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ABSTRACT 

Research in road safety faces major challenges: individuation of the most significant 

determinants of traffic accidents, recognition of the most recurrent accident patterns, and 

allocation of resources necessary to address the most relevant issues. This paper intends to 

comprehend which data mining techniques appear more suitable for the objective of 

providing a broad picture of the road safety situation and individuating specific problems that 

the allocation of resources should address first. Descriptive (i.e., K-means and Kohonen 

clustering) and predictive (i.e., decision trees, neural networks and association rules) data 

mining techniques are implemented for the analysis of traffic accidents occurred in Israel 

between 2001 and 2004. Results show that descriptive techniques are useful to classify the 

large amount of analyzed accidents, even though introduce problems with respect to the 

clear-cut definition of the clusters and the triviality of the description of the main accident 

characteristics. Results also show that prediction techniques present problems with respect 

to the large number of rules produced by decision trees, the interpretation of neural network 

results in terms of relative importance of input and intermediate neurons, and the relative 

importance of hundreds of association rules. Further research should investigate whether 

limiting the analysis to fatal accidents would simplify the task of data mining techniques in 

recognizing accident patterns without the “noise” probably created by considering also 

severe and light injury accidents. 

 

Keywords: traffic accidents, data mining, clustering analysis, decision trees, neural networks, 

association rules. 
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INTRODUCTION 

Research in road safety faces major challenges: individuation of the most significant 

determinants of traffic accidents, recognition of the most recurrent accident patterns, and 

allocation of resources necessary to address the most relevant issues. Typically, traffic 

accidents have been regarded as random events and statistical models have been 

extensively employed to investigate the determinants of fatal and injury accidents. Logistic 

regression, Poisson regression, Negative Binomial regression and ordered choice models 

have been commonly applied. However, most of these models rely on specific assumptions 

and pre-defined underlying relationships between dependent and independent variables. 

Alas, whenever these assumptions are violated, these models could lead to erroneous 

estimation of the likelihood of accident occurrence under the hypothesized conditions. 

 

Data mining techniques constitute an alternative approach that has received increasing 

attention from researchers in recent years (e.g., Abdel-Aty and Keller, 2005; Chang, 2005; 

Chang and Chen, 2005; Chang and Wang, 2006; Geurts et al., 2005). Clustering analysis, 

decision trees and neural networks have been generally utilized to replace existing 

algorithms for accident classification (e.g., Abdel-Aty and Keller, 2005, Chang and Wang, 

2006; Geurts et al., 2005) and crash frequency estimation (e.g., Chang, 2005; Chang and 

Chen, 2005). The implementation of data mining techniques avoids the limitation represented 

by specific assumptions and potentially uncovers not previously hypothesized underlying 

relationships. However, the analysis of findings from data mining applications in the 

transportation field generates doubts about the ability of data mining techniques to provide 

non-trivial insights in road safety research (e.g., Chang and Cheng, 2005; Geurts et al., 

2005; Tseng et al., 2005). 

  

With this premise, this paper investigates the implementation of descriptive (i.e., K-means 

and Kohonen clustering) and predictive (i.e., decision trees, neural networks and association 

rules) data mining techniques for the analysis of traffic accidents. The purpose of this study is 

to comprehend which data mining techniques appear more suitable for the objective of 

providing a broad picture of the road safety situation and individuating specific problems that 

the allocation of resources from the government should address first.  

 

The remainder of this paper is organized as follows. A review of existing literature in data 

mining applications to road safety research is followed by a description of the applied 

methodology and the data used for the analysis. Results from the implementation of the 

described data mining techniques are then presented before a summary and discussion of 

the major findings of this research. 

LITERATURE REVIEW 

Data mining techniques have been commonly employed in business administration, industry, 

and engineering (see Witten and Frank, 2005). In recent years there has been a growing 

interest in applying data mining techniques in the transportation field as well, for example in 
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the areas of traffic engineering and travel behaviour. Smith et al. (2001) show that advanced 

data mining techniques hold high potential to provide automated tools that assist traffic 

engineers in signal control system design and operations. Yang et al. (1993), Dougherty 

(1995) and Yamamoto et al. (2002) apply decision trees and production rules to investigate 

drivers’ route choice behaviour under advanced information systems, even though in current 

practice relatively little information has been successfully extracted from the wealth of data 

collected by intelligent transportation systems. 

 

In the late 90's and the beginning of this century there have been several attempts to use 

data mining techniques in the area of traffic safety. In particular, frequent patterns in accident 

data have been searched by implementing spatial data mining (Zeitouni and Chelghoum, 

2001), clustering techniques (e.g., Ljubic et al., 2002; Geurts et al., 2003; Bayam et al., 

2005), rule induction (e.g., Geurts et al., 2003; Geurts et al., 2005; Kavsek et al., 2006), 

decision trees (e.g., Strnad et al., 1998; Clarke et al., 1998; Bayam et al., 2005) and neural 

networks (e.g., Mussone et al., 1999; Bayam et al., 2005). Some applications have combined 

data mining techniques with technological enhancements, for example Ng et al. (2002) 

present a combination of cluster analysis, regression analysis and Geographical Information 

System (GIS) platforms to group homogeneous accident data, to estimate the number of 

accidents and to assess the crash risk. 

 

Following these attempts, in recent years there has been a growing body of research 

exploring whether data mining techniques are potentially more suitable than classical 

econometric models to uncover relations between the variables that affect accidents, such as 

road characteristics, driver characteristics and attitudes, vehicle features and seasonal 

factors. For example, Cameron (1997) indicate that clustering methods seem an important 

tool when analyzing traffic accidents as these methods are able to identify groups of road 

users, vehicles and road segments which would be suitable targets for countermeasures. 

Lee et al. (2002) present a review and discusses limitations of classical econometric models 

that have been widely used to analyze road crashes. Chen and Jovanis (2002) show that 

certain problems may arise when using classic statistical analysis on datasets with large 

dimensions, namely the exponential increase in the number of parameters as the number of 

variables increases and the invalidity of statistical tests as a consequence of sparse data in 

large contingency tables. Chang and Chen (2005) compare prediction performances of 

decision trees and negative binomial regressions to determine that decision trees are a 

better method for analyzing freeway accident frequencies. Chong et al. (2005) evaluate the 

performance of four machine learning paradigms applied to modelling the severity of injury 

that occurred during traffic accidents: neural networks, support vector machines, decision 

trees and a hybrid model involving decision trees and neural networks. 

