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1 Introduction 

According the Council Regulation (EC) No 1083/2006 regions eligible for funding from the 

EU Structural Funds under the Convergence objective between 2007 and 2013 enclose all 

regions, whose gross regional product (GRP) per capita was less than 75% of the average 

GRP per capita of the EU-25 between 2000 to 2002. 

Choosing GRP per capita (based on purchasing power parities) as a yardstick has several 

implications for the allocation of funds. On the one hand, regions that benefit the most are, 

per definition, among the poorest regions in Europe. Thus the orientation towards GRP is 

arguably in line with EU’s social objective of regional cohesion. On the other hand, the 

indicator is limited, if the focus is on the regions’ comparative structural disadvantage. As a 

consequence Athanassopoulos (1996) proposes to allocate public funds according the regions’ 

efficiency rather than per-capita-income.  

The presented paper follows this idea and intends to identify a more appropriate funding 

scheme by taking into account both, the level of per capita income and the degree of 

efficiency. In so doing, the paper is structured as follows.  

The first step foresees to identify total (output-) efficiency of EU regions at NUTS 2 level in 

section 2. For this purpose, we apply an outlier robust enhancement of the data envelopment 

analysis (DEA), the so-called order-α-frontier analysis (Daouia and Simar 2005, Daraio and 

Simar 2006). The analysis yields a picture similar to the regional distribution of per-capita-

income characterized by a clear East-West divide.  

The existence of a spatial factor conflicts with a basic assumption of DEA, which indeed 

presumes a strong degree of independency of the operating units. Therefore, section 3 

introduces a geoadditive regression analysis based on markov fields, which allows for 

decomposing the total efficiency into a smoothed spatial and a non-spatial effect. The non-

spatial effect gives an idea on a region’s efficiency compared to the neighboring and nearby 

regions and can be interpreted as structural efficiency (Schaffer et al. 2009). 

In order to identify a more effective funding scheme, the concluding section aims to account 



for both, the regions’ efficiency and per-capita income. Relatively poor and inefficient regions 

are considered structurally disadvantaged and therefore particularly eligible for direct 

investments (e.g. to promote small and medium sized enterprises). In contrast, public 

infrastructure might indeed alleviate bottlenecks in the case of relatively poor and efficient 

regions. Thus, investments in modern transport and communication networks are particularly 

promising in this case.  

 

2 Identification of regional efficiency 

Regional efficiency analysis traces back to several studies on the economic performance of 

Asian regions. Macmillan (1986) and Hashimoto and Ishikawa (1993) applied DEA to rate 

the efficiency of Chinese and Japanese cities respectively. Charnes et al. (1989) used the same 

methodology to identify urban industrial performance and assess regional planning tools in 

China, and Seifert and Zhu (1998) applied DEA to monitor the productivity growth of 

China’s industries over several decades. 

More recently regional DEA has been applied to analyze regional efficiency against the 

background of EU regional policy (Karkazis and Thanassoulis 1998, Castells and Solé-Ollé 

2005). This is particularly interesting, as the efficiency argument opens the door for two 

mutually exclusive investment decisions. A government’s objective function could, on the 

one hand, include the goal to maximize the productivity of funds. Consequentially, 

investments into rather efficient mostly structurally advanced regions would promise the 

highest returns (Berhman and Craig 1987). On the other hand, policy makers might aim to 

minimize the regional disparities. In this case funds should particularly be warranted to less 

efficient structurally disadvantaged regions (Athanassopoulos 1996). 

Considering EU policy, the disparity argument clearly outweighs the productivity one. 

Council Regulation (EC) No 1083/2006, for example, rules that the identification of eligible 

regions is determined by the regional disparity. However, according to the regulation, 

regional disparity is rather reflected by the per-capita-income level and not by the regions’ 

efficiency. In fact, regions eligible for structural funds under the convergence objective must 

show per-capita-income of less than 75% compared to the EU average.  

