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Abstract

Microscopic simulators embed numerous traffic models that make them detailed and realistic tools ap-
propriate to perform scenario-based or sensitivity analysis. This realism leads to nonlinear objective
functions with no available closed form and containing potentially several local minima. As nonlin-
ear, stochastic and evaluation-expensive models, their integration within an optimization framework
remains a difficult and challenging task. We believe that in order to perform both fast and reli-
able simulation optimization for congested networks, information from the simulation tool should
be combined with information from a network model that analytically captures the structure of the
underlying problem.

This paper presents a surrogate that combines the information from a calibrated microscopic
traffic simulation model of the Lausanne city center (Dumont and Bert, 2006), with an analytical
queueing network model (Osorio and Bierlaire, 2009a) that resorts to finite capacity queueing theory
to capture the key traffic dynamics and the underlying network structure, e.g. how upstream and
downstream queues interact, how this interaction is linked to network congestion. This network
model, which consists of a system of nonlinear equations, has been successfully used in past work to
a solve traffic signal control problem (Osorio and Bierlaire, 2009b).

We integrate this surrogate within a derivative-free (DF) trust region optimization framework
(Conn et al., 2009a). Resorting to a DF algorithm is particularly appropriate for noisy problems
where the derivatives are difficult to obtain and often unreliable. This is also the case when the
evaluation of the objective function is computationally expensive, or when the simulation source
code is unavailable. In the field of transportation, the simulators typically fall into all three of these
categories.

The framework is illustrated by solving a fixed-time signal control problem for a subnetwork of the
Lausanne city center. The performance of the derived plans is compared to that of other methods,
including an existing plan for the city of Lausanne.

Keywords: Traffic control, Simulation-Optimization, Metamodel, Queueing

1 Introduction

Microscopic urban simulators capture in detail the behavior of drivers as well as their interaction
with the network infrastructure. They can provide accurate network performance estimates in the
context of scenario-based analysis or sensitivity analysis. They are therefore often used to evaluate
traffic management schemes. Nevertheless, using them to derive appropriate management schemes
(i.e. to perform optimization) is a complex task.

1



An optimal traffic management scheme can be formulated as:

min
x,z∈Ω

E[f(x, z; p)], (1)

where the objective is to minimize the expected value of a suitable network performance measure,
f . This performance measure is a function of a decision or control vector x, endogenous variables z
and exogenous parameters p. The feasible space Ω consists of a set of constraints that link x to z, p
and f .

For instance, a traffic signal control problem can take f as the average vehicle travel time and
x as the green splits for the signalized lanes. Elements such as the total demand or the network
topology will be captured by p, while z will account, for instance, for the capacities of the signalized
lanes.

The various traffic models embedded within the simulator make it a detailed and realistic model,
but lead to noisy nonlinear objective functions containing potentially several local minima. These
objective functions have no available closed form; we can only derive estimates for E[f(x, z; p)].
Additionally, evaluating these estimates is computationally expensive because they involve running
numerous replications. As a nonlinear, stochastic and computationally-expensive problem, it is
complex to address.

Metamodel methods

As is detailed in Section 2, one approach to perform simulation-based optimization (SO) is to build
an analytical model of the objective function based on a sample of simulated observations. This
analytical model is referred to as a metamodel or a surrogate model. This family of approaches is
known as metamodel methods. Once the metamodel is constructed (e.g. fitted) it is used to perform
optimization.

This approach is depicted in Figure 1. The metamodel is denoted as m, whereas the simulation
response is denoted as f̂ . This figure illustrates the two main steps of metamodel methods. Firstly,
the metamodel is constructed based on simulated observations. Secondly, once the metamodel m has
been fitted, the optimization process derives a trial point based on the predictions and properties of
m.

These steps can then be iterated as follows. For a given sample the metamodel is fitted, the
optimization problem is solved, deriving a trial point. Then the performance of this trial point
can be evaluated by the simulator, which leads to a new observation. As new observations become
available the accuracy of the metamodel can be improved, leading ultimately to more reliable trial
points.

Metamodels are typically deterministic functions that are cheaper to evaluate. By replacing
the stochastic response of the simulation by a deterministic function, deterministic optimization
techniques can be used. Furthermore, by using metamodels that are cheap to evaluate, the number
of objective function evaluations is no longer a limitation. The main limitation remains the number
of simulation runs needed such that an accurate metamodel can be built and well-performing trial
points can be derived.

The most common metamodels (also called surrogates) used to perform simulation-based opti-
mization are general-purpose models (e.g. polynomials, splines) that can be used to approximate
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Figure 1: Metamodel simulation-based optimization methods. Adapted from Alexandrov et al.
(1999).

any objective function, but capture little information about the structure of the underlying prob-
lem. Furthermore, they require a large initial sample to be fitted, and are thus inappropriate for
applications with a tight computational budget.

We believe that in order to perform SO for congested urban networks given a limited compu-
tational budget, these generic metamodels should be combined with surrogate network models that
analytically capture the structure of the underlying problem, and potentially improve the short-term
behavior of SO algorithms.

Derivative-free optimization

Both the noise inherent in simulation outputs along with their high computational cost, makes the
accurate estimation of derivatives an expensive and difficult task. When derivative information
is either unavailable, available at a high cost or unreliable, then derivative-free (DF) optimization
methods are an appropriate and common approach to tackle such problems.

Given the lack of derivative information, DF methods typically perform less well than their
derivative-based counterparts. In particular, the scale of the problems that can be efficiently tackled
is substantially reduced. Currently, the most recent DF methods are limited to around 20 variables
for unconstrained problems and their convergence is typically rather slow (Conn et al., 2009b), not
to mention their limitations in the presence of constraints. By using a surrogate that integrates
structural information, we expect to be able to address both larger and constrained problems more
efficiently.

