 

poor, as shown by Table 3, which summarises the results from calibrating these models.   

Comparison of AD values confirmed that Model 14 (AD=1.569) was more accurate at 

forecasting rail use than Model 15 (AD=1.928).  The poor fit of these models may result from 

data deficiencies or from micro-scale variations in the effects of bus competition, and means 

the models cannot be used with any confidence for forecasting rail use.   
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Where:  

SP2 is the proportion of the working population resident in output area i which falls within 

NSSEC class 2 

SP3 is the proportion of the working population resident in output area i which falls within 

NSSEC class 3 

SP4 is the proportion of the working population resident in output area i which falls within 

NSSEC class 4 

Agi0-4 is the number of residents in output area i aged between 0 and 4 

Agi16-17 is the number of residents in output area i aged between 16 and 17 

Agi18-24 is the number of residents in output area i aged between 18 and 24 

Agi45-59 is the number of residents in output area i aged between 45 and 59 

Agi65-74 is the number of residents in output area i aged between 65 and 74 
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QPi0 is the probability of a resident in output area i having no formal qualifications 

QPi3 is the probability of a resident in output area i being qualified to level 3 

 
Table 3 – Summarised results from calibration of Models 14-15 

Model 14 15 

Parameter Value t stat Value t stat 

Intercept -4.450 -9.997 -4.962 -8.878 

Population n/a n/a -0.738 -6.555 

Access distance -0.734 -35.196 -0.612 -29.897 

Train frequency 0.665 14.581 0.593 13.420 

Prob. NSSEC class 2 0.286 4.048 0.244 3.366 

Prob. NSSEC class 3 0.117 2.067 0.100 1.740 

Prob. NSSEC class 4 n/a n/a 0.069 1.687 

Age 0-4 0.102 2.602 0.075 1.832 

Age 18-24 0.207 4.112 0.245 4.309 

Age 45-59 0.316 4.645 0.296 3.812 

Age 65-74 -0.161 -3.704 -0.167 -3.943 

Prob. qualified to level 0 -0.443 -6.884 -0.355 -5.341 

Prob. qualified to level 3 0.101 2.102 0.101 2.154 

Time to central Cardiff 0.533 19.543 0.475 17.971 

Radj
2
 0.402 0.310 

 

It seemed possible that the poor fit might result from major spatial variations in the effect of 

the independent variables on rail use. The models were therefore recalibrated using GWR 

with a Gaussian model form used as before and adaptive kernel bandwidths determined AIC 

minimisation.  The results of this recalibration are summarised in Table 4. 

 
Table 4 – Summarised results from GWR calibration of Models 14 and 15 

Model 14 

Parameter Minimum 
Lower 
Quartile 

Median 
Upper 
Quartile 

Maximum 
Monte Carlo 
P-value 

Intercept -70.472 -7.358 -2.540 0.615 42.587 0.000 

Access distance -1.327 -0.812 -0.602 -0.437 0.269 0.000 

Train frequency -4.306 0.068 0.536 1.327 30.900 0.000 

Prob. NSSEC class 2 -0.876 0.192 0.352 0.566 1.392 0.730 

Prob. NSSEC class 3 -0.938 -0.112 0.103 0.423 1.155 0.040 

Age 0-4 -0.647 -0.039 0.079 0.170 1.035 0.020 

Age 18-24 -0.495 0.053 0.239 0.470 1.038 0.080 

Age 45-59 -1.455 -0.066 0.206 0.421 1.842 0.000 

Age 65-74 -0.777 -0.260 -0.098 0.086 0.982 0.040 

Prob. qualified to level 0 -1.675 -0.502 -0.239 -0.071 1.063 0.020 

Prob. qualified to level 3 -0.569 -0.094 0.083 0.222 1.038 0.220 

Time to central Cardiff -14.894 -0.784 0.111 0.840 9.179 0.000 

Radj
2
 0.558 F stat 4.402 

Table continued on next page 
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Model 15 