 

Even though data mining techniques have been shown to be potentially a powerful tool for 

dealing with accident classification and prediction problems, a general problem seems to be 

the triviality of the results. For example, Geurts et al. (2003) classify accident data obtained 

from the National Institute of Statistics for the region of Flanders (Belgium) with Kohonen 

network clustering and Geurts et al. (2005) identify accident circumstances that frequently 

occurred at high frequency accident locations with association rules. Only 16 association 
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rules out of thousands are described to conclude, for example, that accidents are influenced 

by rainy weather, wet road surface and slippery conditions. Chang and Chen (2005) 

investigate freeway accident frequency by means of the Classification and Regression Tree 

(CART) method and conclude that conflicts between vehicles and exposure to potential 

crash risk are expected to increase with increasing number of vehicles, rainy conditions, road 

steepness and the effect of speed differentials. Tseng et al. (2005) examine traffic accident 

patterns in relation with driver inattention with Kohonen networks and conclude that when 

inattention and physical-mental conditions take place at the same time, driver have a higher 

tendency of being involved in a crash where they collide with static objects. The common trait 

of these results is that these trivial statements do not seem to actually require the 

implementation of complex techniques to be either defined or predicted.  

METHODOLOGY 

This section illustrates the data mining techniques applied in this study, by distinguishing 

methods for descriptive and predictive analysis. Descriptive analysis is used to uncover 

groups or clusters of data objects based on similarities among these objects occurring as a 

result of interactions among independent variables. Predictive analysis is used to forecast 

future events or behaviours based on mapping a set of input values to an output value.  

Descriptive analysis 

K-means and Kohonen networks perform the task of segmenting a heterogeneous 

population into homogeneous subgroups, thus they perform descriptive analysis. 

K-means clustering 

The most popular non-hierarchical clustering method is the K-means technique. “K” refers to 

the number of clusters chosen to reduce the dimensionality of the problem, while “means” 

refers to the cluster being represented by the mean of observations on selected variables. 

 

The implementation of K-means clustering in this research utilizes the “maximin” method to 

first select cluster centres. Initially, the algorithm positions the first cluster centre as the first 

record of the data file, and the remaining centres are created by searching for positions in an 

n-dimensional space that are as far as possible from any other cluster centre already 

generated. Then, the algorithm calculates the Euclidean distance between each record and 

every cluster centre and assigns each record to the cluster with the smallest squared 

Euclidean distance. After the assignment of all the cases is completed, the location of each 

cluster centre is recomputed as the average of all the cases within the cluster and this 

iterative process is repeated until one stopping criteria is reached, namely a change in 

means below a defined threshold or a maximum number of iterations. 

 

The typology of the input variables for K-means clustering is not an issue, as long as the 

calculation of the Euclidean distance follows the standardization of the data. Fields of range 
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type are transformed into a scale that varies between 0 and 1, flag fields are coded such as 

that the false value equals 0 and the true value equals 1, and categorical fields are recoded 

as flag variables for each category. The application of K-means clustering to this research 

proposes exploring results from various numbers of groups and fixing interruption criteria for 

the algorithm in 1×10-6 for the variation of mean change or in 20 iterations maximum. 

Kohonen networks 

Kohonen networks are a type of neural network based upon the idea of self-organized 

learning. Since the algorithm does not attempt to predict values of target variables, these 

networks are suitable for clustering. The clusters are formed from patterns that share similar 

features. The network consists of a one or two-dimensional grid of neurons. Each neuron is 

connected to each of the inputs, and weights are considered for each connection, as 

illustrated in figure 1. 

 
 

 

 

                                                                                                                                     output layer 

 

 

 

 

 

                                                                                                                               input layer 

 
Figure 1 - Illustration of a Kohonen network 

The network trains by presenting cases to the grid and comparing characteristics of each 

record with those of all neurons in the grid, after giving random weights initially. The neuron 

in the grid with the most similar pattern “gets” the examined record, and its weight is adjusted 

to be more similar to that of the record just acquired to enhance the likelihood of similar 

records to be captured by the same node. The network adjusts the weights of the 

surrounding neurons in the grid as well, and after the data pass through the network a 

number of times, the result consists of a map containing clusters of records corresponding to 

different types of patterns in the data. Similar patterns (i.e., similar neurons in the grid) 

should be closer in the map than dissimilar ones. 

  

The algorithm works in two phases, namely a first stage with large-scale changes and a 

second stage with smaller changes in the weights in order to perform a fine-tuning of the 

map. Also, the algorithm requires the number of neighbours around the acquired node whose 

weight is modified at each phase and defines a learning parameter eta at each phase. As the 

training process involves long iterations with weight adjustments, the Kohonen network takes 

longer to train than K-means clustering. The implementation of Kohonen networks in this 

study considers exploring clusters from different dimensions of the map and defining the 
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parameters for both phases: the first phase has learning parameter equal to 0.3, neighbours 

equal to 2 and 20 cycles, the second phase has learning parameter equal to 0.1, neighbours 

equal to 1 and 100 cycles, and convergence is reached when the learning parameter arrives 

to a null value.  

Predictive analysis 

Decision trees, association rules and neural networks examine the data and estimate the 

outcome values of a dependent variable, thus they perform predictive analysis. 

Decision trees 

Decision trees are mining methods able to forecast or classify future observations according 

to decision rules. Information is divided in classes and is utilized to generate rules able to 

classify previous and new cases with absolute precision. The interpretation of trees is simpler 

than other techniques since the configuration of the branches exemplifies the structure. 

Further, decision trees are easily converted into “if-then” rules to enhance the 

comprehension of the model and of the relationships between variables. 

