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Abstract 
We analyse the efficiency and distributional impacts of congestion pricing, in the bottleneck 
model, with continuous heterogeneity in the values of time and schedule delay. With a 
heterogeneous value of schedule delay, tolling makes the arrival ordering more efficient, and this 
lowers scheduling costs. If there is not much more heterogeneity in the value of time than in the 
value of schedule delay, then first-best tolling decreases the generalised price for most users. We 
find that the consumer surplus losses or gains from first-best tolling are not strictly monotonic in 
the value of time, because the value of schedule delays also determines such gains or losses. The 
greatest losses are not incurred by drivers with the lowest value of time, but by users with an 
intermediate value of schedule delays and the lowest value of time consistent with that value of 
schedule delays.  The lowest values of time are among those who gain most from a public pay-
lane. With a private pay-lane, the lowest value of time loses least of all free-lane users; moreover, 
there are also many pay-lane users that lose more than the lowest value of time. 
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1. Introduction  
Road pricing seems to be gaining increasing momentum as an instrument in dealing with traffic 
congestion. The concept is firmly based in micro economic theory: Pigou (1920) recognised that 
traffic congestion entails an external cost, and that efficiency requires a toll equal to marginal 
external congestion cost.  

Despite the strong economic case for road pricing, practical applications remain scarce. An 
important reason why road pricing meets resistance is its redistributive effect. When pricing 
reduces travel times and increases monetary costs, an individual’s losses are smaller, or gains are 
larger, when the value of time is higher. Although there is no perfect correlation between value of 
time and income, this is often taken as implying that the poor lose and the rich gain (Layard, 
1977). Still, as became clear from an early discussion between Foster (1974, 1975) and 
Richardson (1974), it is not certain how the benefits or losses from road pricing vary over 
income. Even if higher incomes have higher values of time on average, and consequently lose 
less due to tolling per driven kilometre. They also drive more and have higher car ownership and 
longer commutes. Hence, they lose longer and more often. The net balance of these opposing 
forces is an empirical matter. Foster concluded that road pricing may be progressive; Richardson 
maintained that regressiveness is more likely. In Mayeres and Proost (2001), it is because higher 
incomes drive more, why the loss from road pricing increases with income. 

Cain and Jones (2008) show that car ownership (in Scotland) is relatively low in the lowest 
income quintile. Still, the lowest incomes who do own a car spend on average about 40% of 
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disposable income on motoring. Therefore, even if road pricing has a limited impact on the 
average low-income household, it may still have a big impact on those who own a car. 

Small and Yan (2001) and Verhoef and Small (2004) use static flow congestion. The 
distributive impacts of first-best pricing are as expected: drivers’ losses decrease with the value 
of time. Yet, with second-best pricing on only some of the lanes of the highway, the 
distributional effect is not monotonous in the value of time. The biggest losses are incurred by 
users with the ‘critical’ value of time, who are indifferent between the tolled (pay-lane) and 
untolled (free-lane) link. On the free-lane, the cost of the higher travel times decreases with the 
value of time, while the gain from the pay-lane’s reduced travel time increases with the value of 
time. Hence, the public pay-lane’s relative efficiency increases with heterogeneity in the value of 
time. Relative efficiency is the welfare gain of a policy from the no-toll situation relative to the 
public first-best toll’s gain. Conversely, Van den Berg and Verhoef (2010) note that, with 
bottleneck congestion, a pay-lane’s relative efficiency decreases with this heterogeneity. Further, 
with a more heterogeneous value of time, no-toll equilibrium congestion externalities are smaller. 
Consequently, the welfare gain of first-best or pay-lane tolling is lower.  

Empirical evidence, see for example Small, Winston and Yan (2005), shows that in reality 
values of time differ substantially, reinforcing the case for considering heterogeneity explicitly in 
road pricing analyses. But it is not only the value of time that determines the disutility of 
congestion and welfare effects from pricing. Dynamic models of traffic congestion emphasise the 
importance of schedule delay costs.  

In Vickrey (1973), the values of time and schedule delays vary proportionally. All drivers gain 
due to first-best tolling—except the lowest values, who are unaffected. Arnott et al. (1988; 1994) 
use two group heterogeneity in the value of time and schedule delay. The imposition of a first-
best toll may change the order of arrivals. In the no-toll equilibrium, drivers with a higher ratio of 
value of schedule delay to value of time arrive closer to the common most desired arrival time. 
With optimal tolling, the higher value of schedule delay do so—and this need not be the same 
group. Apart from removing all travel delays, the optimal toll then also reduces total schedule 
delay costs by making the arrival order more efficient. In terms of distributional impacts, a time-
variant toll without rebate “benefits drivers with high unit travel time and schedule delay costs” 
(Arnott et al., 1994, p. 158). De Palma and Lindsey (2002) use the bottleneck model and study 
heterogeneity in the value of time with fixed values of schedule delay. With perfectly inelastic 
demand, all users lose due to first-best tolling—except the highest values, who are unaffected.1

We analyse first-best tolling and public and private pay-lanes when the values of schedule 
delay and time are heterogeneous. A type i driver faces a schedule delay if she does not arrive at 
her preferred arrival time (t*). The value of earlier arrival (schedule delay early) is βi and of later 
(schedule delay late) it is γi. There is no heterogeneity between the values of schedule delay early 
and late. We analyse proportional heterogeneity—ala Vickrey (1973)—and heterogeneity in the 
ratio (μ) of values of time (α) and schedule delay:  μi =αi/βi. Proportional heterogeneity scales the 
values of time and schedule delay. It can be viewed as an effect from income: the higher income 
is, the higher the values. Ratio heterogeneity can, for example, be viewed as giving the effect of 
schedule constraints from work (e.g. office versus assembly-line worker) or from home-life (e.g. 
children or not) or from extra scarcity of time due to an hectic family or social life.  

 

More ratio heterogeneity decreases marginal external costs from congestion and thus lowers 
the welfare gain from tolling. This welfare gain increases with proportional heterogeneity (i.e. 

                                                           
1 The last conclusion on the very highest value of time follows personal communication by email with Robin Lindsey on 17 June 

2010 and the results of Arnott et al. (1994) and Van den Berg and Verhoef (2010a). 
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where the values of time and schedule delay vary proportionally), this is regardless of the amount 
of heterogeneity in the ratio of the value of time to value of schedule delay. 

The average generalised price can be lower with first-best tolling than without tolling, if the 
value of time is not too much more heterogeneous than the value of schedule delay. That tolling 
can be good for the average consumer is surprising, as the common thought is that tolling is 
harmful for consumers. The distributional effects of tolling in our model can also be surprising. 
The lowest values of time and schedule delay are among those who gain most from a public pay-
lane. With a private pay-lane, the low values of schedule delay lose relatively little; free-lane 
users with larger values, and even some pay-lane users, face larger price increases.   