Intercept -60.726 -7.618 -3.464 -0.323 59.355 0.000 

Population -2.716 -0.874 -0.516 -0.167 1.539 0.210 

Access distance -1.504 -0.739 -0.486 -0.341 0.744 0.000 

Train frequency -6.168 -0.088 0.286 1.026 24.763 0.000 

Prob. NSSEC class 2 -1.007 0.125 0.304 0.494 1.356 0.570 

Prob. NSSEC class 3 -0.975 -0.091 0.072 0.279 1.324 0.190 

Prob. NSSEC class 4 -0.527 -0.176 -0.050 0.066 0.638 0.630 

Age 0-4 -0.522 -0.081 0.027 0.123 1.160 0.010 

Age 18-24 -0.526 0.022 0.196 0.371 1.116 0.500 

Age 45-59 -1.477 -0.181 0.145 0.345 1.276 0.180 

Age 65-74 -1.023 -0.223 -0.102 0.063 1.130 0.000 

Prob. qualified to level 0 -2.179 -0.449 -0.150 0.108 1.560 0.000 

Prob. qualified to level 3 -0.524 -0.076 0.071 0.206 1.096 0.190 

Time to central Cardiff -14.288 -0.621 0.037 0.759 10.411 0.000 

Radj
2
 0.512 F stat 4.395 

 

As expected, the use of GWR gave a significant improvement in fit over the global calibration 

for both model forms, although even the fit of the GWR calibration was only moderate.  A 

number of parameters exhibited significant spatial variation, specifically the intercept, access 

distance, train frequency, age 0-4, age 65-74, level 0 qualifications and time to central Cardiff 

parameters in both models, and the NSSEC class 3 and age 45-59 parameters in Model 14.  

As before, this significant spatial variation was mapped to allow any patterns to be identified.  

There is insufficient space to show all these maps here, but Figures 7 and 8 show the local 

variation in the access distance and train frequency parameters to allow comparison with the 

variation from the ward level models.  These figures show some major differences in the 

spatial variation in the equivalent parameters from the ward and output area models.  The 

access distance parameter from the output area models is strongly negative in the north-east 

of the case study area, whereas in the ward level models it had a relatively minor effect in 

this area (see Figure 3).  Similarly, the train frequency parameter in the output area level 

model exhibits relatively little variation across most of the case study area, but is strongly 

positive in a small area in the north-west.  This contrasts with the ward level model (see 

Figure 4) where there is much more variation and where the parameter was most strongly 

positive towards the centre of the case study area.    More trust should be placed in the 

variation from the ward level models given the better fit of this model and the problems with 

the output area data, but the results from the output area models should not be discarded 

entirely.  The prediction errors from the GWR calibration of Model 14 are mapped in Figure 9.  

This map is rather misleading, as the colouring is skewed by some extremely large prediction 

errors at a few small output areas.  The general pattern of errors is in fact quite similar to that 

shown in Figure 5, although there is obviously much more variation in Figure 9 because of 

the smaller size of the individual units. 
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Figure 7 – Spatial variation in access distance parameter from GWR calibration of Model 14 

 
Figure 8 – Spatial variation in frequency parameter from GWR calibration of Model 14 
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Figure 9 – Prediction errors from GWR calibration of Model 14 

4) FLOW LEVEL DEMAND MODELS 

4.1 Conventional direct demand models 

While the models described above should be reasonably effective at forecasting rail’s mode 

share of the travel to work market, and at identifying spatial variations in the parameters 

determining this share, these models are of limited use in forecasting the demand at new 

stations as they will only predict commuting trips.  There is however potential for 

incorporating the spatial variations identified during this work in direct demand models, which 

can forecast total usage on specified flows from a new station rather than just work trips. 

 

The best direct demand model with generalised origin variables developed during previous 

work by Blainey (2009) is given by (16).  This model was recalibrated on the largest flows 

from all 68 stations within the case study area for the ward and output area level travel to 

work models.  These flows were selected by ranking the flows from each station in 

descending order of size, and then selecting progressively smaller flows until 95% of the total 

trip origins at from each station were included in the dataset, giving a total of 1289 flows.  

Calibration of Model 16 on this dataset gave the results summarised in Table 5.  While the 

model only had a moderate fit, all the parameters except the road speed parameter were of 

the correct sign and strongly significant, meaning that it could form the basis for further 

investigations. 
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Where: 

ijT̂  is the predicted number of trips made from station i to station j 

Pa is the population in output area a, for which station i is the closest station 

              

t is the travel time by road from output area a to station i 

Ji4 is the number of jobs located within 4 minutes drive of station i 

Pki is the number of parking spaces at station i 

Dj is a dummy variable which takes the value 1 if j is station j, and 0 otherwise 

