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ABSTRACT 

This paper presents a method to analyse goods movement simulation in urban/metropolitan 

areas. Urban goods movements involves two components: demand in terms of urban goods 

movements and vehicle routing with constraints (time windows, number of vehicles, …). 

To analyse demand we consider a multi-step model, while to analyse goods movements a 

Vehicle Routing Problem with Time Windows (VRPTW) is formalized.  

In the demand analysis, goods movements are evaluate considering a macro-levels 

approach, which this approach goods movements are analysed from upper macro-levels 

(commodity and vehicle level) to the path choice model. At the last macro-level of demand 

analysis is considered a path model, and the one-to-one and the one-to-many approaches 

are evaluate. In details, the one-to-one approach allows to evaluate the path cost and the 

path probability; the one-to-many approach allows to optimize the vehicle routes. In the one-

to-many approach, the optimization is performed applying a genetic algorithm for which some 

procedures are proposed for the solution evolution. A real case application is designed to 

detect the paths and the stops of some vehicles (2-6 tons) to deliver dairy products at 

retailers in a city. The observed paths are optimized using the proposed procedure. 

 

Keywords: City Logistics, goods movement, vehicle routing problem, genetic algorithm. 

INTRODUCTION 

This paper presents a method to simulate goods movements in urban/metropolitan areas. 

Two components are involved: demand in terms of urban goods movements and vehicle 

routing with constraints (time windows, fleet size, load factor …). For demand we propose a 

commodity-based model, which simulates the goods quantity to be delivered to a client (i.e. a 

retailer); for the Vehicle Routing Problem (VRP), a VRP with Time Windows (VRPTW) to 

simulate goods movements is developed. 
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The aim of this work is the urban goods demand analysis considering the goods demand, the 

goods distribution, the paths. The demand models are oriented to forecast the goods quantity 

purchased according to some attributes (i.e. shop characteristics, end-consumer behaviour 

and so on). The goods distribution refers to the goods movements in an urban area to define 

the best strategies to optimize the supplying operations. The strategies can regard supplying 

frequency, supplying quantity, the retailers (shops) supplied in function of their localization, 

the order in which the supplied retailers (shops) are visited. This work can be important for 

both policy and for business: in the first case the methodology can be used to regulate the 

goods vehicle access in the urban area; in the second case the methodology is a means for 

business users to manage their fleet. Another aspect of the problem are some commercial 

issue imposed by the clients that need to re-design the tour in real time (for example, goods 

to be delivered only at certain times of the day and communicate by client during the tour). 

The distribution strategy should take into account this aspect, in order to optimize the travel 

time (or distance). An opportune real time system for fleet management needs and reduce 

the travel time and the operative costs.  

Various models and methods may be used to analyse urban goods demand: the main 

classifications concern the output considered and the structure. As regards the latter, some 

models have a structure similar to that used for passengers (multi-step models), while others 

are based on the macro-economic approach (spatial price equilibrium models) (Harker, 

1985). In terms of output, while some models estimate the commodity quantities transported 

(Ogden, 1992; Holguìn-Veras, 2002), others estimate the vehicle number involved in goods 

transport in urban areas (Ogden, 1992; Holguìn-Veras and Thorson, 2003). With vehicle-

based models, interactions with other traffic components can be evaluated and paths (and/or 

routes) followed can be analyzed; considering that the vehicle is given the optimal route has 

to be found. Hunt and Stefan (2007) proposed a microsimulation model to simulate the 

number of routes between zones in the study area split by time period and trip purpose. As 

regards route analysis (without taking the order of visits into account) of goods vehicles in 

urban areas, attempts have been made to correlate route length with the number of stops 

(Veras and Patil, 2005) or study the number and length of empty trips (Figliozzi et al. 2006). 

An extended review concerning demand models is reported in Russo and Comi (2007). 