The strong focus on the per-capita-income has profound implications for the assessment of 

regional disparities and the provision of funds. In particular, the approach might turn out to be 

a comparatively expansive way to reach the political objective of regional cohesion compared 

to an allocation of funds based on the regions’ income level and degree of efficiency. 

The presented paper proposes such a mixed strategy and therefore identifies, in a first step, 



the efficiency of EU regions. 

 

2.1 Methodological remarks 

The estimation of the regional efficiency follows the basic principles of DEA.1 These 

comprise the selection of decision making units (DMUs), the definition of inputs and outputs 

and the formulation of the mathematical model. 

 

Definition of DMUs 

DMUs are characterized by a uniform production function to transfer a set of inputs into one 

or multiple outputs. Technological efficiency, for example, is often analyzed at the level of 

firms that produce the same goods or services. If the focus is on regional efficiency, DMUs 

are generally defined as spatial entities.  

Following the territorial system of the European Union – the so-called Nomenclature 

Territorial Statistical Units (NUTS) – efficiency is analyzed at the NUTS 2 level, which can 

be considered the basic administrative unit chosen by the EU for a broad set of regional 

policies.  

 

Definition of inputs and outputs 

The regions’ economic performance is strongly determined by the availability of immobile 

and polyvalent production factors (Biehl 1995). According to this idea, a certain level of 

human and infrastructure capital can be considered a necessary precondition for a favorable 

regional development (Barro and Sala-i-Martin 1991, Nijkamp 2000, Banister and Berechman 

2001). Therefore, the chosen inputs aim to reflect these factors. 

Human capital is defined as the percentage of a region’s labor force that belongs to the human 

resources in science and technology (HRST). Following the Canberra Manual, HRST 

comprise all members of the labor force, who either dispose of tertiary education in the field 

of science and technology, or are employed in a corresponding occupation where the above 

qualifications are normally required (OECD 1993). In this context, the requirements are in 

line with internationally harmonized standards: the International Standard Classification of 

Education (ISCED) and the International Standard Classification of Occupation (ISCO). 

With regard to the transport infrastructure, the regions’ centrality or potential accessibility is 

taken into account. Presuming that a regions’ attraction increases with size and declines with 

distance the applied indicator A accounts for the minimum travel time between the considered 
                                                
1 In the following we assume a basic familiarity with DEA. Among others, Charnes et al. (1994) or Cooper et 

al. (2006) provide a good introduction into  DEA. 



region i and any other European NUTS 2 region j by using road, rail or air.  

(1) 

! 

Ai = pop j "e
#"min(trail (i, j ),troad (i, j ),t air (i, j))

 
j=1

m

$ , 

where m denotes the number of the European NUTS 2 regions, pop the regions’ population 

and trail, troad and tair the travel time between region i and j by rail, road and air respectively 

(Schoch 2004). Parameter ω is a weighting factor that fulfils the following condition: 

(2) e ωT = 0.5  for T=180 minutes. 

Thus, the population, which can be reached within 180 minutes, is weighted by 0.5.2 Smaller 

weights are attributed to the population further away and higher weights account for the GRP 

that can be reached faster. 

On the output side, the GRP per capita in purchasing power parity is considered. This allows 

for a comparison of the regions’ per-capita income with the efficiency in generating this 

income.  

 

Mathematical formulation 

Traditional DEA can be considered one of the most popular tools to measure efficient 

production boundaries of firms or regions. However, the models are often found to be rather 

sensitive to outliers. The presented order-α-frontier analysis, which is described in full detail 

by Daouia and Simar (2003), aims to overcome this shortcoming by defining a frontier 

function that leaves out extreme observations. Presuming that regions improve their efficiency 

more likely by growing outputs rather than decreasing inputs, the output-oriented version of 

the model is applied for this study.  

We start with a brief specification of the traditional DEA model (Equations (3) to (5)), which 

defines the baseline for the extension according equations (6) and (7).  

Any region disposes of a set of inputs 

! 

x " R +

p  to generate a set of outputs 

! 

y " R +

q . Feasible 

combinations of 

! 

(x,y)  are defined as: 

(3) 

! 