Diij is the straight line distance (in km) from station i to station j 

Rsij is the rail journey time from station i to station j divided by Dij 

Csij is the car journey time from station i to station j divided by Dij 

Hij is the service headway in minutes between station i and station j 

Rfkmij is the fare per rail km for travel from station i to station j 

 
Table 5 – Summarised results from calibration of Model 16 

Parameter Value t stat 

Intercept 7.244 12.807 

Weighted population 0.315 8.778 

Jobs 0.179 5.586 

Parking spaces 0.177 8.805 

Distance -1.698 -12.439 

Rail speed 0.827 10.140 

Car speed 0.148 0.479 

Headway -0.719 8.742 

Rail fare per km -2.042 -10.432 

Radj
2
 0.537 

4.2 Incorporation of spatial parameter variation 

Using GWR directly in the calibration of direct demand models is not straightforward, 

because flows do not have point-based geographical locations, making it difficult to assign 

them to a single set of coordinates.  However, it may be possible for geographical variations 

identified in other models to be transferred to direct demand models. 

 

Looking first at the results from Model 10, no significant spatial variation was found in the 

population parameter.  However, there was significant spatial variation in the access distance 

parameter, and this could be used to weight the population variable in the direct demand 

model.   This process is complicated by the fact that the catchment population term in Model 

16 is a composite of the populations in the output areas closest to the origin station in 

question, weighted by access distance.  It is therefore necessary to further weight these 
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access distances using the spatial variation in the parameter estimates.  However, it is not 

sufficient to simply multiply the access distance by the parameter value from Model 10 for the 

relevant ward, because this would make some of the access distances strongly negative.  

The spatially varying parameter values were therefore standardised using (17). 

 

      
      

 
          

Where: 

βSi is the standardised parameter value for ward i 

βi is the unstandardised parameter value for ward i 

μ is the mean of the βi parameter values across all wards 

  

The access distances for each output area were then weighted by multiplying them by the 

standardised parameter value for the corresponding ward.  The weighted catchment 

population for each station could then be calculated using the weighting function (18), and 

this in turn allowed Model 19 to be calibrated giving the results summarised in Table 6.  

Similar spatial variation was found in the access distance parameter from the GWR 

calibration of Model 11, and this was used to weight the population terms in the same way.  

The resulting recalibration of Model 19 is also summarised in Table 6. 
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Where: 

Piw is the weighted catchment population for station i 

Pa is the resident population in output area a, for which station i is the nearest station 

Awa is the access distance from output area a to station i, weighted using (17) 

 
Table 6 – Summarised results from calibration of Model 19 

Distance weighting GWR Model 10 GWR Model 11 

Parameter  Value t stat Value t stat 

Intercept 7.904 13.986 6.393 10.296 

Weighted population 0.263 6.267 0.484 8.156 

Jobs 0.191 5.868 0.114 3.252 

Parking spaces 0.205 10.216 0.216 10.905 

Distance -1.749 -12.623 -1.764 -12.869 

Rail speed 0.773 9.297 0.809 9.884 

Car speed 0.460 1.490 0.663 2.208 

Headway -0.886 -10.373 -0.686 -8.266 

Rail fare per km -2.002 -10.080 -2.024 -10.300 

Radj
2
 0.523 0.534 
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The fit of both calibrations of Model 19 is inferior to that of Model 16, although the second 

calibration of Model 19 (with access distance weighted using parameter values from Model 

11) should perhaps be preferred over Model 16 because all parameters are significant.  

There was also spatial variation in the train frequency parameter in Models 10 and 11 but 

while its use to weight the headway variable in the direct demand model was considered, this 

did not prove possible because the variables are not directly comparable.  Similarly, there 

was no variable in Model 16 which corresponded with the only other parameter in Models 10 

and 11 that exhibited significant spatial variation, the distance to Cardiff parameter.  Overall, 

therefore, the incorporation of the spatially-weighted population parameter in direct demand 

models using this methodology does not give a significant improvement in model fit.   

4.3 GWR calibration of direct demand models 

The main problem with applying GWR to direct demand models is that, by definition, a rail 

flow does not have a single point location.  However, because Model 16 accounts for origins 

in much more detail than destinations, it can be argued that each flow should be allocated 

the coordinates of the origin station.  Ideally the model should be calibrated as a mixed GWR 

model, with some parameters stationary over space and some allowed to vary, but the 

current version of the GWR software cannot calibrate such models.  A normal GWR model 

therefore had to be used, even though this form is of dubious validity for this type of 

application.  Model 16 could not be calibrated using GWR, as the number of destination 

dummy variables required would exceed the total variable limit, and these were therefore 

replaced by a total exit variable giving Model 20.  Such a variable was shown to be a 

reasonable substitute for destination dummy variables in previous work (Blainey & Preston, 

2010).  The results from a global calibration of Model 20 are shown in Table 7. 

