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Abstract: This paper presents a new mathematical formulation for the berth scheduling 
problem. The objective is to simultaneously minimize the total cost of vessels’ late departures 
and waiting time, and maximize the benefits from vessels’ early departures. It is assumed 
that different vessels, belonging to the same or different liner shipping companies, have 
different contractual agreements, and thus different cost functions. We discuss the 
applicability and advantages of nonlinear cost functions, vis à vis the linear ones commonly 
used in the literature. A genetic algorithm based heuristic is proposed to solve the resulting 
problem and a number of computational examples are presented to critically assess the 
proposed berth scheduling policy and evaluate the effect of the assumed cost function on the 
spread and distribution of the total cost among all vessels. 

Keywords: Marine Container Terminals, Berth Scheduling, Cost Function, Metaheuristic 

Optimization 

INTRODUCTION 

The berth scheduling problem (BSP) deals with the assignment of vessels to berth space in 
container terminals (Theofanis et al., 2009; Meisel, 2009; Bierwirth and Meisel, 2009). 
Among the various models found in the literature, three assumptions are usually observed: a) 
discrete vs. continuous berthing space; b) static vs. dynamic vessel arrival, and c) static vs. 
dynamic vessel handling time. In the discrete problem, the quay is viewed as a finite set of 
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berths (see for example Hansen et al., 2007; Imai et al., 1997; Imai et al., 2001; Imai et al., 
2003; Monaco et al., 2007). In the continuous case, vessels can berth anywhere along the 
quay (see for example Park and Kim, 2003; Kim and Moon, 2003; Guan and Cheung, 2004; 
Imai et al., 2005; Moorthy and Teo, 2006; Meisel and Bierwirth, 2009). The majority of the 
published research considers the discrete case (Theofanis et al., 2009; Meisel, 2009; 
Bierwirth and Meisel, 2009). In the static arrival problem, all vessels to be served are already 
in the port at the time scheduling begins. In the dynamic arrival problem, not all vessels to be 
scheduled for berthing have arrived, although arrival times are known in advance. The 
majority of the published work on berth scheduling considers the latter case. Finally, in the 
static handling time problem, vessel handling time is considered as a known input, whereas 
in the dynamic formulation, vessel handling time is a variable, usually assumed a function of 
the quay cranes that will operate on the vessel and the distance between the berthing 
position and a location in the yard. (Bierwirth and Meisel, 2009). Technical restrictions, such 
as berthing draft, inter-vessel and end-berth clearance distance are further assumptions that 
have been adopted in some studies, in an attempt to bring problem formulation closer to real 
world conditions. The introduction of technical restrictions to existing berth scheduling models 
is rather straightforward and is therefore not attempted here.  

The paper presents a new formulation for the discrete space - dynamic arrival time berth 
scheduling problem (DDBSP). The objective is to simultaneously minimize the total cost from 
vessels’ late departures and waiting time, and maximize the benefits from vessels’ early 
departures. Vessel departure times are often determined through contractual agreements 
between the terminal operator and the carrier, in relation to the ship’s arrival at the port and 
the total number of containers to be (un)loaded. To date, models found in the literature have 
assumed that penalties (or premiums in case of early departures) for late departure continue 
to increase indefinitely with time (usually on an hourly basis). This is not always the case and 
in practice two additional cases can be observed: a) if a vessel is tardy, the terminal operator 
pays a fixed penalty irrespective of the length of the delay, and b) the terminal operator pays 
a fixed penalty up to a point in time and he switches to an hourly rate after this. These three 
cases may be observed simultaneously, as different vessels may have different contractual 
agreements. All three cases are therefore included in this paper, assuming that different 
vessels, belonging to the same or different carriers, have different contractual agreements, 
and thus different cost functions1. Each vessel is included in the objective function under one 
of the three policies (i.e. a vessel cannot be subject to two different policies). The effect of the 
three policies is evaluated and preliminary results are presented. At the same time, we also 
evaluate the effect of nonlinear cost functions -as opposed to linear ones used to date- on 
the distribution of costs among vessels. A genetic algorithm (GA) based heuristic is 
employed to solve the resulting problem. An indicative number of computational examples 
are presented to discuss the different policies and their effect on the cost function.  