Furthermore, DF methods are often used when function evaluations are computationally expen-
sive. They therefore attempt to identify trial points with improved performance, given a fixed, and
typically tight, computational budget. We expect the added structural information of the metamodel
to allow the identification of good trial points even for tight computational budgets. In this paper,
we will evaluate the performance of the proposed metamodel considering scenarios with tight com-
putational budgets and assuming that there are initially no observations available.
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This paper is structured as follows. Firstly, we present a literature review of the surrogate models
used to perform SO and of the existing optimization algorithms that allow for arbitrary surrogates
(Section 2). In Section 3, we present both the surrogate model and the optimization algorithm
that will be used. We then show how this methodology applies to a fixed-time traffic signal control
problem (Section 4), and present empirical results evaluating its performance (Section 5).

2 Literature review

There are two types of approaches to address SO problems. Firstly, there is the family of direct-
search methods, which rely only on objective function evaluations and do not resort to any direct or
indirect (i.e. explicit or implicit) derivative approximation or model building. In these methods, the
search is based on a pre-determined geometric pattern or grid.

Secondly, there are the methods that do use gradient information. Barton and Meckesheimer
(2006) review such methods and classify them into direct gradient and metamodel methods. Direct
gradient methods estimate the gradient of the simulation response, whereas metamodel methods use
an indirect-gradient approach by computing the gradient of the metamodel, which is a deterministic
function.

In this paper, we focus on the second family of methods, and in particular on metamodel methods.
Although there have been significant advances and novel approaches for gradient estimation (Fu, 2006;
Fu et al., 2005), methods that rely on direct derivative information often require more function
evaluations, and are therefore inappropriate for applications with a limited computational budget.
Additionally, by resorting to a metamodeling approach the stochastic response of the simulation
is replaced by a deterministic metamodel response function, such that deterministic optimization
techniques can be used.

Recent reviews of metamodels are given by Conn et al. (2009b), by Barton and Meckesheimer
(2006) and by Søndergaard (2003). Metamodels are classified in the literature as either physi-
cal or functional metamodels (Søndergaard, 2003; Serafini, 1998). Physical metamodels consist of
application-specific metamodels, whose functional form and parameters have a physical or structural
interpretation.

Functional metamodels are generic (i.e. general-purpose) functions, that are chosen based on
their analytical tractability, but do not take into account any information with regards to the spe-
cific objective function, let alone the structure of the underlying problem. They are often a linear
combination of basis functions from a parametric family.

The most common approach is the use of low-order polynomials (e.g. linear or quadratic).
Quadratic polynomials are used as surrogates in most trust region methods (Conn et al., 2000).
Spline models have also been used, although their use within an SO framework has focused on uni-
variate or bivariate functions, and as Barton and Meckesheimer (2006) mention: “unfortunately, the
most popular and effective multivariate spline methods are based on interpolating splines, which have
little applicability for SO”. Radial basis functions (Oeuvray and Bierlaire, 2009; Wild et al., 2008)
and Kriging surrogates (Booker et al., 1999) have also been proposed.

The existing metamodels consist of either physical or functional components. The metamodel
proposed here goes beyond existing approaches by combining both a physical and a functional com-
ponent. It combines an analytical network traffic model with a quadratic polynomial. The physical
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component is captured by the traffic model, whose parameters have a structural interpretation. For
a given problem, the traffic model will yield a different functional form for the objective function.
The functional component is captured by the general purpose quadratic polynomial.

In order to integrate the proposed metamodel within an existing optimization method, we review
the algorithms that allow for an arbitrary metamodel. These methods are called multi-model or
hybrid methods. They share a common motivation, which is to combine the use of models with
varying evaluation costs (low versus high-fidelity models, or coarse versus fine models).

A trust region optimization framework for unconstrained problems allowing for multiple models
was proposed by Carter (1986) (see references herein for previous multi-model frameworks). His
work analyses the theoretical properties and derives a global convergence theory for several types of
multi-model algorithms. It allows for nonquadratic models as long as at least one model is a standard
quadratic with uniformly bounded curvature.

The Approximation and Model Management Optimization/Framework (AMMO or AMMF) is a
trust region framework for generating and managing a sequence of metamodels. There are several
versions of the algorithm: for unconstrained problems (Alexandrov et al., 1998), bound constrained
(Alexandrov et al., 2000), inequality constrained (Alexandrov et al., 1999) and generally constrained
problems (Alexandrov et al., 2001). Although no restrictions are imposed on the type of surrogates
allowed, it is a first-order method that requires that the model and the objective function, as well as
their first-order derivatives, coincide at each major (or accepted) iterate. Thus the metamodel must
always behave as a first-order Taylor series approximation. This is a strong restriction if the function
is noisy and expensive to evaluate.

The Surrogate-Management Framework (SMF) proposed by Booker et al. (1999) is a derivative-
free method for bound constrained problems. It is based on a direct search technique called pattern
search. Since direct search techniques typically require many function evaluations, they use a sur-
rogate model of the objective function to improve the performance of the algorithm. The surrogate
model used is an interpolated Kriging model.

The Space Mapping (SM) technique and its many versions (Bandler et al., 2006; Bandler et al.,
2004) is a simulation-based optimization technique that uses two metamodels: a fine and a coarse
model. Both models are often simulation-based. The coarse model is constructed based on a trans-
formation of the endogenous variables (“space mapping”) that minimizes the error for a sampled set
of high-fidelity response values. Nevertheless, SM relies on the assumption that via a transformation
of the endogenous variables the coarse model will exhibit the physical/mathematical properties of
the fine model (Alexandrov and Lewis, 2001) and as Bandler et al. (2004) mention “the required
interaction between coarse model, fine model, and optimization tools makes SM difficult to automate
within existing simulators”. Alexandrov and Lewis (2001) give a comparison of the AMMO, the SMF
and the SM methods.

Conn et al. (2009a) recently proposed a trust region derivative-free framework for unconstrained
problems. This framework allows for arbitrary metamodels and makes no assumption on how these
metamodels are fitted (interpolation or regression). To ensure global convergence, a model improve-
ment algorithm guarantees that the models achieve a uniform local behavior (i.e. satisfy Taylor-type
bounds) within a finite number of steps.