The next section describes the demand and generalised price equations. Section 3 analyses the 
no-toll (NT) and tolling equilibria with M discrete user groups. Then, the case of continuous 
heterogeneity is studied. For this, Section 4 describes the numerical model set up. Section 5 
studies the NT equilibrium, Section 6 the first-best public (FB) toll, and Section 7 pay-lanes. 
Section 8 gives the sensitivity analysis. Section 9 concludes. Table 1 summarises the policies.  

 
Table 1: Abbreviations of the policies  
Abbreviation Description 
NT No toll equilibrium 
FB Welfare maximising public first-best time-variant toll 
PL Welfare maximising public pay-lane (i.e. with a tolled pay-lane and untolled free-lane), with a time-variant toll 
PPL Profit maximising private pay-lane, with a time-variant toll 
 
2. The demand and generalised price functions  
One road connects the origin and destination. All users have the same preferred arrival time (t*), 
which we normalise to arrival time (t) is zero. Drivers face a trade off between travel time costs, 
because of the queue at the bottleneck, and scheduling costs, due to arriving before (schedule 
delay early) or after (schedule delay late) t*. We use square brackets to indicate that something is 
a function of the variables listed inside brackets. We use round brackets for arithmetic. Equation 
(1) gives the generalised total price for a type i driver. It is the sum of travel time costs (CTi[t]), 
schedule delay costs (CSDi[t]), toll (τ[t]), and operating costs (υ). Operating costs are the same for 
all users. Travel time is the sum of free-flow travel time (Tf) and travel delay (TD[t]). The latter 
follows from the queue length (q[t]) by TD[t]=q[t]/s. Here s is the bottleneck capacity. The 
analytical models ignore free-flow travel time and operating costs, the numerical models include 
them. The toll consists of the time-variant toll (τt[t]) and time-invariant toll (τ ). 

 
[ ] [ ] [ ] [ ] ( [ ] ) ( , ) [ ]i i D fi i i i iP t CT t CSD t t T t T Max t t tυ τ µ β β γ υ τ= + + + = ⋅ + + − + +     (1) 

 
The value of schedule delay late (γi) is a linear in the value of schedule delay early (βi), 

following γi=ηβi. The relative size of the value of time is μi. The term type indicates all users with 
the same values of time and schedule delay. Types can be continuously or discretely distributed. 
For a deterministic equilibrium, the inequality μi>1 must hold for all users (Arnott et al., 1990).  

Equation (2) gives the inverse demand function. A+Ai is the constant in type i’s demand: A is 
common to all and Ai is type specific. The slope is determined by B and bi[μi,βi]. The bi[μi,βi] is 
assumed to integrate to one, for algebraic ease.  

 
 

[ , ]
i i i

i i i

BD A A n
b µ β

= + −          (2) 
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3. Equilibria with discrete heterogeneity  
3.1 No-toll (NT) equilibrium with discrete heterogeneity 
It is illustrating to start with the case of discrete heterogeneity, as this makes it easier to explain 
the effects of heterogeneity. This section assumes that each user group has a different ratio of 
values of time and schedule delay (μi≡αi/βi) and value of schedule delay (βi). If two groups have 
the same μi, they share their NT arrival period—and although this would not change the model—
it would complicate the mathematical notation. Subsequent sections relax this assumption. The 
groups are ordered on their μi. Arnott et al. (1988) find that Group 1, with the lowest μi, arrives 
closest to t*. Group M, with the highest μi≡αi/βi, arrive at the greatest distance from t*.  

A group’s equilibrium price is constant during the period this group arrives. Outside this 
period the price is higher. A group’s isocost curve gives the combinations of schedule delay and 
queuing time for which prices are constant over time. Obviously, a different isocost curve applies 
for a different cost level. The slope of an isocost curve is 1/μi before t* and –η/μi after. Figure 1 
gives the equilibrium isocost curves with three groups. At ts and te, the first and last driver arrive; 
tsi and tei indicate when group i starts and ends to arrive. If i’s equilibrium isocost curve is above 
the curves of the other groups and not below the horizontal axes, then at this moment only group 
i drivers arrive. Hence, Group 3 users arrive between ts and ts2, and between te2 and te. Group 1 
arrives between ts1 and te1. In equilibrium, the bottleneck operates at capacity during the entire 
peak. Thus, the peak duration (te–ts) equals N/s. Here N is the number of users. At ts and te Group 
M users arrive and face a zero queue length.  

 
Figure 1: The isocost curves for three groups of drivers. 

 
 

Using the above discussion, group M’s price can be derived. Then, the price for group M–1 
can be found, and so on for each group. Equations (3) and (4) give the generalised formulas for 
i’s queuing and scheduling costs at tsi and tei. For arrivals closer to t* a group i user’s scheduling 
cost is lower, whereas the queuing cost is higher. The scheduling costs of i increase with the 
number of users with a smaller ratio of value of time to value of schedule delay (µj), while 
queuing costs increase with the number of drivers with a larger µj. Both costs increase with i’s 
value of schedule delay. 
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The NT price of i in (5) is the sum of i’s queuing and scheduling costs. It increases with µi and 

βi. Group M’s price is η∙N∙βM/((1+η)s). This is the same price as in the homogeneous user model 
with a value of schedule delay of βM. Group M−1 gains from the heterogeneity. Group M’s 
higher ratio μi≡αi/βi induces them to build up the queue slower than Group M−1 drivers would. 
Hence, Group M drivers impose lower congestion costs than Group M−1 users. Group M−2 
drivers enjoys an even larger price advantage, because Group M and M−1 drivers build up the 
queue slower than they.  

 
3.2 Tolling equilibrium with discrete heterogeneity 
With first-best tolling, the time-variant toll eliminates all queuing and the time-invariant toll is 
zero. As de Palma and Lindsey (2000) discuss, both a private and a public pay-lane‘s time-variant 
toll eliminates all queuing on the pay-lane, since queuing is always wasteful.  

A queue-eliminating toll changes the arrival ordering: groups now arrive ordered on their 
value of schedule delay. The highest-β-users are group 1 and arrive closest to t*. The lowest-β-
users are group K and arrive furthest from t* (Arnott et al, 1988). Figure 2 gives the FB toll for 
the example of Figure 1. Groups 2 and 3 have switched in the arrival order, since Group 3 has a 
higher βi. Group 1 has the highest βi and lowest µi. Hence, Group 1 arrives closest to t* with and 
without tolling. The queue eliminating toll makes all users indifferent—as long as there is no 
queue—between all arriving moments in the period that their group arrives in the new ordering. 
Outside that period, their price is higher. The time-variant toll is by definition zero at ts. Its slope 
is βi before t* and –yi after.  
 

Figure 2: The toll schedule for three groups of drivers. 