As noted in Haralambides (2002), differences exist in berth scheduling policies between 
multi-user and dedicated terminals (see also Aversa et al., 2005). The berthing policies 
proposed here are better suited for public, multi-user, terminals but they could equally apply 
to dedicated terminals as part of a multi-objective or hierarchical formulation (Golias et al. 
2009c; Golias et al., 2009d). 

                                                            

1
 The term cost function in this paper refers only to the tardy penalties and early premiums of departures and 

should not be confused with a vessel’s total cost function or that of the terminal operator (Haralambides, 2004). 
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The rest of this paper is structured as follows. The next section presents a brief description of 
models and objectives published to date on the DDBSP, followed by a section with the 
problem description and its mathematical formulation. The fourth section presents the 
proposed resolution algorithm used to solve the formulated problem. The fifth section 
presents results from a number of computational examples and the last section concludes 
the paper and suggests future research directions. 

LITERATURE REVIEW 

Imai et al. (1997) were the first to formulate the discrete space - static arrival time berth 
scheduling problem as an unrelated machine scheduling problem. They assert that, in ports 
with high throughput rates, optimal vessel-to-berth and vessel-to-time-slot assignments 
should be found that go beyond the first come first served (FCFS) rule. They thus develop a 
heuristic solution approach to solve the resulting problem. Imai et al. (2001) subsequently 
extended their 1997 work to address the DDBSP. A Lagrangian relaxation heuristic was 
proposed and computational experiments showed that the heuristic performs well in practice. 
Nishimura et al. (2001) address the same problem using Genetic Algorithms as a resolution 
approach. It should be noted that the resolution approach used by Nishimura (i.e. GA based 
heuristics) has been applied extensively by different research groups in the following years 
(Boile et al., 2009). Imai et al. (2003) modified and extended the formulation of Imai et al. 
(2001) by including service priority constraints. The problem was reformulated into a 
quadratic assignment problem, using a Lagrangian relaxation method, and a GA heuristic 
was proposed as the solution approach. Cordeau et al. (2005) consider the DDBSP, 
presenting two formulations (one based on the Multi Depot Vehicle Routing Problem with 
Time Windows and one based on the model by Imai et al. (2001)). A Tabu Search heuristic 
was proposed as the solution approach. Briano et al. (2005) outline the integration of a 
flexible simulator, representing the sea-side operations of a container terminal, with a linear 
programming model for improving berth assignment and yard stacking policies. Lokuge and 
Alahakoon (2007) present a unique approach, departing from all previous work. They use 
Artificial Intelligence (AI), and more specifically the Beliefs, Desires and Intention (BDI) agent 
architecture for a vessel berthing application system. Results showed a reduced average 
waiting time of vessels, while several other measures of port productivity were also 
presented. Similarly to earlier research, optimality of the final schedule was not guaranteed. 
Moorthy and Teo (2006) present a novel approach for the DDBSP, which for the first time 
incorporated the stochastic nature of vessel arrivals, with very promising albeit not optimal 
results. Han et al. (2006) present a non-linear modeling formulation and propose solution 
approaches based on GAs and a combination of GAs and simulated annealing. Neither 
approach guaranteed optimality. Monaco and Samara (2007) formulate the DDBSP as a 
dynamic scheduling problem of unrelated machines. They develop a new non-standard 
multiplier adjustment Lagrangian heuristic algorithm. Imai et al. (2007b) propose a bi-
objective formulation to minimize ship delays and total service time. They propose a GA 
based algorithm, as well as a subgradient optimization procedure. The authors use a linear 
cost function. Lee and Chen (2009) propose a formulation for a case where berths are 
assigned to blocks of storage; a case between the discrete and continuous berthing space 
BSP, based on the FCFS principle. A neighborhood search based approach was proposed. 
The novelty of this research was that it could handle large scale problems within a small CPU 
time, although optimality, or a comparison of the final schedule with lower bounds, was not 
provided. 
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Imai et al. (2007a) address the berth allocation problem at a multi-user container terminal 
with indented berths for fast handling. A GA heuristic was again applied as the resolution 
approach. Imai et al. (2008) address a variation of the DDBSP at multi-user terminals, where 
vessels exceeding an expected waiting time limit are assigned to an adjacent terminal. A GA 
based heuristic was proposed for the resolution of the problem. Hansen et al. (2008) studied 
the DDBSP, considering the minimization of total costs of waiting and handling, as well as 
earliness or tardiness of completion, for all vessels. A Variable Neighborhood Search 
heuristic was proposed and compared with Multi-Start; a GA; and a Memetic Search 
Algorithm. Similarly to Imai et al. (2007b), the premium and cost function was linear. Golias et 
al. (2009d) formulated the berth scheduling problem as a bi-level unrelated machine 
scheduling problem with variable vessel release dates to accommodate an environmentally 
friendly BSP, while preserving the integrity of the ocean carriers’ schedule. An evolutionary 
algorithm based heuristic was proposed as a resolution approach. Golias et al. (2009b) 
studied the DDBSP with the objective of simultaneously minimizing delayed departures and 
maximizing early and on-time departures/berthing of vessels within a time window. An 
adaptive time window partitioning heuristic was proposed as the resolution approach that did 
not guarantee optimality of the final schedule. Cheong and Tan (2008) formulate a similar 
BSP as Imai et al. (2007b) but as a non-linear bi-objective problem with linear delay cost 
functions. Cheong et al. (2009) formulate the DDBSP as a non-linear three-objective problem 
minimizing total makespan, total waiting time, and deviations from a predetermined priority. 
Golias et al. (2009c) formulate the DDBSP for the first time as a multi-objective problem with 
n+1 objective functions (where n is less than or equal to the number of vessels) to provide 
customer-based differentiated services based on vessel service time. Finally, Golias et al. 
(2009a) propose a lamda-optimization based heuristic for the resolution of the DDBSP with 
promising results that guarantee local optimality in a pre-specified neighborhood. 