The VRP consists in designing optimal routes from a depot to a set of customers, subject to 

various constraints (time windows, vehicle capacity, route length,…) (Laporte, 2007). It was 

introduced by Dantzig and Ramser (1959) to optimize the movements of a fleet of gasoline 

delivery trucks. Hence, various specifications are proposed for the VRP: the DVRP (Dynamic 

VRP) has been advocated (Montemanni et al., 2005; Hanshar and Ombuki-Berman, 2007) 

given that the number of customers is not known a priori, but is an input that is variable in 

time. Others have proposed the VRP with Time Windows (VRPTW), in which deliveries can 

be made within a set time interval. Time window constraints can be rigid (Hu et al., 2007) or 

soft (Ando and Taniguchi, 2006; Figliozzi, 2009). Further specifications have been 

suggested: i.e. the Time-Dependent VRP (TDVRP) in which travel time is a function of the 

travel day (Donati et al., 2008) or a modification of VRP in the Inventory Routing Problem 

(IRP) (Campbell and Savelsbergh, 2004).  

The vehicle routing problem can be solved using exact (Fisher, 1994; Fisher et al. 1997, Kohl 

and Madsen, 1999; Toth and Vigo, 2002; Chabrier, 2006; Baldacci et al., 2008; Qureshi et 

al., 2009; Azi et al., 2010) or heuristic algorithms (Badeau et al., 1997; Laporte et al., 2000; 
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Jones et al., 2002; Montemanni et al., 2005; Hanshar and Ombuki-Berman, 2007; Laporte, 

2007; Vitetta et al., 2008; Bin et al., 2009; Repoussis and Tarantilis, 2009; Zachariadis and 

Kiranoudis, 2010). Exact approaches have limitations related to calculation times and the 

limited size of the problems that can be solved. An extended review concerning the VRP, 

several variants and solution approaches is reported in Laporte (2007) and Gendreau et al. 

(2008). Furthermore, in recent years many commercial tools have been developed with a 

view to solving routing problems, based on both exact algorithms and heuristic algorithms. In 

Vitetta et al. (2009) a list of the main tools and their characteristics is reported.  

In this paper we formulate a problem that can be decomposed into two subproblems: a 

demand analysis in which goods movements are considered in terms of quantity and a 

VRPTW in which routes are optimized; the costs involved in the problem are defined by 

using network theory.  

The problem is solved by means of a bio-inspired approach based on the use of a genetic 

algorithm. In the proposed algorithm, some new crossovers are proposed to recombine the 

genetic material: two random crossovers which can be used simultaneously and a crossover 

that allows us to insert an element in a position that minimizes cost. Performance of the 

algorithms is compared by using crossover operators and their combinations.  

The paper is structured as follows. In second section we present the formulation of the 

models, while in third section the proposed genetic algorithm is reported. In fourth section 

two applications are reported: a test to evaluate the proposed procedure and a real case 

application. Finally, some conclusions are drawn and future developments are outlined. 

THE PROBLEM 

The general macro-architecture of reference is that stated in the literature (Russo et al., 

2007). In the proposed macro-architecture, goods movements are analysed from upper 

macro-levels (commodity and vehicle level) to the path choice model (figure 1).  

At the first macro-level the goods quantity purchased in a zone by a retailer can be analysed 

on two levels: 

commodity level, consisting of two macro-models: 

� attraction macro-model; this refers to end-consumer quantities; 

� acquisition macro-model; this concerns logistics trips from the retailer’s outlet 

vehicle level, which consists of two macro-models: 

� service macro-model; 

� path macro-model. 
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Figure 1- Macro-architecture of goods movements  

Demand analysis 

The paper analyzes the movements for which the decision-maker can be considered a 

carrier who uses his/her own vehicle fleet to deliver goods. In this case, a retailer who needs 

to be supplied depends on the decisions of the carrier as to how and when to undertake 

delivery. Demand is simulated through two models: the first simulates the goods attraction to 

the retailer, the second the number of trips (or their frequency) to deliver the required goods. 