" = (x,y)# R+
p+q

 x can produce y{ } . 

The frontiers of 

! 

"  reflect maximum outputs that can be produced with given inputs. Thus, 

the regions’ efficient frontier can be defined in the following way:  

                                                
2 The half-value period has been set to 180 minutes fort wo reasons. First, three hours are often cited as 

acceptable travel time for daily business trips and used for calibration of passenger transport models (e.g. 
Schoch 2004). Second, the analyses with parameters that correspond to a half-value period of 120 and 90 
minutes respectively hardly affected the efficiency results.  



(4) 

! 

Y
"
(x) = (x,y

"
(x)) y

"
(x)# Y (x) : $y" (x)% Y (x), &$ >1{ } 

where 

! 

Y (x)  describes the set of technologically feasible outputs, and 

! 

y
"
(x)  denotes the 

maximum achievable output of a unit that produces at input level 

! 

x . This, in turn, allows the 

definition of a unit’s efficiency score as: 

(5) 

! 

"(x,y) = sup " (x,"y)# ${ } = sup " "y # Y (x){ }  

where 

! 

"(x,y) #1 is the proportionate increase of output 

! 

y  a region operating at input level 

! 

x  

has to attain to be efficient. 

The frontiers of Ψ, which are unknown in practice, can be determined by nonparametric 

estimators, such as the free disposal hull (FDH) estimator (Deprins et al. 1984). However, 

these estimators often envelop all data points, which in turn makes traditional DEA rather 

sensitive for outliers. 

The problem can be solved by using more robust estimators which deal with extreme 

observations in a different way. Instead of defining the efficient boundary according the 

uppermost technically achievable output (for any given input), extreme observations can for 

example be allowed to lie above a partial frontier (Cazals et al. 2002). For this case, Aragon et 

al. (2005) introduced the concept of the order-α partial frontier (α∈[0,1]) which is applied for 

the presented study.  

With 

! 

SY |X (y | x)  defined as the probability 

! 

Prob(Y " y | X # x)  and 

! 

F
X
(x)  as the probability 

! 

Prob(X " x) , Daouia and Simar (2003) define the order-α-quantile output efficiency score for 

each unit 

! 

(x,y)" #  as:  

(6) 

! 

"# (x,y) = sup " SY |X ("y | x) >1$#{ } for 

! 

F
X
(x) > 0  for α∈[0,1] 3 

Note that, following this approach, each unit is only compared with units disposing of equal 

or worse input levels. A unit 

! 

(x,y)  is efficient at level α, if it lies on the calculated frontier, 

this means if 

! 

"# (x,y) =1. In this case, the unit is dominated by a unit with lower input with a 

probability 

! 

" 1-α.4 Units below the efficient boundary (

! 

"# (x,y) >1) are considered inefficient. 

This means a unit with similar or worse input delivers higher output with a probability > 1-α. 

On the contrary, units above the frontier (

! 

"# (x,y) <1) could reduce their outputs but would 

remain output efficient.  

The applied nonparametric estimator of 

! 

"# (x,y) is obtained by substituting 

! 

SY |X (y | x)  with its 

                                                
3 The efficiency score converges from below to the Debreu-Farell output efficiency measure λ(x,y). 
4  In case a unit’s input equals the minimum level, which means FX(x) = 0, the unit cannot be dominated by a 

unit with less input and is therefore considered to be efficient (λα(x,y) = 1). 



empirical correspondent 

! 

S Y |X ,n (y | x), based on the samples 

! 

(X1,Y1) , …, 

! 

(X
n
,Y

n
)  where X is the 

observed input and Y the output. This results in the empirical efficiency score 

! 

" #,n (x,y) . 

(7) 

! 

" #,n (x,y) = sup " S Y |X ,n ("y | x) >1$#{ } 

The order-α-frontier analysis is particularly charming for samples with extreme observations 

as they easily might occur for a sample of regions. Furthermore the approach accounts to 

some extent for the heterogeneity of the sample, as each region is only compared with regions 

whose input levels are equal or worse.  