MODEL FORMULATION 

From the above literature review it can be concluded that most of the studies dealing with the 
DDBSP have focused on total service and waiting time (total completion time), as well as on 
the costs/premiums from delayed/early departures. The latter objectives were introduced to 
take into account contractual agreements on the scheduled start or finish time of a ship’s 
cargo handling operations. Such arrangements can vary from berthing upon arrival, to 
guaranteed service time window, and/or guaranteed service productivity. Earliness or delays 
in cargo handling operations imply benefits or costs to both the terminal operator and the 
ocean carrier (Haralambides, 2002b). If cargo handling is completed after the agreed time 
(departure deadline), the operator may pay a penalty to the carrier, while, in the opposite 
(early departure), the carrier may pay a premium fee to the terminal operator. Early departure 
can help a carrier manage time to next port of call, simply by offering a buffer to compensate 
for time lost in other ports (Notteboom, 2006). Premiums paid by the carrier to the terminal 
operator, on the other hand, can be offset by reducing voyage costs through lower voyage 
speed and therefore fuel consumption. Slow-steaming is currently becoming an increasingly 
attractive policy among carriers, in their efforts to absorb superfluous excess capacity and 
thus maintain rates at an acceptable level. Industry observers also note that slow-steaming 
may even be statutorily determined in the future for environmental reasons.  

As already mentioned above, research so far has assumed hourly based early departure 
premiums or tardy departure penalties. We assume here that different vessels, belonging to 
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the same or different liner shipping companies, have different contractual agreements and 
thus different cost functions. It is also assumed that only one of the following three 
agreements can apply to a ship (figure 1), where the terminal operator: 

 pays (receives) a fixed penalty (premium) irrespective of the length of the delay 
(earliness) [cost policy 1]. 

 pays (receives) a linear hourly penalty (premium) according to the length of the delay 
(earliness) [cost policy 2]. 

 pays (receives) a constant penalty (premium) up to a point in time beyond which he 
pays (receives) an hourly penalty (premium) [cost policy 3]. 