Derivative-free (DF) methods do not require nor do they explicitly approximate derivatives. Re-
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sorting to a DF algorithm, rather than to first or second order algorithms, is appropriate when the
derivatives are difficult to obtain, unreliable or computationally expensive to evaluate. This is the case
for noisy problems, for problems where the evaluation of the objective function is computationally
expensive, or for problems where the simulation source code is unavailable (Moré and Wild, 2009).
In the field of transportation, most simulators fall into all three of these categories. Thus we will opt
for a DF approach.

Among the two main strategies used to ensure global convergence, line search and trust region
methods, the latter are more appropriate for our context since they “extend more naturally than
line search methods to models that are not quadratics with positive Hessians” (Carter, 1986). The
most common approach for fitting metamodels within a trust region (TR) framework is interpolation.
Nevertheless, for noisy functions we believe that regression is more appropriate since it is less sensitive
to the inaccuracy of the observations.

The framework proposed by Conn et al. (2009a), as a derivative-free TR method that allows
for arbitrary models and does not impose interpolation, is therefore particularly appealing. We will
therefore integrate the proposed metamodel within this framework.

3 Method

3.1 Metamodel

The metamodel combines information from two models: a simulation model and an analytical network
model. We first present these two models, we then describe how they are combined.

Simulation model. We use a calibrated microscopic traffic simulation model of the Lausanne city
center. This model (Dumont and Bert, 2006) is implemented with the AIMSUN simulator
(TSS, 2008). Details regarding the network are given in Osorio and Bierlaire (2008). For
a given decision vector x, the simulator provides a realization f̂(x, z; p) of the performance
measure f(x, z; p) (presented in Equation (1)).

Analytical queueing model. The model used in this framework is the analytical urban traffic
model formulated in Osorio and Bierlaire (2008). Alternatively, for large-scale networks the
model of Osorio (2010) can also be used.
In Osorio and Bierlaire (2008), this queueing model was used as a surrogate to perform opti-
mization, and in particular to solve a fixed-time traffic control problem. In this paper, it will
be used to formulate a metamodel to perform simulation-based optimization.
We briefly, recall the main components of this model. By resorting to finite capacity queue-
ing theory, it captures the key traffic interactions and the underlying network structure, e.g.
how upstream and downstream queues interact, and how this interaction is linked to network
congestion. The model consists of a system of nonlinear equations. It is formulated based on
a set of exogenous parameters q that capture the network topology, the total demand, as well
as the turning probabilities. A set of endogenous variables y describe the traffic interactions,
e.g. spillback probabilities, average rates at which a spillback diffuses. For a given decision
vector x, the network model yields the objective function T (x, y; q), which is a deterministic
approximation of E[f(x, z; p)].
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We recall here the notation that we have introduced so far:

x decision vector;
T approximation of the objective function derived by the queueing model;

f̂ performance measure observation derived by the simulation model;
y endogenous queueing model variables;
z endogenous simulation variables;
q exogenous queueing model parameters;
p exogenous simulation parameters.

We now describe how f̂ and T are combined to derive the metamodel m. The main idea of
trust region methods is to build, at each iteration, a model of the objective function which one
“trusts” in a neighborhood of the current iterate, the trust region. The most common approach is
to use a quadratic polynomial. The proposed metamodel combines a quadratic polynomial with a
deterministic approximation of the objective function, provided by the analytical network model.
The functional form of m is:

m(x, y; α, β, q) = αT (x, y; q) + φ(x; β), (2)

where φ is a quadratic polynomial in x, α and β are parameters of the metamodel.
The polynomial φ is quadratic in x with a diagonal second derivative matrix. This choice is based

on existing numerical experiments for derivative-free TR methods, which show that these types of
quadratic polynomials are often more efficient than full quadratic polynomials (Powell, 2003).

φ(x; β) = β1 +

d
∑

j=1

βj+1xj +

d
∑

j=1

βj+d+1x
2
j , (3)

where d is the dimension of x, xj and βj are the jth components of x and β, respectively.
At each iteration of a trust region algorithm the objective function is evaluated at a set of points.

The model is then constructed based on objective function observations. Traditionally, trust region
methods fit the polynomial via interpolation. In this framework, we fit the metamodel via regression.
At each iteration, the simulator and the queueing model are evaluated at one (in some cases two)
point(s). The metamodel is fitted using the observations obtained at the current iteration, as well as
all observations collected at previous iterations.

The parameters β and α of the metamodel are fitted by solving a least squares problem. At
a given iteration, the model approximates the objective function in a neighborhood of the current
iterate. In order to give more importance to observations that correspond to points that are near the
current iterate, we associate weights to each observation. The least squares problem is formulated as
follows.

min
α,β

nk
∑

i=1

{

wki

(

f̂(xi, zi; p) − m(xi, yi; α, β, q)
)}2

+ (w0.(α − 1))2 +

2d+1
∑

i=1

(w0.βi)
2, (4)

where xi represents the ith point in the sample, with corresponding endogenous simulation variables
zi, endogenous queueing model variables yi and observation f̂(xi, zi; p). The sample size at iteration
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k is nk. The weight associated at iteration k to the the ith observation is denoted wki. The parameter
w0 represents a fixed weight, its role will be discussed further on.

The first squared term of Equation (4) represents the weighted distance between the simulated
observations and the metamodel predictions. The next two squared terms measure the distance
between the parameters and their initial values. These terms ensure that the least squares matrix is
of full rank. The initial values used here (one for α and zero for β) lead to an initial metamodel that
is based only on the queueing model. This is of interest when starting off the algorithm with few or
even no observations.

The weights wki capture the importance of each point with regards to the current iterate. The
work of Atkeson et al. (1997) gives a survey of weight functions and analyzes their theoretical proper-
ties. We use what is known as the inverse distance weight function along with the Euclidean distance.
This leads to the following weight parameters:

wki =
1

1 + ‖xk − xi‖2
, (5)

where xk is the current iterate, and xi is the ith sample point.
The weight of a given point is therefore inversely proportional to its distance from the current

iterate. This allows us to approximately have a Taylor-type behavior, where observations correspond-
ing to local points have more weight. The least squares problem is solved using the Matlab routine
lsqlin (The Mathworks, 2008).