 

The algorithm C5.0 divides the records according to the field that yields the maximum 

information gain, defined as the difference between the average information needed to 

identify the class of a record within the entire data and the expected information required 

once the data has been partitioned into each outcome of the field being tested. Each 

subgroup defined at the first division is further examined until additional division of the 

subgroups is not feasible, and the lower level subdivisions are examined to remove or cut 

those not giving significant contribution to the model. This process is known as pruning of the 

tree, which is used to decide whether a branch should be “simplified” back toward the parent 

node on the basis of the comparison between the predicted errors for the unpruned branches 

and those for the pruned node.  

 

The CHAID algorithm, acronym of Chi-squared Automatic Interaction Detection, utilizes chi-

squared statistics to identify optimal subdivisions of the dataset. Initially, the CHAID algorithm 

analyzes the contingency tables of each independent variable and verifies their significance 

by means of a chi-squared independency test. Then, the algorithm selects the most 

significant predictor and merges categories of the variable that are yielding similar results, 

while proceeding with the division in subgroups of the data according to the new categories 

created. Categories are merged when their differences are equal to the difference obtained 

with the independency test. While the C5.0 algorithm is stable in presence of missing data 

and large number of input fields, does not require long training time and the interpretation of 

the tree is easier, the CHAID algorithm is efficient in presence of missing data and generates 

trees for categorical predictors with more than one branch for each subgroup.  

 

Note that when the algorithms produce a decision tree, each leaf describes a certain 

subgroup of the training data and each record enters only one single leaf, but when the 
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algorithm produces induction rules, these present a simplified version of the information 

contained in the decision tree and each record applies to more than one rule as well as any 

rule at all. The implementation of the C5.0 algorithm in this study uses a 75% pruning and a 

minimum of 20 records per child branch to reduce the effect of the noise in the data. Further, 

the algorithm is instructed to cut the tree in two phases: the first executes a local cut that 

examines the sub-trees and compresses the branches that increase model precision, while 

the second explores the whole tree and compresses weak sub-trees. The implementation of 

the CHAID algorithm in this study introduces the level of significance for merging the 

categories, equal to 0.05, and the convergence criterion, with a maximum number of 100 

iterations if the optimal value of the chi-squared test is inferior to 0.001. For predicting 

purposes, both algorithms use part of the data for training and part of the data for testing. 

The comparison between actual and predicted values provides a measure of goodness-of-fit 

of the estimated models. 

Neural networks 

A neural network consists of a number of neurons that are arranged in layers and are linked 

to every neuron in the previous layer by connections with different weights. The learning 

adapts the weights iteratively and provides the system of a method to learn by example. 

  

The Multi-Layer Perceptron (MLP) is a simplified model of the human mind elaboration 

process, and works by simulating an elevated number of simple elaboration units that 

resemble abstract versions of neurons. As illustrated in figure 2, an input layer represents the 

input fields, an output corresponds to the output fields and one or more hidden layers 

represent the propagation from each neuron to each other neuron in the following layer.  

 

Initially, the network assigns random weights and the initial answers appear without sense in 

the beginning of the learning phase. In the following runs, the network encounters examples 

with known output, the provided answers are compared to these output, and the weights are 

updated in order to have the closest possible level of similarity between predicted and 

observed values. The replication of the results increases during the learning phase and the 

network can be applied to future cases with unavailable results. This process reiterates and 

the network improves its forecasts until one or more interruption criteria are satisfied. 

 

Several parameters determine the development of the learning phase. The alpha parameter 

refers to the momentum used in updating the weights when trying to locate the global 

solution and tends to move the weight changes in a constant direction to reduce the training 

time. The eta parameter refers to the learning rate and determines how much adjustment is 

feasible at each update and decreases according to a predetermined number of decay 

cycles. The persistence parameter defines the number of cycles for which the network trains 

without improvement to reach the stopping point. The implementation of MLP in this study 

uses an Exhaustive Prune training method where alpha and eta are respectively equal to 0.9 

and 0.3, the number of decay cycles is equal to 100, the rate of eliminated neurons is equal 

to 0.02 and the persistence is equal to 100 cycles. Overtraining is avoided by considering 

randomly 50% of the dataset for training and the other 50% for test before the validation. As 
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for decision trees, the comparison between actual and predicted values provides a measure 

of goodness-of-fit of the constructed neural networks.  

 

 

     input layer        hidden layer       output layer 

 
Figure 2 - Illustration of a MLP neural network 

Association rules 

Association rule discovery, generalized rule induction, affinity analysis and market analysis 

are terms that describe a type of pattern algorithm that differentiates itself from decision 

trees. These methods generate rules that are independent of other rules and are not 

restricted to a single output or dependent field, while revealing which values of two or more 

fields occur together. Unfortunately, the search space for independent rules grows 

exponentially with the number of attributes, thus association rule algorithms are very 

expensive from the computational perspective.  

 

Given that an association rule consists of some conditions, also named antecedents, that are 

followed by some conclusions, the evaluation of the rules necessitates of two criteria: the 

support is the percentage of records in the dataset for which the conditions hold, and the 

confidence is the proportion of records meeting the conditions that also meet the conclusion. 

The support indicates the generality of the rules, while the confidence points out how likely is 

the conclusion, given that the conditions are met.  

 

The a-priori rule discovery algorithm works only with symbolic data that are coded as flag 

fields and indexes, and passes through the complete dataset to generate the association 

rules. The support is generally under 10% to generate more potential rules, and the process 

is usually reiterated by using initially only a portion of data in order to evaluate support and 

confidence optimal for each case study. The confidence is set to 80% or 90% to avoid the 

generation of too many rules in the final runs of the model. The Generalized Rule Induction 
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(GRI) algorithm applies to a broader range of data and applies a different measure to 

determine the interest in a particular rule. The method generates associations based on the 

information content of a rule, which is assessed with a J measure that trades off support and 

confidence. GRI accounts for 0% support and minimum confidence equal to 50%. 

Association rules are complex to interpret, as exemplified in the literature and illustrated in 

the implementation of these algorithms in the present research. 