 

 

Figure 1 - Illustration of different cost/premium agreements 

 

 

In order to formulate the berth scheduling model (BSM) we need to define the following: 
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Sets  

I  :  set of berths 

J  :  set of vessels 

JJ 1 :  set of vessels under fixed premium/cost agreement for 
early/late departure 

JJ 2 :  set of vessels under hourly premium/cost agreement for 
early/late departure 

JJ 3 :  set of vessels under both fixed and hourly premium/cost 
agreement for early/late departure 

Decision Variables  

JjIixij  ,},1,0{  =1 if vessel j is served at berth i and 0 otherwise 

baJbayab  ,,},1,0{
 
 =1 if vessel b is served at the same berth as vessel α  

as its immediate successor and 0 otherwise 

Jjf j  },1,0{   =1 if vessel j is served as the first vessel  

Jjl j  },1,0{   =1 if vessel j is served as the last vessel  

Auxiliary Variables  

:, 21 JJjRHED j  

 
 total hours the vessel j departs before the requested deadline  

:, 21 JJjRHLDj  

 
 total hours the vessel j departs after the requested deadline 

Jjed j  }1,0{
 
 =1 if vessel j departs before the requested deadline and 0 

otherwise  

Jjld j  }1,0{
 
 =1 if vessel j departs after the requested deadline and 0 

otherwise  

:, Jjt j 
 
 start time of service for vessel j 

:JjRalpha j  
 positive number 

Parameters  

:JjRED j  

 
  early requested departure deadline time of vessel j  

(applicable only in the third cost policy) 



Container berth scheduling policy with variable cost function 

GOLIAS M. Mihalis; HARALAMBIDES E. Hercules 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 

7 

:JjRLD j  

 
 late requested departure deadline time of vessel j  

(applicable only in the third cost policy) 

JjRRDTj  
:  requested departure deadline time of vessel j  

JjRhp j  
:  hourly premium if vessel j departs before the requested 

deadline  

),0( 1Jjhp j   

JjRhc j  
:  hourly penalty if vessel j departs after the requested deadline 

),0( 1Jjhc j   

JjRfp j  
:  fixed premium if vessel j departs before the requested deadline 

),0( 2Jjfp j   

JjRfc j  
:
  

fixed penalty if vessel j departs after the requested deadline 

),0( 2Jjfc j 
 

JjRwtc j  
: 

 
hourly waiting time cost for vessel j  

 

IiRSi  :  time berth i becomes available for the first time in the planning 
horizon 

JjRAj  :  arrival time of vessel j 

α:  degree of non-linear cost function 

The berth scheduling model (BSM) proposed in this paper can thus be formulated as follows: 

           

    
































3

231

][][

)(

min
,

Jj

a

jjjj

a

jjjj

Jj

a

jj

a

jj

JJj

a

jj

a

jj

Jj

a

jjj

RDTEDHEDhpLDRDTHLDhc

HEDhpHLDhcedfpldfcAtwtc

  (1) 

Subject To: 

Decision variable constraints 

Jjx
i

ij  ,1           (2) 

Jbyf
ba

abb 


,1          (3) 
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Jayl
ab

aba 


,1           (4) 

baJbaIixxff ibiaba  ,,,,3        (5) 

baJbaIixxll ibiaba  ,,,,3        (6) 

baJbaIiyxxy abibiaab  ,,,,11 22       (7) 

Jjlded jj  ,1           (8) 

Vessel start time estimation 

JjAt jj  ,           (9) 

JjIixSt ijij  ,,          (10) 

baJbayMxctt ba

i

iaiaab   ,,),1(       (11) 

Early departure estimation 

JjedMxctED j

i

ijijjj   ),1(        (12) 