3.2 Algorithmic framework

For an introduction to trust region (TR) methods, we refer the reader to Conn et al. (2000). They
summarize the main steps of a TR method in the Basic trust region algorithm. The method proposed
by Conn et al. (2009a) builds upon the Basic TR algorithm by adding two additional steps: a model
improvement step and a criticality step. For a detailed description, see Conn et al. (2009a).

A given iteration k of the algorithm considers a metamodel mk, an iterate xk and a TR radius
∆k. Hereafter, the subscript k refers to the iteration. Each iteration consists of 5 steps:

• Criticality step. This step may modify mk and ∆k if the measure of stationarity is close to
zero.

• Step calculation. Approximately solve the TR subproblem to yield a trial point.

• Acceptance of the trial point. The actual reduction of the objective function is compared
to the reduction predicted by the model, this determines whether the trial point is accepted or
rejected.

• Model improvement. Either certify that mk is fully linear (i.e. satisfies Taylor-type bounds)
in the TR or attempt to improve the accuracy of the metamodel.

• TR radius update.
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3.3 Algorithm

The algorithm used in this framework follows. We then provide details regarding the implementation
of each step of the algorithm.

0. Initialization. Set

• an initial point x0,

• an upper bound for the trust region radius ∆max > 0,

• an initial trust region radius ∆0 ∈ (0, ∆max],

• the parameters η1, γ, γinc, ǫc, τ̄ , d̄, ū such that

• 0 < η1 < 1,

• 0 < γ < 1 < γinc,

• ǫc > 0,

• 0 < τ̄ < 1,

• 0 < d̄ < ∆max,

• ū ∈ N
∗,

• the maximum number of function evaluations (i.e. simulation runs) permitted nmax.

• Define

• αk and βk as the metamodel parameters at iteration k,

• νk as the vector of parameters of mk, νk = (αk, βk),

• nk as the sample size,

• uk as the number of successive trial points rejected,

• gk the gradient of the Lagrangian evaluated at xk.

• Compute T and f̂ at x0, fit an initial model m0, and compute ν0.

• Set k = 0, n0 = 1, u0 = 0.

1. Criticality step. If ‖gk‖ ≤ ǫc, then switch to conservative mode (detailed in Section 3.4).

2. Step calculation. Compute a step sk that “sufficiently reduces the model” mk and such that
xk + sk ∈ B(xk; ∆k) (i.e. approximately solve the TR subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk) − f̂(xk + sk)

mk(xk) − mk(xk + sk)
.

- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.

Include the new observation in the sample set (nk = nk + 1), and fit the new model mk+1.
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4. Model improvement. Compute

τk+1 =
‖νk+1 − νk‖

‖νk‖
. (6)

If τk+1 < τ̄ , then improve the model by sampling a new point x, evaluate T and f̂ at x. Include
this point in the sample set (nk = nk + 1). Update mk+1.

5. Trust region radius update.

- If ρk > η1, then increase the trust region radius:

∆k+1 = min{γinc∆k, ∆max}.

- Otherwise,

- if uk ≥ ū, then reduce the trust region radius:
∆k+1 = max{γ∆k, ∆min}, uk = 0,

- otherwise, ∆k+1 = ∆k.

- If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk.
Set k = k + 1.
If nk < nmax, then go to Step 1.

3.4 Algorithmic details

Criticality step The criticality step of the algorithm ensures that if the measure of stationarity
goes under a given threshold, then the model can be improved so that its stationarity measure
can be trusted. The model is then said to be certifiably fully linear (i.e. it satisfies Taylor-type
bounds). We assume throughout that we cannot certify whether the model is fully linear. If
at a given iteration, the measure of stationarity does go under the criticality threshold then a
purely quadratic metamodel along with an appropriate sampling strategy (e.g. Monte Carlo,
Quasi-Monte Carlo) can be used in order to obtain an accurate gradient estimate and to certify
full linearity. This is denoted as the conservative mode in the algorithm.

Step calculation Details regarding the TR subproblem are given for the traffic signal control prob-
lem in Section 4.2. .

Model improvement step At each iteration, we run the simulator at the trial point, xk +sk (Step
3 of the algorithm). In order to diversify the set of sampled points, we may sample points other
than the trial points. This step attempts to improve the accuracy of the model, by improving
the geometric properties of the sampled space (e.g. attempting to fully span the feasible space
such that a full rank least squares matrix is obtained, or in the case of interpolation methods
improving the poisedeness of the sample (Conn et al., 2009b)). We do so if the condition
τk+1 < τ̄ is satisfied. To sample we draw uniformly from the feasible space.
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TR radius update In the Conn et al. (2009a) algorithm the TR radius can be reduced if the model
is fully linear but has not performed well. Since we assume throughout that we cannot certify
whether the model is fully linear, we reduce the TR radius after ū successive trial points have
been rejected. If the TR radius reaches a lower bound d̄, then a quadratic polynomial with an
appropriate sampling strategy is used, and as mentioned previously, we can ensure that within
a uniformly bounded number of sampling steps the model will be fully linear.

Algorithmic parameters The following values are used for the parameters of the TR algorithm:

• ∆max = 1010,

• ∆0 = 103,

• η1 = 10−3,

• γ = 0.9,

• γinc = 1.2,

• ǫc = 10−6,

• τ̄ = 0.1,

• d̄ = 10−2,

• ū = 10,

• w0 = 0.1.

Typical values for TR parameters are given in Carter (1986). For the algorithm used to solve
the TR subproblem we set the tolerance for relative change in the objective function to 10−3

and the tolerance for the maximum constraint violation to 10−2.