DATA 

The analyzed dataset, provided by Israel Central Bureau of Statistics (CBS), consists of 

traffic accidents that occurred between 2001 and 2004 and resulted in the injury of at least 

one person involved in the crash. For each year, databases consist of lists of records 

corresponding to each single crash and three different files register information about every 

accident with injury: the accident file, the vehicle and driver file, and the injured person file. 

Overall, detailed information covers every aspect of the accident including the accident 

location, infrastructure characteristics, vehicle features, information about the involved 

people, weather conditions, and traffic light situation.  

 

Information in the accident file includes time and date of the accident, and its whereabouts in 

terms of police district and location related characteristics (i.e., urban or rural road, 

intersection or road section). The accident is classified according to three levels of severity 

(i.e., fatal, severe and light), type, modality and cause. Further information details the 

characteristics of the infrastructure in terms of allowed speed, presence and condition of 

median barrier, traffic control and signal system, condition of the surface related also to the 

weather at the moment the accident occurred. Last, information involving pedestrian and 

collided objects is provided for specific typologies of accidents. The vehicle and driver file 

includes records of each vehicle and driver involved in the accident. Each record 

corresponds to one vehicle and its driver, and lists generic vehicle information (e.g., type, 

age, motor, weight and direction of travel of the vehicle), as well as drivers’ socio-economic 

characteristics (e.g., gender, age, year of licensure, and past offences of the driver). The 

injured person file comprises records of each person injured including pedestrians. Each 

record registers generic information about an injured person (e.g., gender, age, nationality, 

place of residence and type of injury sustained). 

 

While assessing the data quality, several problems were encountered. First, the CBS coding 

system changed over the years. The consistency of the coding system is important for 

analytical purposes, since the lack of common definitions for variables such as accident type 

or median barrier identification could lead to a bias in the application of data mining methods. 

With this problem in mind, and with the contemporary objective of analyzing tens of 

thousands of records, the analysis focuses on the period between 2001 and 2004 for which 

the coding system is fairly consistent and allows avoiding potential problems related to large 

heterogeneity in the definition of the variables. Second, a problem consists in merging the 

three data files. Note that the accident file contains one accident for each record, but the 

other two files contain multiple records corresponding to the same accident, as long as many 

drivers, vehicles and injured persons were involved. A unique file is composed by 
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considering as a base file the accident file, and defining as vehicle 1, vehicle 2 and so on the 

vehicles. The same applies to the drivers and to the injured persons. At the end, a unique 

database lists as many records as accidents, each with its number of vehicles, drivers and 

injured persons. Note that the limitations to the number of columns in the SPSS program, 

used according to the format provided by the Central Bureau of Statistics, advises to 

eliminate records with more than eight vehicles and drivers involved. Last, the files contain 

records with missing values, which are not analyzed to assure the quality of the data. The 

data source for accident analysis consists of 72,056 records. 

 

The variables considered for descriptive and predictive analysis are illustrated in table 2. 

Among these variables, two fields are tested as valuable categorical dependent variables: 

accident location in order to individuate whether specific conditions are identified for specific 

road type, and accident severity in order to comprehend whether outcomes are dependent 

on specific characteristics of the road, the vehicle or the driver. For predictive purposes the 

dataset is divided into a training set, containing the accidents that occurred between 2001 

and 2003, and a test set, containing the crashes that happened in 2004. As neural networks 

randomly divide the input dataset into training and test sets, the database accounting for the 

collisions taken place in 2004 is considered as validation set.  

 
Table 1 – Categorical variables for descriptive and predictive analysis 

Variables Categories 

accident severity fatal accident – severe injury – light injury 

type of accident 

pedestrian – front/side crash – front/rear crash – side/side 
crash – front/front crash – collision with stopped car – collision 
with parked car – collision with object – rolling/slipping – fire – 
other crashes  

accident modality 
entrance of intersection – exit of intersection – parking or gas 
station – slope – curve – bridge or tunnel – railway crossing – 
straight road or junction – other 

cause of the accident 
offense of the driver – pedestrian action – passenger behavior 
– cyclist behavior – car malfunctioning – other 

location of the accident 
urban intersection – urban section – interurban intersection – 
interurban section 

allowed speed 50 km/h – 60 km/h – 70 km/h – 80 km/h – 90 km/h – 100 km/h 

day / night day – night 

day of the week 
Sunday – Monday – Tuesday – Wednesday – Thursday – 
Friday – Saturday 

season of the accident spring – summer – autumn – winter 

weather conditions clear – rainy – hot – foggy – other 

number of ways on the 
road 

one way – two ways with separation line – two ways without 
separation line – other 
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median on the road 
painted line – safety rail – no safety rail – non built separation 
– other 

shoulders of the road 
good condition – bad condition – rough road – bad condition 
and rough road 

width of the road up to 5 m. – 5 to 7 m. – 7 to 10 m. – 10 to 14 m. – over 14 m. 

regulation of intersection 
no control – functioning traffic light – malfunctioning traffic light 
– blinking yellow – stop sign – right of way sign – other 

illumination on the road 
normal daylight – limited visibility because of the weather – 
night with lighting – night without lighting – malfunctioning 
lighting – unknown night conditions  

surface conditions of the 
road 

dry – wet from water – wet from slippery material – covered 
with mud – covered with sand – other 

location of crossing 
pedestrians 

crossing on crosswalks with traffic light – crossing on 
crosswalks without traffic light – crossing out of crosswalks 
next to an intersection – crossing out of crosswalks far from an 
intersection –  not specified crossing position 

location of standing 
pedestrians 

pedestrian standing on the road – pedestrian standing on the 
median – pedestrian standing on the sidewalk or shoulders – 
pedestrian playing on the road – pedestrian in the traffic 
direction – pedestrian against the traffic direction 

type of collision with 
objects 

with street signal – with safety rail – with building – with bridge 
– with light or phone pole – with tree – with other object 

distance of colliding 
objects 

up to 1 m. – up to 3 m. – object on the road – object on the 
median – unknown position of the object 

vehicles involved 
one vehicle – two vehicles – three vehicles – four or more 
vehicles 

speed offences 
at least one driver with previous speed violations – no driver 
with previous speed violations 