 

2.2 Results 

The results, illustrated by figure 1, derive from the application of the order-α-frontier analysis 

for α = 0.05. A region is considered comparatively inefficient in using its infrastructure and 

human capital, if one or more other regions equipped with a similar or worse level of human 

and infrastructure capital generate(s) higher levels of output.  

The respective orange- and red-shaded regions can be considered comparatively 

disadvantaged with regard to their structure and/or location in space. If the criteria of 

eligibility would follow efficiency rather than per-capita-income, these regions would qualify. 

On the contrary, the yellow- and green-shaded regions show the highest level of efficiency, as 

they deliver comparatively high per-capita-income with the given inputs. Return on public 

investments might be relatively high in this case. At the same time the funding of these 

regions would, most likely, conflict with the cohesion objectives of EU regional policy.  

In total, the efficiency analysis is based on 257 NUTS 2 regions.5 Based on the per-capita-

income, slightly more than one third of these regions (92) qualify for funding from Structural 

Funds under the Convergence objective (EC 2007). A total of 67 out of these 92 regions 

(73%) would still qualify for financial aid, if the criteria would be (low) efficiency rather than 

(low) income (red-shaded regions). As a consequence, 25 in the majority East-European 

regions that receive financial aid under the current criteria would lose their eligibility (yellow-

shaded regions). Instead 25 more inefficient and in the majority West-European regions 

would qualify for receiving Structural Funds (orange-shaded regions) – provided that the total 

number of eligible regions remains constant.  

                                                
5 While Bulgarian and Romanian regions are included, oversea departments and the regions of Cyprus and 

Malta remain unconsidered. 



Figure 1. Efficiency of European NUTS 2 regions, order-a-frontier analysis, 2002???  

 
Source: Own calculations 

 

Despite the slight shift of potential eligibility towards the West, the findings on efficiency 

reveal a pattern rather similar to the picture that could be found with regard to the regions’ 

income. While most Eastern regions can be classified relatively inefficient, Western European 

regions turn out to be comparatively efficient. This, in turn, yields the question, whether the 

DMUs’ activities are indeed independent, as presumed in the DEA model. In order to answer 

this question, regional efficiency is decomposed into a spatial and a non-spatial effect in the 

next step. For this purpose, the paper follows a geoadditive regression analysis, which is 

introduced in section 3. The results provide valuable insights for increasing the effectiveness 



of Structural Funds (further discussed in the concluding section 4), no matter if eligibility is 

defined according the level of income or the degree of efficiency.  

 

3 Decomposition of regional efficiency 

3.1 Methodological remarks 

DEA models generally imply independent production activities of the considered DMUs. 

While this assumption often holds for the frontier analysis at firm level, it is questionable if 

the model aims to estimate efficiency of regions. In contrast, efficiency could indeed be 

affected by neighborhood relations in this case. The presented study takes this possibility into 

account and, as a consequence, aims to isolate spatial and structural efficiency.  

The decomposition is based on a geoadditve regression analysis, which allows for considering 

the spatial distribution of a given variable. Thus, the approach presumes that the regions’ 

efficiency relies, on the one hand, on the intraregional setting – the non-spatial arguably 

structural efficiency - and, on the other hand, on the efficiency of nearby regions – the spatial 

efficiency.  

The basic principle of the approach foresees to smooth the observed data, which yields 

decreasing deviations of the variables assigned to neighboring units. The difference between 

observed and smoothed data than identifies the non-spatial factor driven by the units’ 

structure rather than their location in space. 6 

The model set up starts with the definition of neighborhood. While distance between points 

might serve as a good indicator for neighborhood in the continuous case, the indicator is more 

problematic for analyzing regions, where localization is discrete (Brezger 2004). Instead, two 

regions r and s are defined as neighbors 

! 

r ~ s , if they share a border. The smoothing 

algorithm, which is weighted by the length of the common border 

! 

("
rs
) , presupposes a 

growing regional interdependence with increasing length of 

! 

"
rs

.  