JjxctedED
i

ijijjjj   ,)1(         (13) 

JjalphaxctedEDHED j

i

ijijjjjj   ,

      

(14) 

jedMalpha jj  ),1(

         

(15) 

jxctalpha
i

ijijjj   ,          (16) 

Late departure estimation 

JjldMxctRTD j

i

ijijjj   ),1(        (17) 

JjxctMldldRTD
i

ijijjjjj   ,)1(        (18) 

JjRTDxctHLD
i

jijijjj   ,         (19) 
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Figure 2 - Estimation of hours of early/late departure before/after earliest/latest request 

The objective function (1) minimizes the total cost of vessels’ waiting time and late 
departures, and maximizes the total premiums from early departures. The first component of 
the objective function minimizes the total cost of vessels’ waiting time. The second 
component minimizes the total tardy cost and maximizes the early departure premium for 
vessels under the fixed cost/premium policy. The third and fourth components of the 
objective function do the same for vessels under the hourly- and fixed and hourly 
cost/premium policies respectively. 

It has often been argued (Gupta and Sen, 1983; Su and Chang, 1998; Schaller, 2002) that 
linear cost functions encourage schedules in which only a few ships contribute to the majority 
of the cost, with no regard to how the overall cost is distributed. To take this characteristic 
into account, a non-linear objective function (eq. 1) is, adopted here, with each component 
raised to the power of α2. The assumption that a non-linear function would distribute the cost 
more evenly is evaluated in the next section through a number of numerical examples for 
different degrees of the non-linear function (including the linear case).  

Constraint set (2) ensures that each vessel is served once, while constraint set (3) ensures 
that each vessel is either served first or is preceded by another vessel. In a similar manner, 
constraint set (4) ensures that each vessel is either served last or before another vessel. 
Constraint sets (5) and (6) ensure that only one vessel can be served first and last at each 
berth. Constraint set (7) ensures that a vessel can be served after another vessel, only if both 
are served at the same berth. Constraint set (8) ensures that a vessel will either depart early 
or late. Constraint sets (9) and (10) ensure that vessel service start time is greater than 
vessel arrival, or the time that the berth where the vessel will be served becomes available 
for the first time in the planning horizon. Constraint set (11) estimates the service start time of 
each vessel. Constraint sets (12) through (16) estimate the total hours of early departure. If a 

vessel j does not depart early from berth i (i.e. 
i

ijijjj xctED ) then edj will take the value 

of zero so that equation (12) is feasible (i.e. MED j  ). In that case, equations (15) and 

(16) set alphaj to its upper bound (i.e. 
i

ijijjj xctalpha ), equation (13) is feasible as an 

                                                            

2
 In the objective function, the constant penalties/premiums (i.e. second term) are raised to the same power as the 

rest of the components to avoid a diminishing influence (of this term) to the objective function (and thus vessel-to-
berth assignment) as the degree (α) increases. 
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inequality (i.e. 
i

ijijjj xctED ), and equation (14) sets jHED to its lower bound (i.e. 

zero). If the vessel does depart early (i.e. 
i

ijijjj xctED ), then edj will take the value of 

one so that equation (13) is feasible (i.e. 
i

ijijj xct0 ). In that case, equation (12) is 

feasible as well (i.e. 
i

ijijjj xctED ). The case where vessel j, served at berth I, departs 

early is similar and thus omitted. Constraint sets (17) through (19) estimate the total hours of 

late departure. If vessel j does not depart late from berth i (i.e. 
i

ijijjj xctRTD ) due to 

constraint set (8) ldj is equal to zero. In this case constraint set (17) is feasible (i.e. 

MRTD j   and constraint set (19) sets jHLD equal to the lower bound (i.e. zero). The case 

where vessel j, served at berth I, departs late is similar and thus omitted.  