 
 

Using the above discussion, equations (6) and (7) for i’s schedule delay cost and toll can be 
derived. For arrivals closer to t*, scheduling costs are lower, whereas the toll is higher. The sum 
of scheduling cost and toll is constant during the period a group arrives. The resulting price 
formula is given in (8).  
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4. Numerical set-up 
This section discusses the numerical set-up of the base case. The bottleneck’s capacity is 3600 
cars per hour. Operating costs are €7.30 per trip. Free-flow travel time is 30 minutes.  

Figure 3 shows the NT density function of μ and β. It is based on two univariate symmetric 
triangular distributions: f[μi,βi]=g[βi]∙h[μi]. A symmetric triangular distribution is defined by its 
minimum and maximum. The minimum value per hour of schedule delay early (β ) is €2, the 
maximum (β ) is €8. The minimum ratio of value of time to value of schedule delay early (µ ) is 
1.01, the maximum (µ ) is 3.01. The value of time is always larger than the value of schedule 
delay early. The weighted average value of time is €10.05. The relative size (η) of γi to βi is 3.9. 
This is the same value as in Arnott et al. (1990).  

The inverse demand function is created, following equation (2), so that three goals hold. First, 
the total number of NT users is 9000. Second, the weighted average of the NT equilibrium 
elasticity to total price is –0.4. Total price is the price including free-flow travel time and 
operating costs. Third, the discussed density function holds in the NT case.2

 
 

Figure 3: The multivariate distribution 

 
 

5. Continuous heterogeneity no-toll (NT) equilibrium 
Now we analyse the continuous heterogeneity no-toll case. This paper first studies the analytical 
models and then illustrates these by the numerical results as calculated in Mathematica 5.0. We 
were unable to find closed-form solutions for the tolling policies. Hence, in these cases we give 
the analytical results in so far we have them and then describe the numerical solution. 
 
5.1 Analytical model for the no-toll (NT) equilibrium 
The continuous heterogeneity price formula proofed a straightforward generalisation of the 
discrete version. The NT users arrive ordered on the ratio of value of time to value of schedule 
delay early (μi). The lowest-μ-users arrive closest to t*. Schedule delays increase and queuing 
times decrease with μi, whereas they are independent of βi. All NT users with the same μj behave 
in the same way. Thus, as (9) shows, we aggregate all users with the same μj to miNT[μi].  

                                                           
2 To achieve these goals, we set bi[μi,βi] equal to the density function (f[μi,βi]), and Ai to the NT total price (PiNT). The mean elasticity depends on B 
and the average total price. The average price is a function of the density function and total number of users. Hence, we can calibrate the aggregate 
elasticity with B. If bi[μi,βi]=f[μi,βi] and Ai=PiNT, then equating  inverse demands to prices, and rewriting, results in NNT=A/B. Hence, we set the 
aggregate number of users with A. The A and B we use are 53.1841 and 0.0059094. 
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To get the continuous heterogeneity price equation (10) from the discrete version, we replace 
the summation signs by integrals and ni by miNT[μi] (since there are now multiple types with the 
same μi). Equation (10) is rewritten to equation (11) by replacing miNT[μi] with h[μi]∙NNT (i.e. μ’s 
density function multiplied with the number of NT users). H[μi] is the cumulative distribution 
function of μi; NNT is the number of NT users. We use a multivariate probability density function 
(PDF) of μ and β that is the product of two independent PDF’s: f[μi,βi] equals h[μi]g[βi]. The g[βi] 
and h[μi] are the univariate density functions of β and μ. Our model also works with a 
multivariate density function that is not based on two unconditional density functions. Then, 
however, our equations require more integrals and look more cluttered.  
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β
µ β= ∫           (9) 
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Scheduling costs are given by the left term in the brackets in (11) multiplied by the term 
outside the brackets: by η·NNT·βi·H[µi]/((1+η)s). The right term in the brackets multiplied gives 
scheduling costs. Prices increase non-linearly with the ratio μi≡αi/βi. Although schedule delays 
and queuing time are independent of βi, prices increase linearly with βi. A delay is more valuable 
with a higher βi. The value of time equals μi ∙βi. Thus, queuing time is more valuable with a higher 
βi. As prices depend linearly on βi, heterogeneity in β does not affect the average price.  

 
5.2 Congestion externalities and heterogeneity 
Following Lindsey (2004), equation (12) gives the congestion cost effect of a type j driver on a 
type i: it is the derivative of i’s price to the number of type j users. On all drivers with a larger μi 
than j (i.e. with μi≥μj), type j causes a congestion effect of (βi/s)∙η/(η+1), which is independent of 
μi and μj. On all users with a smaller μi, j causes a smaller congestion effect. This smaller effect 
decreases with j’s ratio μi≡αi/βi and increases with i’s μi.  

The congestion effect of j also increases with i‘s value of schedule delay, j’s value of schedule 
delay has no effect. A higher μj means that j’s isocost curve becomes flatter. This implies that j 
builds up the queue less quickly. This decreases the price for all users with a smaller μi than j, 
while prices for users with a larger μi than j are unaffected. 
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The marginal external cost of a type i driver in (13) is the integral of nj∙∂pj/∂ni over all j. Only 

the mean value of schedule delay affects externalities; the heterogeneity middles out,3

                                                           
3 Comparison of line two and three of equation (9) also shows this. In line two we find the term βl·g[βl], which contains the heterogeneity in β. In line three, the term is 
integrated out to E[β]; and i’s mec is a function of E[β], μi, and the distribution of μ. 

 as 
congestion effects depend linearly on βi. The larger μi is, the smaller i‘s externality: the lowest-μ-
users cause the highest externality. The reason for this is that drivers that care relatively little 
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about travel delays—i.e. with a small μi –drive in the centre of the peak. For any distribution of μ 
with the same E[β], the highest externality equals the externality in the homogeneous user model. 
With more ratio heterogeneity, there are higher highest-μ-types, who impose lower externalities 
than all other types, and/or more high-μ-users, who cause low externalities. The externalities of 
the lowest-μ-users cannot exceed the maximum externality. Hence, with more ratio 
heterogeneity, the mean externality is lower. This result was also found by Van den Berg and 
Verhoef (2010) and is hence not discussed further. Since, the mean externality decreases with 
ratio heterogeneity, the mean prices also decreases.  
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5.3 Base case numerical model for the no-toll (NT) equilibrium 
In the numerical NT base case, average queuing and scheduling costs are €3.97 and €4.97. The 
average total price (including free-flow travel time and operating costs) is €21.27. Total 
consumer surplus is €239,332. Average travel time is 54 minutes. Minimum travel time equals 
the free-flow travel time of 30 minutes, the maximum is 77 minutes. 
 