4 Optimization problem

4.1 Traffic signal control

We illustrate the use of this framework with a signal control problem for a subnetwork of the city of
Lausanne. A review of the different formulations, as well as the definitions of the traffic signal terms
used hereafter, is given in Osorio and Bierlaire (2008). We consider the same problem as in Osorio
and Bierlaire (2008), i.e. we consider a fixed-time signal control problem where the offsets, the cycle
times and the all-red durations are fixed. The stage structure is also given. In other words, the set
of lanes associated with each stage as well as the sequence of stages are both known. To formulate
this problem we introduce the following notation:

bi available cycle ratio of intersection i;
x(j) green split of phase j;
xL vector of minimal green splits;
I set of intersection indices;
PI(i) set of phase indices of intersection i.
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The problem is traditionally formulated as follows:

min
x,z

E[f(x, z; p)] (7)

subject to

∑

j∈PI(i)

x(j) = bi, ∀i ∈ I (8)

x ≥ xL. (9)

The decision vector x consists of the green splits for each phase. The objective is to minimize the
expected travel time (Equation (7)). The linear constraints (8) link the green times of the phases
with the available cycle time for each intersection. The bounds (9) correspond to minimal green time
values for each phase. These have been set to 4 seconds according to the Swiss transportation norm
(VSS, 1992).

As detailed by Conn et al. (2009b), DF TR methods are a relatively recent topic. The algo-
rithms developed so far are derived based on sound theoretical properties that lead to a solid global
convergence theory, but they are mostly formulated for unconstrained problems. Unfortunately, the
optimization problems encountered in practice are rarely unconstrained. Conn et al. (2009b) review
constrained DF algorithms, and confirm that for constrained problems “currently, there is no con-
vergence theory developed for TR interpolation-based methods”, not to mention TR methods that
allow for regression models.

Conn et al. (1998) propose a method to solve problems with general constraints using an uncon-
strained TR algorithm. The traffic management problems that we are interested in solving fall into
the category of what they denote as easy constraints. These are general constraints that are con-
tinuously differentiable and whose first order partial derivatives can be computed relatively cheaply
(with regards to the cost of evaluating the objective function). In their approach, they include such
constraints in the TR subproblem, which ensures that all trial points are feasible. Conn et al. (2009b)
mention that such an approach is often sufficient in practice.

Here we use the TR algorithm proposed by Conn et al. (2009a) for unconstrained methods,
and extend its use to constrained problems as Conn et al. (1998) suggest. That is, we include
the constraints in the TR subproblem to ensure that all trial points are feasible. The next section
formulates the TR subproblem.

4.2 Trust region subproblem

At a given iteration k the TR subproblem includes three more constraints than the previous problem.
It is formulated as follows:
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min
x,y

mk = αkT (x, y; q) + φ(x; βk) (10)

subject to

∑

j∈PI(i)

x(j) = bi, ∀i ∈ I (11)

h2(x, y; q) = 0 (12)

‖x − xk‖2 ≤ ∆k (13)

y ≥ 0 (14)

x ≥ xL, (15)

where xk is the current iterate, ∆k is the current trust region radius, αk and βk are the current
metamodel parameters, and h2 denotes the queueing model. Equation (12) represents the queueing
model, which consists of a system of nonlinear equations. These equations are given explicitly in
Osorio and Bierlaire (2009b) (Equations (1)-(6),(9) in that paper). The endogenous variables of
the queueing model are subject to positivity constraints (Equation (14)). The analytical form of
T is also detailed in Osorio and Bierlaire (2009b). Constraint (13) is the TR constraint. It uses
the Euclidean norm (Conn et al., 2009a). Thus the TR subproblem consists of a nonlinear objective
function subject to nonlinear and linear equalities, a nonlinear inequality and bound constraints. This
problem is solved with the Matlab routine for constrained nonlinear problems, fmincon, which resorts
to a sequential quadratic programming method (Coleman and Li, 1996; Coleman and Li, 1994).

4.3 Signal plan features

Sampling. The model improvement step of the algorithm attempts to diversify the set of sampled
points by drawing points uniformly from the feasible space. A feasible signal plan is defined by
Equations (8) and (9) (or equivalently Equations (11) and (15)). We draw uniformly from this
space, using the code of Stafford (2006). Given this signal plan, we solve the network model
(Equation (12)) following the procedure described in Osorio and Bierlaire (2009a).

Explanatory/independent variables. The polynomial component of the metamodel, φ, is a quadratic
polynomial in the decision variables x, which are the phase variables of the different intersec-
tions. For a given intersection the phase variables are linked through the linear Equation (8).
To reduce the correlation between the explanatory variables of the metamodel, we exclude one
phase per intersection. Thus for a set of i intersections and p phases, the polynomial is a
function of p − i phase variables, and has a total of 2(p − i) + 1 coefficients.

5 Empirical analysis

In this section, we evaluate the performance of the proposed method on two Lausanne city subnet-
works. Firstly, we consider a simplified demand distribution. Secondly, we analyze the performance

13



of the method given the demand of the city of Lausanne for the evening peak hour, and control the
plans of a larger set of intersections.

To refer to the metamodel or to its components we use the notation of Equation (2). In both sec-
tions, we compare the performance of the proposed metamodel, m, to that of two other metamodels:

• a quadratic polynomial with diagonal second derivative matrix, (i.e. the metamodel consists of
φ),

• the queueing model (i.e. the metamodel consists of T ). This is the procedure proposed in
Osorio and Bierlaire (2008). Namely, this procedure uses the same algorithm as the one used
to solve the TR subproblem.

5.1 Lausanne subnetwork with simplified demand distribution

We consider the Lausanne road network with a simplified demand distribution. We control a set
of two adjacent signalized intersections. Demand arises at the nine centroids nearest to these two
intersections. The simulation setup considers a 20 minute scenario, preceded by a 15 minute warm-up
time.

A total of 13 phases are considered variable (i.e. the dimension of the decision vector is 13).
This leads to a polynomial with 23 coefficients. The queueing model considers 12 roads that are
connected to either of these two intersections. These roads are modeled as a set of 21 queues. The
corresponding TR subproblem consists of 131 endogenous variables with their corresponding lower
bound constraints, 84 nonlinear and 36 linear equalities.