alcohol or drugs offences 
at least one driver with previous alcohol or drug violations – no 
driver with previous alcohol or drug violations 

private vehicles 
no private vehicle involved – one private vehicle involved –  
two private vehicles involved – three private vehicles involved 
–  four or more private vehicles involved 

public vehicles 
no public vehicle involved – one public vehicle involved – two 
public vehicles involved – three or more public vehicles 
involved 

light commercial vehicles 
no light commercial vehicle involved – one light commercial 
vehicle involved – two light commercial vehicles involved – 
three or more light commercial vehicles involved 

heavy commercial vehicles 
no heavy commercial vehicle involved – one heavy 
commercial vehicle involved – two heavy commercial vehicles 
involved – three or more heavy commercial vehicles involved 

motorcycles 
no motorcycle involved – one motorcycle involved – two 
motorcycles involved – three or more motorcycles involved 

bicycles 
no bicycle involved – one bicycle involved – two bicycles 
involved – three or more bicycles involved 
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ANALYSIS OF RESULTS 

Descriptive analysis 

The definition of the considered number of clusters constitutes a compromise between a 

small number, which would give problems in terms of excessive dimension of the clusters, 

and a large number, which would cause difficulties in terms of their semantic interpretation. 

Further, different data mining techniques are applied with the same number of clusters in 

order to evaluate the dependency of the implementation of different methods on this number. 

 

K-means clustering is applied by testing solutions with 5, 6 and 7 clusters. Kohonen networks 

are constructed by experimenting linear maps with 5 and 6 clusters, as well as bi-

dimensional maps that unfortunately do not converge. The semantic interpretation of the 

clusters constitutes a difficult task, and relates to the frequency of each category of the input 

variables in the records belonging to each cluster.  

 

The first solution with 5 clusters obtained with the K-means algorithm classifies: 

1.  front to side accidents that occurred in urban intersections, where the median was not 

constituted by a safety rail and the allowed speed was 50 km/h (23,510 cases); 

2.  accidents that happened in autumn or winter in rainy conditions and consequently wet 

road surface, mainly in road sections rather than in road intersections (6,806 cases); 

3.  accident that took place outside urban areas, in large two way roads where the 

allowed speed was over 80 km/h and there was a significant percentage of collisions 

with the safety rail (15,441 cases); 

4. accidents that involved pedestrians, with the majority of them crossing on crosswalks 

without traffic lights or not crossing close to intersections, in two way roads without a 

safety rail as a median (8,515 cases); 

5.  accidents that occurred in urban areas, in road sections without a white line to 

separate the two ways, where the majority of the collisions were front to side or front 

to back crashes (17,784 cases). 

The solution with 6 clusters divides the first cluster into accidents that happened during either 

day or night. The solution with 7 clusters maintains the groups obtained with 6 clusters and 

splits the third cluster again according to crashes occurring either during day or night. 

 

The first solution from the Kohonen network with 1×5 map defines different clusters: 

1. front to side accidents that happened at night, mostly in urban areas and during 

autumn and winter with rainy conditions (19,650 cases); 
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2. accidents that took place in road sections at night, on either two-way roads where the 

allowed speed was 50 km/h or two-way roads where the allowed speed was over 80 

km/h (6,364 cases); 

3. accidents that occurred in road sections at day, mostly on two-way roads without 

white line to separate them, and with most of the accidents involving pedestrians 

(17,573 cases); 

4. front to side accidents that took place at day, mostly in urban areas and during spring 

and summer (9,946 cases); 

5. front to side accidents that happened at day, mostly in intersection and preferably 

inside urban areas, where there was not safety rail as median (18,523 cases). 

The division of larger clusters into smaller clusters, observed for K-means algorithm when 

increasing the number of groups, is not verified with the Kohonen networks. The Kohonen 

network with 1×6 map actually defines different clusters with respect to the 1×5 map: 

1. front to side accidents that happened during day in urban intersections, in either one-

way or two-way roads without white line, and where the median was not a safety rail 

(15,822 cases); 

2. accidents that occurred during day in urban areas, when the traffic lights were not 

working or there was a right of way or stop sign, and mostly with pedestrians involved 

(6,884 cases); 

3. accidents that took place during day in urban areas and not in intersections, mostly 

involving pedestrians that crossed large roads without safety rail (11,873 cases); 

4. accidents that happened during day outside urban areas, mostly in roads where the 

allowed speed was at least 90 km/h and the median was a safety rail (12,249 cases); 

5. accidents that occurred at night outside urban areas, mostly during autumn and 

winter on large roads where the allowed speed reached 80 km/h and the median was 

a safety rail (7,243 cases); 

6. front to side accidents that took place in urban areas during the night, mostly in 

autumn and winter on narrow roads without safety rail and often even without a white 

line to separate the two ways (17,985 cases). 

The solution from the Kohonen network with a 3×3 map is difficult to explain, especially since 

at least four clusters present similar characteristics without a clear cut distinction among one 

another. The remaining five clusters are more similar to the solution from the linear 1x5 map 

rather than to the solution from the linear 1x6 map. 

 

Notably, the results from the Kohonen clusters provide evidence of the importance of the 

vicinity property, as both solutions consider night and day accidents in adjacent groups. The 
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importance of this property is also proven by the fact that non-linear maps do not converge, 

and by the fact that the solutions of this clustering technique appear to be not strictly 

interrelated, especially in the 3×3 map where the least significant clusters are positioned in 

the middle of the map and separate the remaining resulting groups. In addition, given the 

differences in the nature of the algorithms, it is not surprising that the two clustering 

techniques work in two different directions: K-means creates clusters based on the location 

and the typology of the accident, while Kohonen networks generate clusters based on the 

day or night attribute and the accident location. 

Predictive analysis 

Decision trees 

Decision trees produce rules that help classifying the accidents according to the chosen 

dependent variables, and the most interesting results are described in the following sections.  