RESOLUTION ALGORITHM 

The BSM is a non-linear mixed integer problem (MIP) for α>1 and a linear MIP for α=1. In 
both cases, no exact resolution algorithm exists to date that can solve such problems in 
polynomial time (especially in real life instances which on average have a minimum of 10 to 
15 vessels and 3 to 5 berths). To tackle this, the GA based heuristic, proposed by Golias 
(2007), is employed here as the resolution approach. The proposed heuristic consists of four 
parts: a) the chromosomal representation; b) the chromosomal mutation; c) the fitness 
evaluation; and d) the selection process. The GA uses an integer chromosomal 
representation, in order to exploit in full the characteristics of the problem. An illustration of 
the chromosome structure is given in figure 3 for a small instance of the problem with 6 
vessels and 2 berths. As seen in figure 3, the chromosome has twelve cells. The first 6 cells 
represent the 6 possible service orders at berth1 and the last 6 cells the 6 possible service 
orders at berth 2. In the assignment illustrated in figure 2, vessels 2, 4, and 5 are served at 
berth 1 as the first, second and third vessel respectively, while vessels 1, 3, and 6 are served 
at berth 2 as the first, second, and third vessel respectively. 

 

 

Figure 3 - Illustration of chromosome representation 

Four different types of mutation are applied, as part of the genetic operations, to all the 
chromosomes at each generation: insert, swap, inversion, and scramble mutations. Each of 
the four types of mutation, illustrated in figure 3, for the small example shown in figure 4, has 
its own characteristics in terms of preserving the order and adjacency information (Eiben and 
Smith, 2003). 
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Figure 4 - Schematic illustrations of the mutation operations 

Since the case at hand is a minimization problem, the smaller the values of each objective 
function, the higher the fitness value. As discussed in Goldberg (1989), in minimization 
problems it is desirable to define the fitness function of a chromosome as: 

)()( max xzFxf pt

pt

pt   , where 
ptFmax  is the maximum value of the objective function zit, and fit 

is the value of the fitness function of objective function i at iteration t. However, this value is 
not known in advance; thus the largest value zpt for each objective function at each iteration 

is chosen as the value of 
ptFmax . To find quality solutions for each objective function and, at 

the same time, retain a variety of different solutions, the Roulette Wheel Selection algorithm 
(Goldberg, 1989) was applied to select the children population of each generation. 

COMPUTATIONAL EXAMPLES 

Five problem instances are developed, where vessels with various handling volumes are 
served at a multi-user container terminal with five berths, a planning horizon of one week, 
and vessel inter-arrival time of 3 hours. The range of the remaining parameters considered 
here is chosen according to Golias et al. (2009c) and Hansen et al., (2008) and they are 
reported for purposes of consistency. Availability of berths for the first time in the beginning of 
the planning horizon (i.e. parameter Si) is calculated using a uniform probability distribution 
with a minimum of zero and a maximum of 10 hours (Hansen et al., 2008). Delayed and early 
departure; hourly and constant penalties; and hourly waiting costs are calculated randomly, 
not based on actual cargo carried, as vessels carrying less than capacity cargo might belong 
to a carrier with higher priorities. Latest and earliest departure requests are generated 
randomly based on the formula by Hansen et al. (2008). Vessel handling volumes are 
generated randomly based on a uniform distribution pattern (Golias et al., 2009c) between 5 
and 30 hours at the preferred berth (i.e. berth with the minimum handling time over all 
berths). The minimum vessel handling time at berth (excluding the preferred berth) is 
generated in relation to the berth with the minimum handling time, by increasing handling 
time proportionally to the distance from the preferred berth (Imai et al., 2001). The increase is 
based on a uniform probability distribution. Preferred berths for the vessels are chosen 
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randomly. Experiments were performed on a Dual Core ASUS CM5570 computer with 6GB 
memory, using Matlab R2008b3. The initial population for the GA based heuristic was 
obtained by using a first come first served (FCFS) rule, at the first available berth (similar to 
Hansen et al., 2008). The population size was set to 50 chromosomes and the heuristic stops 
if no improvement is observed for 100 iterations (i.e. new or improved schedules found). 