Figure 4: Schedule delay costs (left) and queuing costs (right) per user 

 
 

Figure 5: No-toll equilibrium price excluding free-flow travel time and operating costs 

 
 

Figure 4 shows that scheduling and queuing costs increase linearly with β. Scheduling costs 
increase non-linearly with μ. Queuing costs decrease with μ for all, but the lowest-μ-users. The 
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lowest-μ-drivers face the longest travel delays. Yet, with their low values of time, these delays 
are not that costly. Figure 5 depicts the NT prices. Prices increases linearly with the value of 
schedule delay; they increase non-linearly with μi.  

Summarising, the average externality and travel price decrease with ratio heterogeneity. Since 
NT prices depend linearly on βi, proportional heterogeneity does not affect average NT price. 

 
6. Continuous heterogeneity and first-best public (FB) tolling 
The first-best FB toll maximises welfare, which is the sum of total consumer surplus and toll 
revenues. The optimal time-variant toll eliminates all queuing. It slopes upward with t by βi 
before t*, and downward by –γi after t*. The optimal time-invariant toll is zero. FB tolling 
changes the arrival ordering. Before, users arrived ordered on µi. Now, they arrive ordered on βi. 
All high-β-users now arrive close to t*, whereas before some arrived far from t* (Arnott et al, 
1988). Thus, not only does tolling eliminate queuing, it also decreases scheduling costs. 
 
6.1 Analytical model for the first-best public (FB) equilibrium 
We derive the FB price equation (14) from the discrete version, by replacing the summation signs 
by integrals. qjFB[βj] is the number of FB users with a value of schedule delay of βj. It is the 
integral over μi of the number of users with βj. In the FB equilibrium, all users with the same 
value of schedule behave in the same way regardless of their µi. The toll i faces increases with i’s 
value of schedule delay: the higher βi is, the closer i arrives to t* where the toll is the highest. The 
effect on scheduling costs of βi is ambiguous: schedule delays decrease with βi, whereas the value 
of a delay increases with βi. Nevertheless, FB prices always increase with βi. Different from in 
the no-toll (NT) equilibrium, FB prices are independent of μi. 
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6.2 Numerical base case model for the first-best public (FB) equilibrium 
We could not find a closed-form solution of the FB equilibrium. Still, for a given starting 
distribution of the FB users, there is a solution for prices, total number of users, and implied 
distribution of the number of users. Unless, however, we exactly chose the equilibrium 
distribution as the starting distribution, the implied distribution and starting distribution are not 
equal. We could directly calculate NT prices, because we assume the NT distribution of users.4

Because queuing is eliminated, prices depend on the value of schedule delay only, and no 
longer on α. Hence, Figure 6 depicts the distribution of price components as a function of β alone. 
A given schedule delay is more costly with a higher β. But high-β-users arrive at more central 
moments, causing schedule delay costs to fall with β over a substantial range of Figure 6. These 
users have to pay high tolls to obtain these arrival times. The result is that the price always rises 
with β. This seems a rather general result. A user with a lower β could always travel at the same 
moment as a higher-β-driver, paying the same toll, but incurring lower scheduling cost. Because 
low-β-drivers choose to drive at a different moment, their price must be even lower.  

  

                                                           
4 Still, this discussion does suggest a simple solution method. Starting with some distribution of FB users (we use the NT distribution), calculate 
prices and distribution of demands implied by these prices. This distribution is not equal to the starting distribution, as demands and prices are not 
in equilibrium. We approximate the distribution of demand between iterations by a cubic spline with 200 points. This spline is used as the next 
starting distribution. By continuing this procedure until convergence, using the new distribution of demand as the starting distribution, we find the 
FB equilibrium. The convergence criterion is a maximum absolute difference in the number of users of 10-20% between iterations. It is possible to 
use the demand in the previous iteration as the starting distribution and not the spline. Then, however, the starting distribution’s equation grows 
exponentially complex with the number of iterations. This makes the integrations slow and often causes them to break down. 
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Figure 6: Schedule delay costs and tolls per user 

 
 
 

Figure 7: Change in price in 3D (left) and in contourplot (right) 

 
Note: the contourlines are, from left to top right, change in price is 1.5, 0, –1.5, –3, –4.5 and –6 euros. The value of time (αi) equals βi·μi. 
 
We use the difference ∆Pi=PiFB−PiNT as a measure of the loss from FB tolling for type i users. 

Figure 7 shows this difference, as a three-dimensional plot in the left panel and as contour plot in 
the right one. The figure depicts the differences over values of time (αi≡μi·βi) and not over ratio 
of value of time to value of schedule delay (μ), as the results in α-space are easier to interpret. 

It is striking that so many user types win. Still, this result is less surprising once it is realised 
that in the bottleneck model with homogeneous users, first-best tolling has no effect on prices. In 
our model, besides eliminating travel delays, the toll reduces aggregate schedule delays. This 
additional benefit causes the change to be more favourable.  

As a result, the average generalised price decreases by 3.4% to €8.64 due to FB tolling. 
Aggregate consumer surplus increases by 1.4% to €242,571. Welfare (i.e. total consumer surplus 
plus toll revenues) raises by 17.7% to €281,798. The consistent implication—but not less 
surprising when comparing the results to those for the textbook static model of traffic 
congestion—is that aggregate use increases by 0.6% to 9057. Despite the longer duration of the 
peak, average schedule delay cost decreases by 13.1% to €4.32, which is of course due to the 
more efficient order of arrivals. In short, the average traveller benefits from first-best congestion 
pricing, even before toll revenues are recycled. Moreover, a majority of drivers, of 55%, benefits. 

The contour plot of Figure 7 shows that, for a given β, the benefit increases with α. This seems 
to confirm common wisdom on the distributional impacts of road pricing. Yet, dependence of the 
gains on β causes an interesting twist. First, the greatest losses are not incurred by the drivers 
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with the smallest α. Instead, intermediate users with an average β and lowest possible α for that β 
lose most. The reason is that their low μi≡αi/βi allowed these intermediate users to arrive close to 
t* in the no-toll equilibrium, benefiting from low schedule delay cost. With pricing, they lose this 
advantage, while the elimination of travel delays brings them little gain. As a result, the 
intermediate users incur the greatest losses from congestion pricing. 

One might observe that this result, that it is not the lowest-α drivers who lose most, is 
somewhat exaggerated by the fact that β is restricted to be below α, so that the lowest α is not 
present for this intermediate β where losses seem largest. But even then, the contour plot shows 
that there are many instances where drivers with a higher α have greater losses than some drivers 
with a lower α and a lower β. At the same time, in the upper right corner there are many instances 
where drivers with a higher α gain less than some drivers with a lower α but a higher β. In other 
words, taking into account heterogeneity in the value of schedule delays makes the losses and 
gains of first-best congestion pricing to be not perfectly correlated with the value of time.  

 
7. Continuous heterogeneity and the pay-lane 
With a pay-lane, a share (ρ) of capacity is made a separate lane, and to use this lane one has to 
pay a toll. The remainder of road is the untolled free-lane. We also refer to the pay-lane as lane 1 
and the free-lane as lane 2. Note that our pay-lane model could also be interpreted as the situation 
where there is a tolled road and a separate untolled road. The two interpretations are 
mathematically the same.  