The mathematical formulation of the model follows the principles of structured additive 

regression analysis and therefore aims at substituting a usual parametric by a flexible 

nonparametric parameter, containing in this case spatial information (Fahrmeir et al. 2001, 

Hastie and Tibshirani 1990). Since the presented study concentrates on the spatial distribution 

of the efficiency as the response variable, no parametric covariables are considered. 

Therefore, the nonparametric regression model can be defined as (Fahrmeir and Lang 2001):  

(8) 

! 

" #,n (xi ,yi) = fgeo(i) + frand (i)  

                                                
6  A more detailed introduction into the field of geoadditive regression analysis is given by Fahrmeir et al. 

(2007). 



where 

! 

" #,n (xi ,yi)  is the empirical efficiency score of region i (defined by equation (7)) 

and

! 

fgeo(i)the spatially smoothed factor of region ni ,...,1= . The remaining term 

! 

frand (i), 

generally considered the normally distributed error 

! 

e
i
, is interpreted as structural factor that 

cannot be explained by the spatial correlation.7  

In order to smooth the regions’ spatial factor a penalizing term, based on the least square 

method (PLS), is introduced in equation (9). In this preliminary step, the weights 

! 

"
rs

 remain 

unconsidered. 

(9) 

! 

PLS(µ) = (yi " fgeo(si ))
2 + µ  ( fgeo(r) " fgeo(s))

2

r#N (s),r<s

$
s= 2

d

$
i=1

n

$  

where N(s) is the set of neighbors surrounding region s and µ is a parameter to control the 

smoothing intensity. The first term sums up the squared differences of observed data and 

modeled spatial factor. The smoothing process, defined in the second term, multiplies µ with 

the cumulated squared differences of spatial factors for all neighborhood relations.  

In line with Fahrmeir et al. (2007) the penalizing approach, which includes the minimization 

of PLS(µ), can be interpreted in Bayesian way. This, in turn, yields markov random fields. As 

a consequence, the application of the model follows a Bayesian approach (with fully Bayesian 

inference) and is simulated by markov-chain-monte-carlo (MCMC) technique.8  

In a last step, the expected value 

! 

"  of the nonparametric spatial factor 

! 

fgeo(i)  is defined as the 

average of the expected values of neighboring regions. Given the distribution of γr for all 

neighbors and introducing the weights 

! 

"
rs

 the conditional distribution of the expected spatial 

factor of region s (γs) is defined normally distributed as:  

(8) 

! 

"
s
"
r
∼

! 

N
"
sr

"
s+

#
r
,
$ 2

"
s+r%&

s

'
( 

) 
* 
* 

+ 

, 
- 
-  

where 

! 

"
s
 is the set of neighbors of region s and 

! 

"
sr

 the weight of neighbor r. 

! 

"
s+ denotes the 

cumulated weights of all regions neighboring s. The variance parameter 

! 

"
2 controls the level 

of variation between the model result and the expected value.9 

The remaining non-spatial factor is considered normally distributed as well and can be 

defined as

! 

frand(si )∼

! 

N(0,"
2
).  

                                                
7  Presuming that the observed data are correct, we consider the remaining error as irrelevant. 
8  For this purpose the software BayesX has been applied. The algorithm and its computation is decribed in 

detail by Brezger et al. (2009). 
9  Note that the model behind equation (8) is equivalent to the penalizing model defined by equation (7) (see 

Fahrmeir et al. 2007, p. 390) 



Based on the conditional expectation γs|γr defined by equation (8), the MCMC-simulation 

results in a common distribution for the vector 

! 

" = ("1,"2,...,"n ) . Thus, the estimated spatial 

factor can be identified for all regions in the last step. 

 

3.2 Results 

For technical reasons the analysis is limited to the core of continental Europe. This is partly 

due to the definition of common borders, which makes it difficult to interprete results of 

islands, and partly due to a lack of data.10 Therefore, efficiency scores are recalculated for the 

new limited sample of regions. Low scores point to a comparatively high efficiency and vice 

versa. As shown by figure 2, the sample is again characterized by a clear spatial pattern.  