 

Considering the location of the accident as the dependent variable, the decision trees 

generated with the C5.0 and CHAID algorithms are similar. For the C5.0 algorithm, the most 

significant variables consist of the allowed speed followed by the typology of the accident, 

the existence of previous speed violations for at least one of the involved drivers and the 

number of vehicles implicated in the crash. For the CHAID algorithm, the most relevant fields 

consist of the regulation of the intersections, followed by the allowed speed, the number and 

the type of vehicles involved and the physical condition of the median.  

 

The confusion matrices in tables 2 and 3 provide insight into the predictive ability of the two 

algorithms, which is 67.1% for the C5.0 and 87.8% for the CHAID algorithm. The rows 

represent the observations and the columns the predicted values, thus the elements in the 

diagonal indicate the correct predictions for accidents occurred in 2004 on the basis of trees 

generated from data about accidents occurred between 2001 and 2003. The C5.0 algorithm 

predicts well crashes in rural areas, but confuses collisions inside urban areas as the 

majority of incorrect forecasts concerns urban accidents that occurred in road junctions and 

are instead predicted to take place in a section, and vice versa. The CHAID algorithm does 

not present the same problem, although it predicts an excess of accidents in urban areas. 

 
Table 2 - Confusion matrix for accident location with C5.0 algorithm 

 
Interurban 

intersection 

Interurban 

section 

Urban 

intersection 

Urban  

section 

Interurban 

intersection 
1000 458 460 192 

Interurban 

section 
371 1758 143 341 

Urban 

intersection 
44 29 4966 1805 

Urban  

section 
47 139 1812 4172 
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Table 3 - Confusion matrix for accident location with CHAID algorithm 

 
Interurban 

intersection 

Interurban 

section 

Urban 

intersection 

Urban  

section 

Interurban 

intersection 
1270 133 638 69 

Interurban 

section 
0 2037 0 576 

Urban 

intersection 
33 4 6242 565 

Urban  

section 
0 147 0 6023 

 

Decision rules with confidence level over 75% are presented in tables 4 and 5. These rules 

suggest that accidents in interurban intersections occur mainly in conditions of limited 

visibility, for example at night with only the natural night light available, and when the median 

is not physical but is only a white line drawn on the road. These rules leads to think about 

problems related to excessive speed, a concept that is confirmed by the rules regarding 

crashes in interurban sections, for example with single-vehicle accidents where a car digress 

from the road. In urban areas, pedestrians, cyclists and motorcyclists are often involved, and 

sometimes supposedly their behaviour causes crashes that have severe consequences. 

 
Table 4 - Rules for accident location with C5.0 algorithm 

IF the speed allowed is 80 km/h, 

AND the accident occurs with more than one vehicle involved, 

AND the accident is a front to side collision, 

AND the only light in the location of the accident is the natural night light 

THEN the likelihood of the accident occurring in an interurban intersection is 75.3% 

IF the speed allowed is 90 km/h, 

AND the accident occurs with more than one vehicle involved, 

AND the accident is a front to side collision, 

AND the only light in the location of the accident is the natural night light 

THEN the likelihood of the accident occurring in an interurban intersection is 75.0% 

IF the speed allowed is 90 km/h, 

AND the accident occurs with more than one vehicle involved, 

AND the accident is a front to back collision, 

AND the accident results in fatalities 

THEN the likelihood of the accident occurring in an interurban section is 92.2% 

IF the speed allowed is 80 km/h, 

AND the accident occurs with only one vehicle involved, 

AND the accident is the getting off the road of a car, 

THEN the likelihood of the accident occurring in an interurban section is 89.1% 

IF the speed allowed is 90 km/h, 

AND the accident occurs with more than one vehicle involved, 

AND the accident is a front to back collision, 

AND the accident results in severe injuries 

THEN the likelihood of the accident occurring in an interurban section is 85.2% 

IF the speed allowed is 80 km/h, 

AND the accident occurs with only one vehicle involved, 

AND the accident is a front to side collision, 
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THEN the likelihood of the accident occurring in an interurban section is 85.1% 

IF the speed allowed is 50 km/h, 

AND the accident is a front to side collision, 

AND the road signs in the location of the accident are in poor conditions 

THEN the likelihood of the accident occurring in an urban intersection is 75.6% 

IF the speed allowed is 50 km/h, 

AND the accident occurs with at least one pedestrian involved, 

AND the accident occurs with a parking vehicle 

THEN the likelihood of the accident occurring in an urban section is 92.0% 

IF the speed allowed is 50 km/h, 

AND the accident occurs with at least one pedestrian involved  

THEN the likelihood of the accident occurring in an urban section is 83.7% 

 
Table 5 - Rules for accident location with CHAID algorithm 

IF the regulation of the intersection is a not working traffic light, 

AND the allowed speed is over 90 km/h 

THEN the likelihood of the accident occurring in an interurban intersection is 96.9% 

IF the regulation of the intersection is a blinking yellow traffic light, a “stop” or a “right of 

way” sign, 

AND the allowed speed is between 80 and 90 km/h 

THEN the likelihood of the accident occurring in an interurban intersection is 96.2% 

IF the regulation of the intersection is a not working traffic light, 

AND the allowed speed is 90 km/h, 

AND the median is constituted by a safety rail 

THEN the likelihood of the accident occurring in an interurban section is 95.6% 

IF the regulation of the intersection is a not working traffic light, 

AND the allowed speed is over 80 km/h, 

AND accident is either a collision with an object or the rolling of a car 

THEN the likelihood of the accident occurring in an interurban section is 85.7% 

IF the regulation of the intersection is a blinking yellow traffic light, a “stop” or a “right of 

way” sign, 

AND the allowed speed is 50 km/h, 

AND the accident occurs with at least one motorcycle involved 

THEN the likelihood of the accident occurring in an urban intersection is 99.3% 

IF the regulation of the intersection is a not working traffic light, 

AND the allowed speed is 50 km/h, 

AND the accident type is a front to side collision 

THEN the likelihood of the accident occurring in an urban intersection is 96.1% 

IF the regulation of the intersection is a not working traffic light, 

AND the allowed speed is 50 km/h, 

AND the accident occurs with at least a pedestrian involved,  

AND the two-way road does not present a white line in the location of the accident, 

AND the accident results in fatalities or severe injuries 

THEN the likelihood of the accident occurring in an urban section is 95.6% 

IF the regulation of the intersection is a not working traffic light, 

AND the allowed speed is 50 km/h, 

AND the accident is a front to side collision,  

AND the two-way road either presents or not a white line in the location of the accident, 

AND the accident occurs with at least one motorcycle involved 

THEN the likelihood of the accident occurring in an urban section is 88.6% 
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Considering the severity of the accident as dependent variable, the decision trees resulting 

from the implementation of the C5.0 and CHAID algorithms are extremely different. From the 

application of the C5.0 algorithm, the nodes at the top of the tree are the number of vehicles 

implicated, the presence of a bicycle or a commercial vehicle in the collision, the existence of 

previous speed violations for at least one of the drivers and the involvement of a pedestrian. 