The pay-lane’s time-variant toll eliminates all queuing on the pay-lane. The private operator 
adds a time-invariant toll that maximises total toll revenue. The public operator adds a negative 
time-invariant toll (i.e. subsidy) that maximises welfare. The subsidy attracts extra drivers to the 
public pay-lane. Hence, the pay-lane peak last longer than on the free-lane, and schedule delays 
are higher. The higher the subsidy is, the higher total schedule delays. The optimal subsidy is at 
the point where, for a marginal subsidy increase, the welfare gain from lessening queuing equals 
the loss from higher schedule delays. Because of the positive time-invariant PPL toll, the private 
pay-lane is used by relatively fewer drivers than the free-lane. Hence, the free-lane has the longer 
peak and schedule delays. 
    
7.1 Analytical pay-lane model 
The pay-lane’s price equation (15) is basically the same as in the FB case. qj1[βj] is the number of 
pay-lane users with a value of schedule delay of βj. The free-lane price equation (16) is basically 
the same as the NT price formula. The mj2[μj] is the number of free-lane users with μj. Finally, 
there is a critical α*[β] curve that separates free-lane and pay-lane users. The users on the curve 
are indifferent about using the pay-lane or free-lane. All the users that, for their βi, have a higher 
value of time than the curve drive on the pay-lane. 
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7.2 Base case numerical model for the public pay-lane (PL)  
We were unable to find closed-form solutions for the pay-lane equilibria. The numerical solution 
is more difficult than for the FB toll, and is discussed in the Appendix. The optimal time-
invariant toll is −€5.36. Hence, arrivals at the outside of the pay-lane peak receive a subsidy of 
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€5.36. The mean time-variant toll is €6.25. Consumer surplus increases 7.0% from the NT case 
to €256,142. Welfare increases with 8.7% to €260,237. The number of users increases, with 
3.4%, to 9309.8. Of these users, 4619.1 use the pay-lane, and 4690.7 the free-lane. Thus, 
although the pay-lane has only a third of capacity, almost equal amounts of traffic use the pay-
lane and free-lane. As a consequence, the pay-lane has a higher mean schedule delay.  

Figure 8 shows the difference between PL and NT prices. Again the results are shown as a 
function of the value of time (α) and not as a function of μ. In Figure 8’s contourplot, the α*[β] 
curve separates the pay-lane and free-lane users. All users to the right of the curve use the pay-
lane. Surprisingly, not only the high values of time and schedule delay use the pay-lane, but also 
the low values of time and schedule delay. Moreover, all lowest-β-users use the pay-lane. This is 
counterintuitive: one would expect that only the highest values of time and schedule delay would 
use the tolled lane. The low-β-users arrive at the outside of the pay-lane peak. They face negative 
tolls and large schedule delays. With their low values of schedule delays, these large delays are 
not costly. Hence, they can enjoy the negative tolls and attain a large price decrease. Having low-
β-users use the pay-lane improves the PL’s welfare gain, as the pay-lane’s higher schedule delays 
are imposed on the low-β-users. 

All users are better off under the PL than in the NT case. Also in Braid (1996)’s homogeneous 
user model this occurs. Still, with heterogeneity in the value of schedule delay, users gain more, 
because of the self-ordering on β.  

In the static PL model of Verhoef and Small (2004), drivers with the critical values of time 
lose most due to second-best pricing. In our model, there is to be no local maximum of ∆Pi near 
α*[β], although it does mark a contour where ∆Pi becomes suddenly steeper for increasing value 
of time (α). An interesting question is why ∆Pi is falling with value of time for free-lane users; 
while, in the static model, ∆Pi is increasing with the value of time for them. The answer is that 
the subsidy on the pay-lane reduces the duration of the peak on the free-lane. This reduces travel 
delays; and the higher the value of time is, the larger the gain from this. Consistent with this, with 
a profit-maximising pay-lane (PPL), there is a positive time-invariant toll and local maxima of 
∆Pi at α*[β]. 

Although, users with a high µi and βi gain most; the lowest values of time and schedule delay 
also gain. The users with an intermediate βi and a low µi gain the least. In contrast, the 
conventional view is that a pay-lane is bad for the lowest values of time (before revenue 
recycling), since these users cannot afford the pay-lane and have to use the free-lane.  

 
Figure 8: Differences between PL and NT prices in 3D (left) and contourplot (right) 

 
Note: the critical α*[βi] curve is given in the contourplot, all users to the right of the curve use the Pay-lane. The white contourlines are, from left 

to top right, change in price is: –1, –2, –3, –4, and –5 euros. The value of time (αi) equals βi·μi. 
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7.3 Base case numerical model for the private pay-lane (PPL)  
Figure 9 depicts the differences between PPL and NT prices. Due to the positive time-invariant 
toll, the peak lasts shorter on the pay-lane than on the free-lane. The PPL’s α*[β] curve, in Figure 
9, has a more expected shape than the PL’s: only the high values of time and schedule delay use 
the pay-lane. For the users that are indifferent between the pay-lane and free-lane prices increase 
most. Hence, there are pay-lane users that are hurt considerably by the PPL. For free-lane users 
that are further from the α*[βi] indifference curve the PPL is less detrimental. On the pay-lane, as 
a type is further away from the α*[βi] curve the PPL becomes rapidly more beneficial. 
Nevertheless, for most pay-lane users the PPL raises the price.  

The PPL has some distributional surprises. It is not the low values of time and schedule delay 
that lose most, but the middle group that is (almost) indifferent between the pay-lane and free-
lane. Further, this last group also contains pay-lane users. There are thus pay-lane users for who 
the PPL is more harmful than for the lowest-β-users. These results are similar to Verhoef and 
Small (2004)’s, where also the intermediate users lose most.  

The time-invariant PPL toll is €3.87 and the mean time-variant toll is €4.34. The number of 
users decreases with 1.7% to 8846.8, because the private pay-lane (PPL) raises the price for most 
users. Nevertheless, the PPL increases welfare by 4.1%. Its relative efficiency is 0.23.  

The PL might be seen as strange as it subsidises some pay-lane users: in practise, tolls are not 
negative. If the public pay-lane’s time-invariant toll is constrained to zero—preventing negative 
tolls—welfare is much lower. Then, the distributional effects are akin to those of the PPL in 
Figure 9, although the critical α*[βi] curve would be to left and lower. The α*[βi] users lose most 
from this third-best policy, the low-β-users are hardly affected, whereas the high β and μ pay-lane 
users gain. The effects of this third-best pay-lane are similar to those in Verhoef and Small 
(2004)’s public pay-lane. 