 

 ̂    (∑    

 

)

 

   
    

 
   

 
   

     
     

    
 
      

           

Where: 

Exj is the total number of trips ending at station j in the year  

 
Table 7 – Summarised results from calibration of Model 20 

Parameter Value t stat 

Intercept 1.031 1.798 

Weighted population 0.302 8.067 

Jobs 0.146 4.464 

Parking spaces 0.192 9.099 

Destination exits 0.579 19.539 

Distance -1.324 -18.940 

Rail speed 0.855 12.091 

Car speed 0.572 2.263 

Headway -0.498 -6.525 

Rail fare per km -1.160 -12.400 

Radj
2
 0.457 
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The fit of this model is noticeably worse than that of Model 16, although all parameters are 

significant (with the exception of the intercept).  However, Model 20 is suitable for GWR 

calibration, and it may therefore be possible to improve the fit of this model.  The results of 

such a calibration are summarised in Table 8. 

 
Table 8 – Summarised results from GWR calibration of Model 20 

Model 20 

Parameter Minimum 
Lower 
Quartile 

Median 
Upper 
Quartile 

Maximum 
Monte Carlo 
P-value 

Intercept -10.626 -2.727 2.946 4.974 20.209 0.000 

Weighted population -0.987 -0.095 0.240 0.567 0.983 0.000 

Jobs -1.316 -0.158 0.139 0.350 0.847 0.000 

Parking spaces -0.187 0.000 0.143 0.281 0.847 0.000 

Destination exits 0.377 0.558 0.636 0.712 0.850 0.100 

Distance -2.141 -1.738 -1.521 -1.386 -1.013 0.150 

Rail speed -0.010 0.426 0.743 0.947 1.767 0.000 

Car speed -0.907 1.219 1.583 2.562 4.609 0.000 

Headway -1.262 -0.722 -0.508 -0.140 2.660 0.000 

Rail fare per km -2.481 -1.269 -1.027 -0.725 -0.394 0.010 

Radj
2
 0.668 F stat 9.263 

 

Table 8 shows that calibrating Model 20 using GWR gave a major improvement in model fit 

over the global calibration, and also over the global calibration of the destination dummy 

variable Model 19.  Significant spatial variation was found in all parameters except for those 

representing the destination exits and distance variables.  This is perhaps surprising, as it 

includes some variables relating to particular flows rather than to particular origins, such as 

the speed of different modes and train headway.  However, this may indicate that these 

factors are more important in determining demand for all flows at some origins than they are 

at others. 

 

The spatial variation was mapped for all parameters where it was significant, with inverse 

distance weighting (IDW) interpolation used in ArcGIS to create a parameter surface from the 

values at each station.  There is insufficient space to include all these maps here, so only two 

with features of particular interest are included.  Figure 10 shows the spatial variation in the 

employment parameter, which appears to show that the level of employment around the 

origin station has a positive effect on rail demand in the centre of the case study and around 

Cardiff, but has a negative effect in the Vale of Glamorgan (the south-western part of the 

case study area), in the north of the area, and around Cardiff Queen Street station.  The 

latter observation is unlikely to mirror reality as it almost certainly results from problems 

encountered in defining catchments for the two main stations in central Cardiff, Queen Street 

and Central (Blainey & Preston, 2010).  Census output areas (the basic unit used to define 

catchments) are geographically defined based on population density, which is low in the 

central area of Cardiff even though a large number of people are employed there.  This, 

combined with the close proximity of the two stations, means that a single output area covers 

the whole of the area between them.  In catchment definition output areas must be allocated 
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to a single station, meaning that the catchment employment figures for both stations will be 

extremely skewed.  One way to overcome this problem would be to allow stations to 

‘compete’ for the employment and population in particular output areas, but this would make 

model calibration much more complicated.  An alternative would be to use census data which 

has been reassigned into a raster (cell-based) format to define catchments (see for example 

Martin, 1989), as this could overcome the problems caused by arbitrary output area 

boundaries and therefore improve catchment accuracy.  