The first model simulates the goods quantity attracted by an outlet, in a fixed time period T, 

as a function of an attributes vector X that reflects the outlet characteristics (size, number of 

employees, and so on): 

qi= qi(ββββ, Xi, T) 

where i is the outlet, ββββ a vector of parameters to calibrate and Xi the attribute of outlet i. 

The second model simulates the supply trips to deliver the goods provided by the previous 

model. This model can be deterministic or probabilistic: the former case has a probability of 1 

that the goods are delivered with a fixed number of trips; in the latter, the probability is less 

than 1. With this model, the total quantity to be delivered is spread across a fixed number of 

time subintervals, each with its own probability. This model derives from the input for vehicle 

routing. 

Vehicle routing 

To identify the optimal paths in the path macro-model, three steps can be followed: 

� system performance estimation, which can be achieved through one, or a combination, of 

the following: traffic assignment (TA) (static or dynamic), real-time system monitoring 

(RSM) or reverse assignment (RA) (Russo and Vitetta, 2005); 

� one-to-one problem (OOP) solution, which consists, given the costs on the network 

obtained by the previous step, in generating alternative paths for each origin-destination 

pair;  

� many-to-one problem solution, which consists, given the optimal paths between every 

origin-destination pair obtained by solving the OOP, in the solution of a VRP formulated as 
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a classic optimization problem whose objective is to calculate the best combination of 

one-to-one paths in order to visit a certain number of network nodes in succession. 

In figure 2 we report the steps to simulate goods movements. 

 
Figure 2- Simulating goods movements 

System performance estimation 

In this section, simulation of the transport system is analysed to evaluate its performance. 

The input consists in demand and supply; the output comprises the link flows and costs. To 

calculate the link flows and costs, three methods could be used: TA, RSM and/or RA. 

 

The TA method simulates the demand-supply interaction to determine system performance 

(flows and costs). Two approaches are possible: User Equilibrium (UE) or Dynamic Process 

(DP) (Wardrop, 1952; Beckman et al., 1956; Sheffi, 1985; Ben Akiva et al., 1998; Cascetta, 

2001; Russo and Vitetta, 2003; Cantarella et al., 2006; Russo and Vitetta, 2006). The TA 

input comprises: 

� a supply model simulating network characteristics; 

� a demand model simulating user behaviour; 

which give as output: 

� link flows; 

� link costs. 

 

RSM allows us to obtain the traffic flow data using monitoring techniques and can be 

obtained with: 

� measurement at fixed points in the network with traditional measurement systems like 

loop detectors and image processing (Hoose, 1991); 

� floating cars (Torday and Dumont, 2004) in the network (individual cars, taxis, transit 

system vehicles); 

RSM costs and flows are usually made for a subset of the network links. 
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RA models (Russo and Vitetta, 2005) have the following input: 

� link flows; 

� link performance in terms of costs; 

and give as output 

� the link cost parameters of the cost-flow functions used in the supply model; 

� the value (number of trips) and/or the model parameters of the demand model. 

Starting from observed costs and flows (i.e. provided by RSM), RA models provide the 

demand value and/or parameter and/or the link cost parameters of the cost-flow functions 

used in the supply model. 

One-to-one problem 

As input, the one-to-one problem (OOP) has costs and flows and, as output, it supplies the 

probability of considering a path for vehicle routing, taking user behaviour into account. 

In this paper, to solve the OOP, a probabilistic approach is adopted. In this approach, having 

established a criterion to define the cost (e.g. minimum travel time or a combination of costs), 

the link cost, and hence the path cost, is a random variable resulting from the user’s 

perception of the possible paths. The probability of considering a path in vehicle routing pn(k) 

can be calculated as the sum, on all the sub-sets ΓΓΓΓi which contain the alternative k, of the 

product between the probability pn(ΓΓΓΓi
n) of perceiving the sub-set ΓΓΓΓi

n and the conditional 

probability pn(k/ΓΓΓΓi
n) of considering path k given the choice set ΓΓΓΓi

n (Manski, 1977): 

 

pn(k) = Σi  p
n(ΓΓΓΓi

n) pn (k/ΓΓΓΓi
n) 

 

For the link cost, we specify the following function: 

 

t
ij
 = (L

ij
/β1) • (1+ (β2 + β3Xij)β4) 

 

where: 

tij is the cost of link ij;
 

Lij is the length of link ij; 

Xij is a binary variable that depends on link flow; 

βi are parameters to calibrate. 