Firstly, we consider a tight computational budget, which is defined as a maximum number of
simulation runs that can be carried out. The computational budget is set to 150 runs. We consider
the performance of the proposed metamodel m and of the polynomial φ. For both metamodels, we
run the algorithm 10 times. We then compare the performance of the two methods for increasing
sample sizes. Initially, no simulated observations are available, i.e. we start off with an empty
sample. We initialize all runs with a uniformly drawn signal plan generated with the method of
Stafford (2006).

To compare the performance of both methods for a given sample size, we consider the 10 signal
plans derived and evaluate their performance by running 50 replications of the simulation model. All
simulations are preceded by a 15 minute warm-up period. We then compare the empirical cumulative
distribution function (cdf) of the average travel times over all 10 signal plans and 50 replications, i.e.
each cdf consists of a set of 500 observations.

Figure 2 considers a set of four plots. Each plot displays the initial plan, and the plans derived
by both methods for a given sample size. Each plot considers a different sample size. Plots 2(a)-2(d)
consider, respectively, sample sizes 10, 30, 50 and 100. The plans m, φ and x0 denote, respectively,
the plans derived by the proposed metamodel, the polynomial metamodel and the initial random
plan. The numbers denote the corresponding sample sizes, e.g. the cdf labeled “φ 10” corresponds
to the signal plans proposed by the polynomial with a sample of size 10.

For sample sizes 10 and 30 (plots 2(a) and 2(b)), the proposed method leads to signals plans with
improved average travel times when compared to both the intial plan and the plans proposed by the
polynomial. Furthermore, the latter plans do not provide improvement when compared to the initial
plan.
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(c) Sample size 50
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(d) Sample size 100

Figure 2: Empirical cdf’s of the average travel times considering an initial random signal plan

For sample size 50 and 100 (plots 2(c) and 2(d)), the proposed method leads to signals plans with
improved average travel times when compared to both the intial plan and the plans proposed by the
polynomial. The polynomial method leads to signal plans with similar performance compared to the
intial plan.

Figure 3 considers the same experiments with a different intial plan. In this case, the conclusions
for sample size 10 (plot 3(a)) remain the same as before. As of sample size 30 (plot 3(b)), the
polynomial identifies signal plans with improved performance compared to the initial plan. The
proposed method outperforms both the polynomial and the initial plans. This is also the case for
sample size 50 (plot 3(c)). For a sample of size 100 (plot 3(d)) the plans derived by the polynomial and
the proposed method have similar performance. These four plots also illustrate how the performance
of the plans derived by the polynomial improves with the sample size.

In all these cases with tight computational budgets, the proposed method leads to signal plans
with very similar performance and improved performance compared to the plans derived by the
polynomial and to the initial plan.
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(c) Sample size 50
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(d) Sample size 100

Figure 3: Empirical cdf’s of the average travel times considering an initial random signal plan

Secondly, we allow for a larger computational budget. We allow for a total of 750 simulation
runs. We run each method once. As before, we initialize both methods with a uniformly drawn
initial signal plan and start off with an empty sample.

Figure 4 considers the signal plans derived by the polynomial method and the proposed method
at sample sizes 10, 20, 30 and 40. For each signal plan, the figure displays the empirical cdf of the
average travel times over the 50 replications. The plans m, φ and x0 denote, respectively, the plans
derived by the proposed metamodel, the polynomial metamodel and the initial random plan. The
signal plan derived by the proposed method is the same at sample sizes 10, 20, 30 and 40. At a sample
size of 10 both m and φ lead to improved average travel times, when compared to the initial plan.
As the sample size increases, the polynomial leads to plans with improved performance. At sample
size 40, its performance is similar to that of the signal plan proposed by m.

Figure 5 considers the signal plans proposed at sample sizes 40, 50, 100, 250, 500 and 750. For each
signal plan, the cdf of the average travel times over the 50 replications are displayed. This figure
shows that the performance of the plans is similar for sample sizes larger than 40.
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Figure 4: Empirical cumulative distribution functions of the average travel times considering an
initial random signal plan and evaluating the performance as the sample size increases from 10 to 40.
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Figure 5: Empirical cumulative distribution functions of the average travel times considering an
initial random signal plan and evaluating the performance as the sample size increases from 40 to
750.
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Figure 6: Empirical cumulative distribution functions of the average travel times considering an
initial random signal plan and evaluating the performance at sample size 750.

Figure 6 considers the signal plans proposed by m and φ at sample size 750, as well as the initial
signal plan and the signal plan proposed by the queueing model T . It displays for each method
the cdf of the average travel times. All three methods, m, φ and T , lead to improved performance
compared to the random signal plan. The methods that use simulated observations throughout the
optimization process, m and φ, lead to improved signal plan performance when compared to the
queueing method T .

We consider the full sample (750 observations) and test whether the metamodel parameters of the
proposed model are significantly different from zero. To do so we perform a t-test. The null hypothesis
assumes that the parameters are equal to zero, whereas the alternative hypothesis assumes they differ.
We set the confidence level of the test to 0.05. The corresponding critical value is 1.96. Recall that
there are 23 parameters. Nine are significantly different from zero. These 9 parameters concern 5
linear terms, 2 quadratic terms, the queueing model parameter (α) and the intercept (β1). This
indicates that the proposed metamodel indeed captures information about the relationship between
the observed travel times and the phase variables.

The results of this section indicate that for small to moderate sample sizes (compared to the
dimension of the decision vector) the structural information provided by the queueing model leads
to well-performing signal plans. As the sample size increases the polynomial metamodel improves
its accuracy, and achieves with a moderate sample size similar performance to that of the proposed
metamodel. By comparing the proposed model to the queueing model, the results indicate that the
simulated observations indeed improve the accuracy of the model, leading to signal plans that reduce
the average travel times.