 

 
Figure 10 – Spatial variation in employment parameter from GWR calibration of Model 20 

Figure 11 shows the spatial variation in the train headway parameter across the case study 

area.  This approximately corresponds to the train frequency parameters in the ward and 

output level models but effectively has the opposite effect, as a low headway is equivalent to 

a high train frequency.  This means that a negative value in Figure 11 corresponds to a 

positive value in Figures 4 and 8.   As described above the output area model parameter 

values are rather suspect and there is little similarity between Figures 8 and 11.  However, 

there is some consistency between Figures 4 and 11, with train frequency having a 

particularly positive impact on rail demand in the north-western suburbs of Cardiff in both 

models.  However, the apparent negative impact of train frequency shown in Figure 11 in the 

north-west and south of the case study area (although the parameter is insignificant in the 

latter area) is not reflected in Figure 4, and seems unlikely to mirror reality. 
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Figure 11 – Spatial variation in headway parameter from GWR calibration of Model 20 

5) CONCLUSIONS AND FUTURE WORK 

5.1 Main findings 

The first major finding from this research was that models could be calibrated based on 

census journey to work data which indicate that a range of socio-economic variables can 

have a significant impact on levels of rail use.  Although a few previous models have 

incorporated such variables (Preston, 1991), in general it has proved difficult to establish the 

relationships between these variables and rail demand.  Correlations between such variables 

are likely to be complex, and hence the best models developed here only contain a small 

number of those tested.  However, while this work was not aiming to directly analyse the 

effect of socio-economic variables on rail demand, the findings from it indicate that there is 

potential for such analysis of these relationships using the same data sources.   

 

A related finding was that the density of bus stops in a given area may have a positive impact 

on rail demand, suggesting that rail and bus are complementary rather than competing 

modes, at least in this area.  It is possible that bus stop density may be acting as a proxy for 

other variables omitted from the models, and it would therefore be desirable to incorporate a 

more detailed representation of bus services in the models.  Collating a suitable dataset for 

this may be difficult, but this area again appears worthy of further investigation and could 

lead to improvements in the accuracy of demand forecasts.   
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It proved possible to calibrate regression models which give an accurate prediction of the 

level of rail commuting at ward level within the case study area, and the application of GWR 

to the best model forms gave a major improvement in model fit.  Significant spatial variation 

was  found in several parameters, indicating that their effect on rail demand varies across the 

case study area.  The calibration of similar models at census output area level was rather 

less successful.  The use of GWR did allow a reasonable level of fit to be obtained,  but 

mapping the residuals and the prediction errors highlighted anomalies in the results, which 

suggests that data problems may limit the potential for modelling at this spatial scale. 

 

Conventional direct demand (rail flow level) models developed in previous work were 

recalibrated for this case study area (so far the largest-scale application of these particular 

models).   Attempts were made to weight some of the variables in these models using 

spatially varying parameter values from the ward level models, but this did not give any 

improvement in model fit.  However, somewhat unexpectedly the application of GWR based 

on origin locations to the direct demand models gave a large improvement in fit and also 

allowed significant spatial variations to be identified in the majority of the model parameters. 

5.2 Application to demand forecasting 

This work has two main applications to rail demand forecasting.  Firstly, the ward level 

models could be used to forecast the demand impacts of changes to rail services or of new 

station opening by estimating the current proportion of rail use made up of work trips, using 

the models to predict ward level travel to work after the changes, calculating the change in 

rail travel to work, and then using the current proportions to scale up this change to give an 

estimated total number of new trips.  This procedure would not allocate trips to any particular 

station, and would therefore need to be used in conjunction with other models, but might for 

example help provide a means of accounting for the level of abstraction of trips by new 

stations from existing ones.   

 

More immediately, the use of GWR in direct demand models appears to have great potential 

for enhancing the flow level forecasting of rail demand, by enabling local variations in the 

effect of parameters on rail demand to be taken into account.  The models described here 

are still in need of some refinement, but no previous flow level model has been able to 

account for such spatial variations in the factors influencing demand.  While the models 

described here would require recalibration before being used in areas other than South-East 

Wales, there is no fundamental reason why the general model forms should not be equally 

valid in other geographic contexts. 

5.3 Future work 

There are three particular areas in which this work should be extended.  The first would 

involve testing the use of the ward level models in demand forecasting as described above, 

to establish how well they perform at predicting the demand impacts of opening particular 
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stations or making alterations to services.  The second would aim to exploit the initial 

success of using GWR to enhance rail demand models, which took place very late on in the 

work described here.  Further analysis is needed to establish an optimal model form, and to 

extend the models so that they can account for the effects of factors not currently 

considered, such as intervening opportunities and bus competition.  Finally, the use of raster-

based station catchments should be investigated, with census data reallocated to a regular 

grid-based zoning system, as this might enable some of the problems with the existing 

catchment definition methods to be overcome, and remove obvious anomalies (such as the 

value of the employment parameter at Cardiff Queen Street) from the model results.   
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