From the application of the CHAID algorithm, the nodes at the top of the tree are the type of 

accident, the location of the crash and the presence of private vehicles.  

 

The predictive abilities of the two algorithms are comparable, with 87.2% and 86.6% correctly 

predicted for the C5.0 and CHAID respectively, but only the C5.0 algorithm is able to predict 

fatal accidents. Accordingly, the C5.0 algorithm performs significantly better than the CHAID 

algorithm. The rules for fatal and severe accidents are summarized in tables 6 and 7 for both 

algorithms, and show clearly the better performance of the C5.0 algorithm, as no rule for fatal 

accidents and only a single rule for crashes resulting in severe injuries is produced by the 

CHAID method with low confidence level. 

 
Table 6 - Rules for accident severity with C5.0 algorithm 

IF the accident occurs with only one vehicle involved, 

AND the allowed speed is 90 km/h, 

AND the accident occurs with at least one pedestrian involved 

THEN the likelihood of the accident being fatal is 77.5% 

IF the accident occurs with only one vehicle involved, 

AND the allowed speed is 100 km/h, 

AND the accident occurs with at least one pedestrian involved and crossing the road 

THEN the likelihood of the accident being fatal is 75.0% 

IF the accident occurs with only one vehicle involved, 

AND the allowed speed is 70 km/h, 

AND the width of the road where the accident occurs is more than 10.5 m., 

AND the accident occurs with at least one pedestrian involved and crossing the road, 

THEN the likelihood of the accident resulting in a severe injury is 70.8% 
 

Table 7 - Rules for accident severity with CHAID algorithm 

IF the accident happens in the spring, 

AND the allowed speed is over 60 km/h 

AND the accident occurs with at least one pedestrian involved and crossing the road 

THEN the likelihood of the accident resulting in a severe injury is 41.2% 

 

Fatal accidents mainly involve pedestrians that cross wide roads where the allowed speed is 

high, most likely highways or major arterials. This phenomenon is frequently seen in Israel, 

especially when driving on major arterials that cross villages or cities. These roads form a 

barrier dividing the community into separate parts, although such division is inconsistent with 

the land use pattern. Further, the involvement of bicycles and commercial vehicles increases 

the likelihood of accidents to result in fatalities, especially during night and in seasons like 

autumn and winter. Last, rules for fatal and severe accidents point out that single-vehicle 

crashes produce the most severe outcomes in terms of injuries. 
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Neural networks 

Neural networks generate connections between input variables and output predictors by 

processing the same database used for the construction of the decision trees. Neural 

networks might produce results similar to the decision trees in terms of predictive ability, but 

their cost in terms of computational time is higher, as the convergence of a network takes 

around two hours while the convergence of a decision tree takes less than two minutes. 

Further, the interpretation of a neural network is far more complicated than the interpretation 

of a decision tree, as figures 3 and 4 exemplify.  

 

Figure 3 illustrates the circular representation of a neural network, in which input and output 

variables are collocated in a circle and connections from the input to the output variables are 

represented with various degree of thickness directly proportional to their strength. Figure 4 

presents the reticular representation of a neural network, in which input variables are 

collocated in the design space according to their distance from the output variables and 

connections are thicker when relationships are stronger. This problem of the interpretation of 

the results in neural network implementation, as opposed to the relative easiness of 

interpretation of the rules generated with decision trees, gives the edge to the latter 

technique for prediction purposes. 

 

 
Figure 3 - Example of neural network with circular representation 
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Figure 4 - Example of neural network with reticular representation 

When analyzing the location of the accident, two input variables are by far more significant 

than others to explain where the accident occurred: the type of control of the intersections 

and the allowed speed. Table 8 details the most relevant input variables in predicting the 

location of the accidents. 

 
Table 8 - Relevant input variables for accident location with MLP network 

Variables Relative importance 

regulation of intersection 0.3889 

allowed speed 0.3458 

number of ways on the road 0.0404 

type of accident 0.0287 

other variables < 0.0200 

 

Results are similar to the ones obtained with the CHAID decision tree algorithm. The 

estimated precision in training is equal to 81.1%, and the prediction accuracy reaches 81.4% 

when the forecasted results are compared to the observed locations for crashes taking place 

in the year 2004. Interestingly, the confusion matrix in table 9 suggests that the high 

predictive ability does not reflect the goodness of the model, as any accident is predicted to 

be located in an intersection outside an urban area. The first column emphasizes that the 

model does not predict any accident to happen in an intersection outside an urban area, 

rather all the crashes are forecasted to take place in urban intersections. The remaining part 

of the matrix shows greater predictive accuracy. 
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Table 9 – Confusion matrix for accident location with MLP network 

 
Interurban 

intersection 

Interurban 

section 

Urban 

intersection 

Urban  

section 

Interurban 

intersection 
0 135 1909 66 

Interurban 

section 
0 2182 0 431 

Urban 

intersection 
0 6 6280 558 

Urban  

section 
0 194 1 5975 

 

When analyzing the severity of the accident, the MLP network estimates that the outcome of 

the accident is explained mainly by the type of accident and the involvement of bicycles, 

motorcycles, commercial vehicles. The network constructs two hidden layers and reaches a 

precision of 86.6% during the training and test phase, exactly identical to the prediction 

accuracy when comparing the predicted values with the actual outcomes of crashes occurred 

in the year 2004. Table 10 details the most relevant variables to classify whether accidents 

resulted in fatalities or severe or light injuries.  