5.2 Lausanne subnetwork with evening peak hour demand

We evaluate the performance of the proposed method by considering a subnetwork of the Lausanne
city center. The subnetwork is presented in Osorio and Bierlaire (2008). The considered scenario
consists of the evening peak period (17h-18h). The simulation outputs used both to fit the metamodel
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Figure 7: Empirical cumulative distribution functions of the average travel times considering an
initial random signal plans and running 10 instances of each method. Each instance consists of 150
simulation runs.

and to evaluate the performance of the derived signal plans are the subnetwork average travel times.
The queueing model of this subnetwork consists of 102 queues. The TR subproblem consists of

621 endogenous variables with their corresponding lower bound constraints, 408 nonlinear equality
constraints, 171 linear equality constraints and 1 nonlinear inequality constraint.

Note that this problem is considered a large-scale problem for existing unconstrained DF methods,
not to mention the added complexity of the nonlinear constraints. In particular, the problem has 51
decision variables. Thus if one were to resort to a classical interpolation-based quadratic polynomial
surrogate, 1378 function evaluations would be necessary to fit the full polynomial. This is because
for a problem with n decision variables (n + 1)(n + 2)/2 suitably sampled points (i.e. well poised
(Conn et al., 2000; Conn et al., 2009b)) are necessary to fit the full quadratic.

We consider a tight computational budget, which is defined as a maximum number of simulation
runs that can be carried out, and no initial observation available. The computational budget is set
to 150 runs. For a given initial signal plan, we run the corresponding algorithm 10 times, deriving
10 signal plans. We then evaluate the performance of each of these signal plans by running 50
replications of the simulation model. All simulations are preceded by a 15 minute warm-up period.
To compare the methods, we consider the empirical cdf of the average travel times over all 10 signal
plans and 50 replications, i.e. each cdf consists of a set of 500 observations.

Firstly, we consider the performance of these methods given a uniformly drawn initial signal plan,
which we generate with the method of Stafford (2006). The plot of Figure 7 considers a random
initial plan and presents the cdf’s of the average travel times. The plans m, T , φ and x0 denote,
respectively, the plans derived by the proposed metamodel, the queueing model, the polynomial
metamodel and the initial random plan. The plan denoted by base plan is an existing signal plan for
the city of Lausanne.

Figure 7 indicates that all methods have an improved performance when compared to both the
base and the initial plans. Both the proposed metamodel and the queueing model derive signal plans
with improved performance compared to the polynomial.
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Average [sec] Standard deviation
m 32.16 6.55
φ 35.96 8.57
T 31.08 5.76
x0 46.8 9.50

Table 1: Travel time statistics for the different signal plans, obtained based on 500 observations. The
methods have been initialized considering the initial plan x0.

m φ x0

φ 7.88
x0 28.38 18.96
T -2.76 -10.57 -31.66
degrees of freedom: 998
confidence level: 0.05
hypothesized mean difference: 0

Table 2: T-statistics assuming equal variance. Each statistic is calculated based on the difference
between the corresponding row and column methods. This scenario considers a random initial plan.

The travel time statistics for the different methods are displayed in Table 1. To test whether
the difference in the average travel times is significant we perform a t-test. We assume that the
observed average travel times arise from a normal distribution with common but unknown variance.
The null hypothesis assumes that the expected travel time is the same for both methods, whereas the
alternative hypothesis assumes that they differ. The t-statistics are given in Table 2. Each statistic is
calculated based on the difference between the row-wise method and the column-wise method. The
critical value is 1.96. This table indicates that all differences are significant. That is, the queueing
approach leads to signal plans with the best performance, followed by the proposed approach, the
polynomial and the initial plan.

Secondly, we use the existing signal plan for the city of Lausanne (the base plan) as the initial
plan. Once again, we run each method 10 times, and allow for 150 simulations each time. Figure 8
gives the cdf’s of the different methods. Here the proposed method and the polynomial lead to signal
plans with similar performance and improved performance compared to the base plan. The queueing
model leads to a signal plan with the best performance in terms of the distribution of the average
travel times.

The corresponding travel time statistics are displayed in Table 3. We perform t-test’s to evaluate
whether the difference in the average travel times is significant. The t-statistics are given in Table 4.
Each statistic is calculated based on the difference between the row-wise method and the column-
wise method. The critical value is 1.96. Once again, all differences are significant and we have the
same ranking between the methods, that is: the queueing approach, the proposed metamodel, the
polynomial and the base plan.

We now consider a scenario with a higher computational budget. We allow for 1000 simulation
runs and consider a random initial point. In this case, we run the algorithm once. We then evaluate
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Figure 8: Empirical cumulative distribution functions of the average travel times considering the
base plan as the initial point and running 10 instances of each method. Each instance consists of 150
simulation runs.

Average [sec] Standard deviation
m 34.35 7.09
φ 35.5 7.78
T 31 6.29
base 40.65 6.95

Table 3: Travel time statistics for the different signal plans, obtained based on 500 observations. The
methods have been initialized considering the base plan as the initial plan.

m φ base
φ 2.44

base 14.18 11.04
T -7.91 -10.06 -23.01

degrees of freedom: 998
confidence level: 0.05
hypothesized mean difference: 0

Table 4: T-statistics assuming equal variance. Each statistic is calculated based on the difference
between the corresponding row and column methods. This scenario considers the base plan as the
initial plan.
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Figure 9: Empirical cumulative distribution functions of the average travel times considering a ran-
dom signal plan as the initial point. The signal plans displayed are those derived at sample sizes 10,
20 and 30.

the performance of the derived plans by running 50 replications of the simulation model.
Figure 9 presents the cdf’s of the average travel times across the 50 replications, considering

the initial plan, and the plans derived by both the proposed and the polynomial method at sample
sizes 10, 20 and 30. The plan proposed by the polynomial method at sample size 10 has similar
performance compared to the initial plan, whereas the plans at sample sizes 20 and 30 perform less
well than the initial plan. The proposed method leads to the same plan for all three sample sizes.
This plan has improved performance when compared to the initial plan and to the plans derived by
the polynomial method.