 
Figure 9: Difference between PPL and NT prices in 3D (left) and contourplot (right) 

 
Note: the critical α*[βi] curve is also given in the contourplot, all users above the curve travel on the Pay-lane. The values for the difference in 

price (PiPL−PiNT) of the contourlines are, from top to bottom, change in price is:  −2, − 1, 0, and 1 euros. The value of time (αi) equals βi·μi. 
 

7.4 Concluding the pay-lane models 
A public pay-lane lowers prices of all users. Prices with a private pay-lane are higher than no-toll 
prices for all free-lane users and for some pay-lane drivers. The public pay-lane is not only used 
by the high values of time and schedule delay, but also by the low values of schedule delay. The 
low-β-users arrive on the outside of the peak. They face large schedule delays and negative tolls 
(i.e. subsidies). The lowest values of time and schedule delay are among those who gain the most 
from the PL. Moreover, these users lose relatively little with the PPL. 
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8. Sensitivity analysis 
This section focuses on the effect of different distribution of µ and β on the policies. We study 
five cases: Homogeneity, the Base case, Less ratio heterogeneity, and a Uniform distribution. In 
all cases the mean value of schedule delay early is €5 and the mean relative size of the value of 
time is 2.01. The Base case’s spread of the triangular distribution of µ is 2, and of β it is €6. With 
the Less ratio heterogeneity, the spread of triangular distribution of µ is reduced to 1. With Less 
proportional heterogeneity, the spread of β equals €2. With the Uniform distribution, we test 
whether our results depend on our triangular distribution. The Uniform distribution has the same 
variance as the Base case. Finally, in the Homogeneity case, all users have the same parameters.5

 
  

8.1 Effect of heterogeneity on the no-toll (NT) case 
Table 2 studies the effect of ratio and proportional heterogeneity on the NT equilibrium. The 
mean price is lower in the Base case than in the Less ratio heterogeneity case. This suggests that 
the mean price lowers with ratio heterogeneity. The mean congestion externality decreases with 
ratio heterogeneity, thereby lowering queuing costs. As section 5 predicted, proportional 
heterogeneity has no effect on average NT prices. The Base case and Less proportional 
heterogeneity case have the same average externality and price.  

By design, all five cases have the same NT consumer surplus. The advantage of this is that the 
effect of tolling is more comparable over cases than when surplus would differ across cases.  

Comparison of the Base case triangular and Uniform distribution indicates that the choice of 
NT user distribution form has no significant effect on aggregate results. The average price only 
differs a cent between the two cases, whereas mean queuing and scheduling costs do not even 
differ a cent. With both distributions, prices non-linearly increase with μi and linearly with βi.   
 
Table 2: Effect of heterogeneity in the no-toll (NT) equilibrium distribution of users 

a: This uniform distribution has the same variance and mean as the Base case triangular distribution of NT users.   
 

8.2 Effect of heterogeneity on first-best public (FB) tolling  
Table 3 tabulates the results of the sensitivity analysis for FB tolling. The differences between the 
results for the Uniform and Base case distribution are again small. Tolling is more beneficial for 
consumers in the Base case than with Homogeneity. The price decreases due to FB tolling in the 
Base case; whereas under Homogeneity, prices are unaffected. Still, the welfare gain is higher 
under homogeneity, since toll revenues are considerably higher.  

With more ratio heterogeneity, externalities are lower, and thus there is less to gain from 
tolling. Therefore, consumer surplus, toll revenues, and welfare are higher with less ratio 

                                                           
5 We do not present sensitivity analyses on price elasticities or pay-lane capacity share. Van den Berg and Verhoef (2010) discuss these analyses. 
Their results are in line with the homogeneous user literature. Also in this case, we found that these sensitivity analyses give unsurprising results.  

 Homogeneity Base case Less ratio 
heterogeneity  

Less proportional 
heterogeneity 

Uniform 
distributiona 

Spread of the μ distribution - 2 1 2 1.414 
Spread of the β distribution - 6 6 2 4.243 
Mean schedule delay cost €4.97 €4.97 €4.97 €4.97 €
Mean travel delay cost 

4.97 
€4.97 €3.97 €4.44 €3.97 €

Mean total price 
3.97 

€ €21.27 22.27 €21.74 €21.27 €
Mean marginal external cost  

21.26 
€9.95 €8.95 €9.42 €8.95 €8.94 

Total NT consumer surplus €239,332 €239,332 €239,332 €239,332 €239,332 
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heterogeneity. In the Less ratio heterogeneity case, the FB welfare gain is 19.5% of NT welfare, 
whereas in the Base case it is 17.7%, and with Homogeneity 18.7%.  

With FB tolling, scheduling costs are lower in Base case than with the Less proportional 
heterogeneity case, since the gain of a more efficient arrival ordering increases with proportional 
heterogeneity. Accordingly, FB welfare gain and consumer surplus increase with this 
heterogeneity. If there is not too much more heterogeneity in the value of time than in the value 
of schedule delay, then FB tolling can be good for the average consumer. In the Base case, 55% 
of the NT users would gain; in the Less ratio heterogeneity case, 66% of NT users would gain, 
and with the Less proportional heterogeneity case 39%. The share of NT users that would gain 
seems to increase with proportional heterogeneity and decrease with ratio heterogeneity. 

Vickrey (1973) considers the case where the values of time and schedule delay vary 
proportionally. He finds that first-best pricing is a strict Pareto improvement. Conversely, in our 
paper some users lose. First, because we have price-sensitive demand. The types of users that 
gain most raise their demand. This increases the price for the users that hardly gained in Vickrey 
(1973). Second, we extend Vickrey’s heterogeneity with ratio heterogeneity. As noted, the 
number of users that gains from an FB toll decreases with the ratio heterogeneity.  

 
Table 3: Effect of heterogeneity on the first-best public (FB) toll  

 
8.3Effect of heterogeneity on the public (PL) pay-lane 
Table 4 gives the sensitivity analysis for the PL (public pay-lane). In all five cases, all users gain 
due to the PL’s time-invariant subsidy. Van den Berg and Verhoef (2010) have no heterogeneity 
in β. They find that many users lose from the PL. This indicates that, also in the current model, if 
the value of schedule delay is almost homogeneous, there will be users that are disadvantaged.  

The Less ratio heterogeneity case has a higher welfare gain and relative efficiency than the 
Base case, indicating that these measures decrease with ratio heterogeneity (i.e. heterogeneity in 
the ratio of value of time to value of schedule delay). In the Base case, the time-invariant toll is 
higher than in the Less ratio heterogeneity case. Thus, in the Base case, the pay-lane has 
relatively fewer users compared with the free-lane. Hence, free-lane queuing is worse in the Base 
case. As Van den Berg and Verhoef (2010) discuss, it is apparently social optimal to allow more 
wasteful queuing with more heterogeneity, because of the lower congestion externalities, and this 
decreases the PL’s relative efficiency. 