Berth Scheduling Policy Evaluation 

Using the dataset described in the previous subsection, we performed two types of 
experiments. The first focuses on the effect of the degree of the non-linear cost function, and 
the second on the effect of the cost policy on the distribution of total cost among vessels. To 
perform these experiments, for each of the five datasets presented above, 16 different berth 
schedules were considered. Each berth schedule was obtained by using a different 
combination of cost policy and degree of cost function, keeping the remaining data of each 
dataset unchanged (i.e. handling time; arrival time; hourly and constant penalties; etc.). Four 
different degrees were used for the cost function, with values of α=1, 2, 3, and 4. For the type 
of cost policy, we assume the following four different cases:  

a) Case 1: all vessels fall under cost policy 1; 

b) Case 2: all vessels fall under cost policy 2; 

c) Case 3: all vessels fall under cost policy 3; 

d) Case 4: each vessel falls randomly under one of the three cost policies, based on a 
uniform probability distribution. 

It should be noted that although schedules were obtained using the non-linear cost function 

(i.e. α=1, 2, 3, and 4), the cost values used in the evaluation were based on the linear cost 

function of each schedule (i.e. α=1). To obtain a measure of uniformity of the cost distribution 

among all vessels, a uniform distribution was fitted, using as observations the cost of each 

vessel from each schedule. Figure 4 shows the range of the estimated parameters of the 

fitted uniform distribution (i.e. minimum and maximum value) for the 16 different schedules 

for each dataset. Figure 5 shows the variance of the fitted uniform distributions for the 16 

different schedules of each dataset. The x-axis represents the degree of the objective 

function, with total cost measured on the y-axis. Each graph plots four lines, one for each 

case previously presented. 

                                                            

3
 www.mathworks.com 
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Figure 4 - Differences in upper and lower bound of uniform distribution 

We observe that, in general, as the degree of the non-linear function increases (i.e. moving 

right on the x-axis) the spread and variance of total cost among vessels decreases in all 

cases. This becomes more noticeable, as the total cost difference between the smallest and 

largest value of the fitted distribution increases (e.g. figures 4 and 5, datasets 1 and 2, cost 

policies 2 and 3), supporting our initial assumption that non-linear cost functions spread the 

cost among all vessels more evenly. On the other hand, one notes that objective function 

values (shown in figure 6 for the 16 schedules per dataset), increase, in general, with the 

degree of the cost function. In figure 6, the y-axis shows the value of each objective function 

as a percentage of its maximum value among the four different degrees, for the same case. 

For example, for dataset 1, the objective function values for schedules with cost functions of 

degrees α=1, α=2, and α=3 (for the second case) were 21%, 7%, and 2% lower than the 

objective function value of the berth schedule with α=1 (for the same case). 
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Figure 5 - Changes in the variance 

CONCLUSIONS 

We have presented a mathematical formulation for the berth scheduling problem where the 

total cost from vessels’ late departure and waiting time is minimized, and total benefits from 

early departures maximized. Different cost functions for each vessel were used, to represent 

different contractual agreements. To the best of our knowledge this formulation and cost 

policies are attempted for the first time in the published literature. We have also discussed 

the applicability and effectiveness of nonlinear cost functions, and evaluated the assumption 

that a non-linear function would distribute costs more evenly among vessels. A GA based 

heuristic was used to solve the resulting problem, and a number of computational examples 

showed that higher order degrees of the cost function provide smaller deviations of the 

spread and variance of total cost among vessels but result in a higher cumulative cost. 
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Future research could focus on: a) performing a larger number of computational examples 

with increased size (i.e. up to ten berths and seven hours of vessel inter-arrival times), b) 

investigate a formulation that explicitly models the variability and dispersion of costs among 

vessels and the total cost (i.e. a bi-objective or a bi-level formulation) , and c) introduce a 

time window departure request whereby if the vessel departs within a time window, after its 

arrival, no penalties or premiums are applicable. 

 

 

Figure 6 - Changes in the objective function value  
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