Figure 10 presents the cdf’s of the average travel times across the 50 replications, considering the
initial plan, and the plans derived by both the proposed and the polynomial method at sample sizes
40 and 50. The signal plans derived by the polynomial do not provide improvement. The proposed
method leads to the same plan for both sample sizes. This plan improves the distribution of average
travel times compared to both the polynomial and the initial plan. Figure 11 considers sample sizes
250, 500 and 750. With a sample of size 250 the polynomial leads to reduced travel times compared
to the proposed method. For the other sample sizes the signal plans of both methods have similar
performance.

Figure 12 considers the plans proposed at sample size 1000, and compares them to the initial plan,
as well as to the plan proposed by the queueing method. All methods have an improved performance
when compared to the initial plan. The plans derived by the proposed and the polynomial methods
have similar performance, while the queueing model performs best.

The travel time statistics are displayed in Table 5. We perform t-test’s to evaluate whether the
difference in the average travel times is significant. The t-statistics are given in Table 6. Each
statistic is calculated based on the difference between the row-wise method and the column-wise
method. The critical value is 1.98. This table indicates that all three methods lead to improved
performance compared to the initial plan. The difference in performance between the three methods
is not significant.
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Figure 10: Empirical cumulative distribution functions of the average travel times considering a
random signal plan as the initial point. The signal plans displayed are those derived at sample sizes
40 and 50.
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Figure 11: Empirical cumulative distribution functions of the average travel times considering a
random signal plan as the initial point. The signal plans displayed are those derived at sample sizes
250, 500 and 750.

Average [sec] Standard deviation
m 32.01 4.9
φ 32.47 6.47
T 30.84 6.42
x0 43.06 7

Table 5: Travel time statistics for the different signal plans, obtained based on 50 replications. The
methods have been initialized considering a uniformly drawn random initial plan.
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Figure 12: Empirical cumulative distribution functions of the average travel times considering a
random signal plan as the initial point. The signal plans displayed are those obtained with a sample
of size 1000.

m φ x0

φ 0.39
x0 9.14 7.86
T -1.04 -1.27 -9.1
degrees of freedom: 98
confidence level: 0.05
hypothesized mean difference: 0

Table 6: T-statistics assuming equal variance. Each statistic is calculated based on the difference
between the corresponding row and column methods. This scenario considers a random plan as the
initial point.
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We consider this sample of 1000 observations and test whether the metamodel parameters of
the proposed model are significantly different from zero. We perform the corresponding t-tests as
described in Section 5.1. In this case there are 86 model parameters. Seven are significantly different
from zero. These 7 parameters concern 3 linear terms, 2 quadratic terms, the queueing model
parameter (α) and the intercept (β1). This indicates that the proposed metamodel indeed captures
information regarding the relationship between the observed travel times and the decision variables.

The results of this section indicate that for small sized samples (compared to the dimension of
the decision vector) limiting the metamodel of this framework to a quadratic polynomial fails to
provide well-performing trial points, whereas providing structural information analytically via the
queueing model allows for improvement. For small sized samples the queueing approach has the
best performance, followed by the proposed method, the polynomial and the initial plans. We also
considered one instance with a larger sample. Here all three methods yield similar performance and
improved performance compared to the initial plan.

6 Conclusions

This paper presents a simulation-based optimization framework for the management of congested
networks. It proposes a metamodel that combines information from a traffic simulation tool and
an analytical network model. It integrates this metamodel within a derivative-free trust region
optimization algorithm.

Firstly, the performance of this framework is evaluated by solving a fixed-time signal control
problem for two intersections of the Lausanne city center, and a simplified demand distribution.
For small to moderate sized samples (small compared to the dimension of the decision vector), the
metamodel provides improvement when compared to the polynomial method. For larger samples,
the proposed metamodel leads to signal plans that perform similarly to those of the polynomial. For
larger samples, both methods yield reduced travel times when compared to the plan proposed by the
queueing model and to the initial plan.

Secondly, we consider the demand of the Lausanne city network for the evening peak period
(17-18h). A larger set of intersections is considered endogenous. The performance is evaluated
considering as initial plans: random plans and also an existing plan for the city of Lausanne.

In this case we ran two types of experiments. Firstly, we assumed a tight computational budget
(approximately three times the dimension of the decision vector) and ran 10 instances of the algo-
rithm. We initialized the algorithm both with a random plan and with an existing plan for the city
of Lausanne. In both cases, the queueing approach leads to the signal plans with best performance,
followed by the proposed metamodel, the polynomial and the initial plans.

We then allowed for a large computational budget and initialized with a random initial plan. We
analyzed the performance of the signal plans with increasing sample sizes. For small samples, the
proposed method yields well-performing plans, unlike the polynomial. For large samples, the proposed
and the polynomial methods derive signal plans with similar performance. Their performance is also
similar to that of the queueing approach.

Efficiently tackling unconstrained high dimensional problems (e.g. more than 100 variables) is one
of the main limitations of existing derivative-free methods, not to mention the added complexity of
constrained problems. The generic metamodels used in these algorithms, e.g. quadratic polynomials,
require a moderate to large sample to initially fit the metamodel of interest. By combining these
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generic metamodels with application-specific models that analytically capture the structure of the
underlying problem, these algorithms can be used to tackle high dimensional problems under tight
computational budgets. This added structure overcomes the need for a substantial initial sample,
and provides meaningful trial points since the very first iterations.

For the Lausanne subnetwork scenario and a tight computational budget, it is the queueing model
that leads to the best performance. Nonetheless, it is of interest to preserve the functional or generic
component of the metamodel, since it ensures the asymptotic convergence of the algorithm. More
research is needed to investigate whether other functional forms (e.g. splines, radial basis functions),
or other interaction terms can improve the accuracy of the metamodel. We will also investigate the
sensitivity of the method to the numerous algorithmic parameters.

Given the good performance of the queueing model, a natural extension would be to use the
simulated observations to improve the accuracy of the exogenous queueing model parameters. This
can be done by iteratively calibrating these parameters as the observations are collected. In particular,
we expect the calibration of the exogenous parameters that depend on the decision vector, such as
the turning proportions, to further improve the models accuracy.
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