 
Table 10 - Relevant input variables for accident severity with MLP network 

Variables Relative importance 

accident type 0.1478 

bicycles 0.1340 

motorcycles 0.1122 

private vehicles 0.0731 

heavy commercial vehicles 0.0589 

allowed speed 0.0537 

location of the accident 0.0474 

regulation of intersection 0.0436 

condition of infrastructure 0.0433 

speed offences 0.0407 

other variables < 0.0400 

 

The high predictive ability does not actually indicate that the model is good, since the model 

predicts almost all accidents as resulting in light injuries. This problem, encountered also with 

the CHAID algorithm but to a lesser extent, demonstrates that the evaluation of the goodness 

of the model is not only related to the overall prediction accuracy, but also to the actual 

interpretability of the model. Again, the significant higher computational cost does not 
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produce any advantage in terms of model goodness of fit, providing more insight into the 

evaluation of the decision trees as better methods than neural networks. Notably, the cause 

of inaccuracy is somewhat different with respect to the previous case. The prediction 

accuracy of accident severity is influenced by the presence of a dominant category, namely 

crashes that resulted in light injuries. The same does not apply to the accident location, 

where none of the categories is dominant, and the problem is related to the model rather 

than to the data. 

Association rules 

Association rules are applied to analyze characteristics of the accidents occurred in black 

spots, which are defined as specific locations in the road network where the frequency of 

fatalities results higher than the expected average. The list of the black spots defined for the 

national road network by the Israeli Road Directorate is matched to the accident data in order 

to create an additional binary variable, where 1 indicates that the accident occurred in a 

black spot and 0 otherwise. This variable is then assumed to be the categorical predictor for 

the analysis, but given the definition of the black spot data and the strict correlation with the 

severity of the accidents, not surprisingly the results are trivial as fatal accidents result to 

happen in black spots. 

 

Given the trivial results obtained, the database is divided into two parts: accidents occurred 

in black spots and accidents taken place in other network sections. The severity of the 

accidents is considered as categorical dependent variable and the aforementioned 

association rule algorithm with a confidence rule equal to 90% and a support equal to 5% is 

tested. The a-priori algorithm produces around 5000 rules for both parts of the database, but 

all these rules have lift very close to one and thus the selection of rules according to this 

criterion is not possible. This means that none of the rules is clearly noticeable among the 

thousands generated, and that any attempt to synthesize the results would be based purely 

on subjective rather than objective criteria. Considering that the literature exhibits the very 

same problem of rule selection (see Geurts et al., 2005), and that existing studies do not 

offer a remedy for rule selection, association rules are not further investigated. 

SUMMARY AND CONCLUSIONS 

This study focuses on the search for the most promising data mining techniques for accident 

analysis, and contemporarily provides some classification and predictive rules to understand 

accident occurrence. Accordingly, the presentation of the conclusions and the proposition of 

further research are developed from both perspectives of data mining techniques and safety 

recommendations. 

 

This study applies several data mining techniques and focuses on the understanding of both 

descriptive and predictive methods. The initial selection of eligible techniques for this study is 

based on literature survey findings, which proposes investigating implementation of some 

among the large number of alternative techniques available. Namely, the descriptive 
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techniques that are suitable for categorical data are K-means clustering and Kohonen 

networks, while the predictive methods that are suitable for the same type of data are CHAID 

and C5.0 algorithms for the construction of decision trees, the MLP neural networks, and the 

Association Rules algorithms. Results show that descriptive techniques are useful to classify 

the large amount of analyzed accidents, even though both K-means clustering and Kohonen 

networks present issues with the clear-cut definition of the clusters and with the triviality of 

the description of the main characteristics of the accidents, thus suggesting that predictive 

techniques might be more suitable. Results show that also predictive techniques pose 

challenges. Decision trees produce large numbers of rules, but are better than neural 

networks in terms of their definition of the most relevant variables for the outcome of an 

accident. Neural networks generate results whose interpretation is difficult to grasp. 

Association rules produce thousands of rules, whose relative importance is impossible to 

define. 

 

From the analysis of the clusters and the rules, it appears evident that there are safety issues 

with respect to accidents involving pedestrians, cyclists and motorcyclists. For pedestrians in 

particular, two problems emerge: the first concerns pedestrians crossing illegally major 

arterials that divide communities, perhaps due to the lack of safe passages. The second 

problem concerns drivers’ limited visibility in bad weather conditions.  

 

Accident severity seems to be influenced mainly by the typology of vehicles involved. 

Obviously, the involvement of vulnerable road users and heavy commercial vehicles causes 

the outcome results to be more severe than when only private vehicles are engaged. Also 

relevant for the severity of the accident are the road infrastructure conditions, the illumination 

on the infrastructure, and the regulation of the traffic. In particular, the number of front to side 

accidents can be reduced by authorities assuring regular and emergency traffic signals 

maintenance, as non-working traffic lights appear related to high likelihood of accident 

occurrence.   

 

Accident location appears to be affected by the existence of previous speed violations by at 

least one of the implicated drivers, the number of vehicles involved and the typology of the 

accident. Typically, accidents in interurban intersections take place mainly in conditions of 

limited visibility and when the median is not constructed, that leads to think about problems 

of speed violations. This concept is confirmed by the rules regarding crashes in interurban 

sections, for example with single-vehicle accidents where cars get off the road. In urban 

areas, vulnerable road users are often involved and supposedly sometimes their behaviour 

causes crashes with severe consequences.  

 

From the data mining perspective, further research should investigate whether limiting the 

analysis to fatal accidents would simplify the task of data mining techniques in recognizing 

accident patterns without the “noise” probably created by considering also severe and light 

injury accidents and without the rather trivial accident patterns likely related to this “noise”. 

From the safety recommendation perspective, applying the same techniques while 

considering different partition of the same dataset (e.g., by accident location, by accident 
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type) would allow removing the trivial results and obtaining stable accident patterns that 

provide a trustworthy representation of the safety situation in the country. 
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