 Homogeneity Base case Less ratio 
heterogeneity 

Less proportional 
heterogeneity 

Uniform 
distribution 

Spread of the μ distribution - 2 1 2 1.414 
Spread of the β distribution - 6 6 2 4.243 
Mean schedule delay cost €4.97 €4.32 €4.36 €4.70 €
Mean FB toll 

4.32 
€4.97 €4.32 €4.36 €4.70 €

Mean total price 
4.32 

€22.27 €21.01 €21.07   €21.75 €
Number of FB users 

21.00 
9000 9054.6 9122.3 8922.8 9055.3 

Toll revenues  €44,770 €39,137 €39,746 €41,970 €
Total FB consumer surplus 

39,094 
€239,332 €242,571 €246,180 €235,352 €242,606 

Welfare under the FB €284,102 €281,708 €285,926 €277,323 €281,701 
Percentage welfare gain from 
the NT case 

 
18.7% 

 
17.7% 

 
19.5% 

 
15.9% 

 
17.7% 

Percentage NT users that would 
have a lower price with FB tolling 

Price is 
unchanged 

   
55% 

 
66% 

 
39% 

 
53% 
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The more proportional heterogeneity there is, the more efficient tolling makes the arrival 
ordering, thereby increases PL’s welfare gain. Surprisingly, the PL’s relative efficiency also 
increases with proportional heterogeneity. One would expect that this relative efficiency would 
decrease with this heterogeneity, as the pay-lane imposes the more efficient arrival order on only 
a part of the users. The public pay-lane has a larger maximum and mean schedule delay than the 
free-lane. These large delays are faced by the lowest-β-users. The high-β-users have the lowest 
delays. With more heterogeneity, the mean value of schedule delay of the pay-lane’s high-β-users 
is higher, making the schedule delay savings the PL offers them more valuable. The mean value 
of schedule delay of the pay-lane’s low-β-users decreases with heterogeneity in β, making the 
extra schedule delays the PL imposes less costly. This explains why the PL relative efficiency 
increases with the heterogeneity in β.  

The differences between the Base case and uniform distribution are larger than in the NT and 
FB cases. Nevertheless, the differences are still minor. The time-invariant toll is a cent lower with 
the uniform distribution; the PL’s percentage welfare gain is 0.22 percentage point lower.   
 
Table 4: Effect of heterogeneity with the public (PL) pay-lane 

a: This uniform distribution has the same variance and mean as the Base case triangular distribution of NT users.   
 

8.4 Effect of heterogeneity on the private (PPL) pay-lane 
Table 5 shows the final sensitivity analysis for the PPL. It indicates that the PPL welfare gain and 
relative efficiency decrease with heterogeneity in μ. Van den Berg and Verhoef (2010) suggest 
that, with a more heterogeneous value of time, it is profit maximising to allow more wasteful 
queuing and schedule delay on the free-lane, lowering the relative efficiency and welfare gain.  

The PPL’s welfare gain and relative efficiency are lower in the Less proportional 
heterogeneity case than in the Base case, indicating that these measures increase with 
proportional heterogeneity. With a more proportional heterogeneous, the average value of 
schedule delay on the pay-lane is higher, and on the free-lane it is lower. This makes the schedule 
delay savings on the pay-lane more valuable and the free-lane’s extra schedule delays less costly. 
This reasoning follows the same train of thought as Verhoef and Small (2004) use to explain 
why, with static flow congestion, the pay-lane’s relative efficiency increases with heterogeneity 
in the value of time.  

With homogeneity, all users are worse off with a PPL than in the NT case. Conversely, in all 
heterogeneity cases there are some users who gain. Just as with first-best tolling; the share of NT 
users that would face lower prices with the PPL decreases with heterogeneity in β. In opposition 

 Homogeneity Base case Less ratio 
heterogeneity 

Less proportional 
heterogeneity  

Uniform 
distributiona 

Spread of the μ distribution - 2 1 2 1.414 
Spread of the β distribution - 6 6 2 4.243 
Time-invariant part of the toll −€6.37 −€5.40 −€5.36 −€5.38 −€5.35 
Mean time-variant part of the toll €6.25 €7.27 €6.29 €6.72 €6.31 
Number of users 9302.8 9309.8 9356.4 9205.5 9293.9 
Toll revenues  €3917 €4095 €4153 €5680 €4439 
Total PL consumer surplus €255,706 €256,142 €258,692 €250,408 €255,260 
Welfare under the PL €259,623 €260,237 €262,845 €256,089 €259,699 
Relative efficiency 0.453 0.493 0.505 0.441 0.481 
Percentage welfare gain from 
the NT case 

 
8.48% 

 
8.73% 

 
9.82% 

 
7.00% 

 
8.51% 

Percentage NT users that would 
have a lower price with the PL  

 
100% 

 
100% 

 
100% 

 
100% 

 
100% 
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to FB tolling, the PLL’s share that would gain slightly decreases with ratio μ≡α/β heterogeneity. 
This seems to be because with Less ratio heterogeneity, the free-lane congestion externalities are 
worse. This makes the free-lane a less attractive good, enabling the PPL operator to ask a higher 
profit maximising time-invariant toll. Hence, with welfare maximization, the share of users that 
gains from tolling decreases with ratio heterogeneity; with profit maximization it increases.  

The differences between the Base case triangular and uniform distribution are larger than for 
the NT or FB equilibrium. Again, however, the differences are not over all result changing.  

 
Table 5: Effect of heterogeneity with the private (PPL) pay-lane 

 
8.5 Concluding the sensitivity analysis 
Arguably the most striking result is that the results seem robust to changes in the distributions of 
μ and β. Particularly striking is how close the results are for the Uniform and the Base case 
triangular distribution. Reducing the heterogeneity in μ makes externalities bigger, raising the 
gain from pricing. Reducing the proportional heterogeneity lowers the gains from the reordering 
of arrival times, lowering the gain from pricing. A larger share of NT drivers benefits from first-
best pricing with less ratio heterogeneity; a smaller share gains with less proportional 
heterogeneity. The distributional effects of first-best and second-best tolling are also rather 
robust. For all cases, the patterns resemble those discussed for the base case. The main difference 
is that with more ratio or proportional heterogeneity, losses and gains are larger.  

The relative efficiencies of the pay-lanes are higher in the Base case than with Homogeneity. 
If the base case had a more ratio heterogeneity or a less proportional heterogeneity, then the 
relative efficiencies could be higher with homogeneity than with heterogeneity. The FB welfare 
gain is lower with the Base case than with Homogeneity. Nevertheless, if the calibration of the 
model would be different (e.g. more proportional heterogeneity), this could change. Whether a 
policy is more or less beneficial with heterogeneity than with homogeneity depends on the 
empirical question what distribution heterogeneity has: how much more heterogeneous is the 
value of time than the value of schedule delay?  
 