 

Figure 2. Efficiency scores of selected regions, order-a-frontier analysis, 2002  

 
 

The findings of the geoadditive regression analysis confirm the strong spatial interdependency 

and identify, five years after the EU enlargement in 2004, a clear East-West divide. The 

smoothed spatial effect is given by figure 3. 

                                                
10 Missing data for the Baltic States result in the exclusion of Finland and Sweden. 



 

Figure 3. Efficiency of selected regions, smoothed spatial factor, 2002  

 
 

Green-shaded regions can, due to their well-performing neighbors, be expected to use their 

inputs in a comparatively efficient way. By contrast, red-shaded regions are surrounded by 

comparatively inefficient regions which, in turn, yields to rather low expectations in terms of 

efficiency.11 

Besides the spatial factor, the regions’ efficiency is also driven by a non-spatial intraregional 

effect. This effect, illustrated by figure 4, can be interpreted as structural effect.  

According figure 4, a red-shaded region k is considered comparatively inefficient, if regions 

in the greater neighboring area of region k equipped with a similar or worse level of human 

and infrastructure capital generate(s) higher levels of per-capita-income. By contrast, a green-

shaded region is efficient compared to its nearby regions.  

                                                
11  Based on the performance of the surrounding regions, the algorithm estimates the spatial efficiency for all 

regions of the sample. 



Figure 4. Efficiency of European NUTS 2 regions, non-spatial structural factor, 2002???  

 
 

 

Compared to figure 2 and 3, the East-West divide almost vanishes in figure 3. Instead 

structural efficiency of Eastern regions can be relatively high, if the region’s performance is 

well above the expected results.  

 

4 Conclusions - towards more effective funding schemes 

Taking into account the regions’ absolute income level and their structural efficiency, four 

regional types can be identified: rich and efficient, rich and inefficient, poor and efficient and 

finally poor and inefficient.  

A policy devoted to the efficiency argument would aim to maximize return on public 

investments and would indeed prefer financial aid for the efficient regions. If, however, the 

focus is on the equity argument, two alternative strategies arise. First, the distribution of 

financial aid could be based on the degree of efficiency, which in turn yields to a funding of 

the relatively inefficient structurally disadvantaged regions (Athanassopoulos 1996, Camagni 

1990). In so doing, eligible regions would be more spread across the EU and more regions in 

Western Europe would benefit from the Structural Funds.  



Second, and in line with the factual EU regional policy, funds could be provided to the 

relatively poor regions. Nevertheless the effectiveness of funding could still be increased in 

this case, if the regions’ structural efficiency would be taken into account as well. 

This is due to the fact that the Structural Funds, particularly the European Regional 

Development Fund (ERDF), aim to increase eligible regions’ competitiveness in a direct and 

indirect way: Directly productive funds include job-creating investment mainly assigned to 

business. Indirectly productive investments foresee, among others, the creation of new 

transport and communication infrastructure.  

Structurally inefficient (and poor) regions’ ability to attract private capital and subsequently to 

generate income is too low relative to the available human capital and public infrastructure. 

Thus, the potential stimulation of the economy induced by the additional provision of public 

goods is probably modest in nature. As a consequence, regional funding should focus on 

structural inputs in the form of direct investments to strengthen small and medium sized 

enterprises and to encourage the foundation of new companies. 

On the contrary, poor but structurally efficient regions are comparatively more successful in 

the attraction of private capital. Thus, the provision of public goods, namely modern 

infrastructure and improved institutional education, might easily turn out to be more effective 

compared to direct investments initiated by regional policy-makers.  

 

It can be concluded that a differentiation of financial aid into direct job creating investments 

and the enhanced provision of public goods could increase the overall productivity of regional 

funds. However, the preference for a more precise funding, based on the regions’ efficiency, 

should not be seen as an advocate for exclusive investments of one or the other form. It rather 

supports the idea of a more region-specific financial aid while still having in mind the 

complementarity of different kinds of structural funds.  
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