9. Conclusion 
This paper analysed how, in the bottleneck model with price sensitive demands, ratio and 
proportional heterogeneity affect congestion tolling. Proportional heterogeneity scales the value 

 Homogeneity Base case Less ratio 
heterogeneity 

Less proportional 
heterogeneity 

Uniform 
distribution  

Spread of the μ distribution - 2 1 2 1.414 
Spread of the β distribution - 6 6 2 4.243 
Time-invariant part of the toll €3.03 €3.87 €3.97 €3.14 
Mean time-variant part of the toll 

€3.96 
€4.64 €4.34 €4.48 €3.97 €

Number of users 
4.37 

8855.9 8846.8 8855.4 8836.1 8837.4 
Toll revenues  €16,201 €17,964 €18,619 €16,288 €18,133 
Total PPL consumer surplus €231,729 €231,279 €231,724 €230,701 €230,790 
Welfare under the PPL €247,930 €249,243 €250,343 €246,989 €248,923 
Relative efficiency 0.192 0.234 0.236 0.202 0.226 
Percentage welfare gain from 
the NT case 

 
3.59% 

 
4.14% 

  
4.60% 3.19% 

 
4.00% 

Percentage NT users that would 
have a lower price with the PPL  

 
none 

 
6.0% 

  
5.7% 0.6% 

 
5.0% 
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of time as the values of schedule delay proportionally; it can be viewed as giving the effect of 
income. Ratio heterogeneity is in the ratio of value of time to value of schedule delay.  

More ratio heterogeneity lowers the average no-toll equilibrium congestion externality. Hence, 
there is less to gain from tolling, and the welfare gain of tolling is lower. More proportional 
heterogeneity, increases the gain of tolling; since the gain from the more efficient arrival ordering 
tolling causes is higher, meaning that tolling lowers mean schedule delays costs more.  

With a pay-lane, only a part of the road is tolled, the remainder (the free-lane) remains toll 
free. The public pay-lane is used by highest values of time and schedule delay and by the lowest 
values of schedule delay. These low-β-users arrive on the outside of the pay-lane peak. They 
enjoy the negative tolls that then apply, whereas the large schedule delays then are not that costly. 
The private pay-lane has a positive time-invariant toll that maximises revenue. It is only used by 
the highest values of time and schedule delay. The relative efficiency of a pay-lane increases with 
proportional heterogeneity, it decreases with ratio heterogeneity. 

If there is not too much more heterogeneity in the value of time than in the value of schedule 
delay, then the mean generalised price can be lower with first-best tolling than without tolling. 
The share of no-toll equilibrium users that would face lower prices with first-best tolling 
increases with proportional heterogeneity, while it decreases with heterogeneity in the ratio (μ) of 
value of time and value schedule delay. For a private pay-lane, the share that would gain reduces 
with both proportional and between heterogeneity. The first-best toll and private pay-lane are 
never a Pareto improvement. For most distributions of the heterogeneity, all users gain from the 
public pay-lane; only if the value of schedule delay is (almost) homogeneous, some users lose. 

The distributional effects of tolling can be surprising. The gains or losses from first-best 
tolling are not strictly monotonically increasing in the value of time, because these also depend 
on the value of schedule delay. Conversely, with only heterogeneity in the value of time, the 
gains and losses from first-best pricing are monotonic.  First-best tolling is most harmful for users 
with an average value of schedule delay and a slightly larger value of time, while it raises the 
price less for the lowest values of time and schedule delay. The distributional effects with a 
public pay-lane are similar to those of the first-best optimum. A difference is that the lowest 
values of time and schedule delay are among those who gain most. Further, low-value-of-time 
users lose relatively little with a private pay-lane, while higher value of time and schedule delay 
free-lane users and even some pay-lane users lose more.  

We focused on which values of time and schedule delay gain or lose from tolling. Yet, the 
question how real world socio-economic groups are affected remains unanswered. Our results 
suggest that distributional impacts not only depend on income; but also on, for instance, the type 
of (un)employment, family structure, and trip purpose. If two drivers have the same income, but 
one is an assembly worker, and the second is unemployed or alternatively an office worker. Then, 
the commuting assembly worker probably has a higher value of schedule delays, as her job has 
strict starting hours. Clearly, pricing then has different effects on the two. Conversely, if the 
assembly worker travels to visit friends and the unemployed to visit a doctor, then the 
unemployed might have higher values of time and schedule delays. Even if two drivers are 
observably the same, they might still have very different values. For example, with two 
commuting office workers, who work at the same firm and have the same income. One worker 
might have a stricter boss or more scheduling constraints from the home life (e.g. small children), 
implying an higher value of schedule delay. While, the second might have a better car audio 
system, making driving more pleasant and thus travel time less costly. To map the results of our 
study on a real world population, one seems to need information on differences between groups 
of drivers and unobserved heterogeneity inside those groups.   
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Appendix: Numerical solution method for a pay-lane equilibrium  
This appendix discusses the numerical solution procedure for the pay-lanes. Three iterative 
procedures are used: the second is around the first and the third procedure around the second. We 
begin with some starting time-invariant toll, critical α*[β] curve and distribution of users. The 
first iterative procedure searches for the distributions for which the prices and inverse demands 
are equal. The starting distribution is used to calculate prices and the demands implied by these 
prices. The next iteration uses this iteration’s demand, approximated by a cubic spline, as the 
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starting distribution. The convergence criterion is a maximum absolute percentage change in the 
number of pay-lane and free-lane drivers of 10-12% from one iteration to the next.  

For now pay-lane and free-lane prices for α*[β] curve users are not equal. Hence, we seek a 
new curve for which the price differences are smaller. After this, the first iterative procedure is 
repeated again. The convergence criteria for the second procedure is a maximum absolute 
percentage difference between pay-lane and free-lane prices for α*[β] curve users of 0.075%. 

The third procedure searches for the optimal time-invariant toll. For the public pay-lane, we 
start with calculating welfare for three time-invariant tolls (−€1.50, −€2.00 , and −€2.50). Next, 
we fit a second-order polynomial to the tolls and their welfare. This polynomial is maximised to 
find the predicted toll ( pτ ). Next iteration’s toll is 1 (1 )i i pss ssτ τ τ+ = − ⋅ + ⋅ , where ss is the step 
size. Then, welfare resulting from this new toll is calculated. We fit a polynomial on the last two 
tolls (i.e. −€2.00 and −€2.50) and this iteration’s toll and the welfares corresponding to these 
tolls, to find the next iteration’s toll. If there is no increase in welfare from one iteration to the 
next, the step size is halved. Both consumer surplus and toll revenue seem globally concave in 
the time-invariant toll. Therefore, this procedure should converge to the optimal toll.  

We repeat this third procedure until the absolute in welfare between iterations is below 0.25. 
After convergence, we use the time-invariant toll with the highest welfare in the series of 
calculations as the optimal toll. The procedure for the PPL is basically the same as for the PL, 
only now toll revenues are maximised instead of welfare.  
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