In this way, starting from observed link costs (times) it is possible to calibrate the cost 

function so as to evaluate the cost of all network links. For this purpose the links were divided 

into categories according to their characteristics and for each of them the cost function 

parameters can be calibrated. 

Vehicle routing problem 

In this paper the problem proposed is a classical VRPTW, applied to the case of a 

commercial vehicle fleet. The origin and destination is a central depot. The problem solution 

is a sequence of nodes (points where the clients are located) associated to each vehicle.  
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The following notation is used: 

� d is the depot; 

� N = {1, 2, …, n}, node set; 

� bj vehicle capacity, j=1, 2, …, m; 

� ca link a cost; 

� L = {a : a = (i,j) ∀ i, j ∈N}, link set; � BTl,k penalty before time at client l using 

path k; 

� Z = {1, 2, …, m}, Z ⊂ N nodes can be 

visited (clients); 

� ATl,k penalty after time at client l using 

path k; 

� V ={1, 2, …, m}, set of goods vehicles; � OTl,k operation time at client l using path 

k; 

� fa generic vehicle flow on link a∈L; � yiv variable that is equal to 1 if node i has 

already been visited by vehicle v, zero 

otherwise; 

� ri demand on node i; 

� f is the vector of link flow; 

� xkv variable that is equal to 1 if path k is 

used by vehicle v, zero otherwise; 
 

Objective function 

 

Considering an oriented graph G(N, L), the relation between links and paths is a binary 

matrix ∆∆∆∆, called the link-path incidence matrix. To each link a a vehicle flow, fa, and cost, ca, 

are associated. The relation between link flow fa and path flow hk is: 

fa = Σkδak • hk 

Using vectorial notation: 

f = ∆∆∆∆ h 

The relation between path cost gk and link cost ca is: 

gk = Σaδak • ca + gk
NA 

in which gk
NA are non-additive costs. 

In some cases, the link cost is a function of the flow (for more details, see Cascetta, 2006): 

c = c(f) 

Combining graph definition and cost function, we define a network and if the cost is a 

function of the flow, the network is congested. 

The case of a congested network is considered, and the VRPTW is expressed with an 

optimum problem: 

       

minimizing Σk(gk(f) • xkv) 
 (1) 

 

Variables 
 

The problem variable is xkv: It is a binary variable that is equal to one if path k is used by 

vehicle v, zero otherwise. This formulation allows us to consider all the costs related to the 

route followed by a vehicle. 
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Constraints 
 

The objective function (1) is subject to some typical vehicle routing constraints:   

          

Σv=1,..., m yiv = 1 
∀ i ∈ Z, i≠ d   (2) 

Σv=1,..., m ydv = m  
 (3) 

Σi∈Z ri ⋅ yiv ≤ bv 
∀ v ∈ V (4) 

xkv ∈ {0,1} ∀ k (5) 

gk(f) = Σaδak • ca(f) +gk
NA ∀ k (6) 

 

Constraint 2 indicates that only one vehicle can visit a node, constraint 3 that all vehicles go 

back to depot. Constraint 4 is a capacity constraint; 5 indicates that the problem variable can 

only take the value zero or one. In constraint 6, the term gk(f) is the path cost between an 

origin/destination pair (depot – client, client – client, client – depot). The path cost is the sum 

of two elements: additive costs, that depend on link and flow characteristics, and non-

additive costs. The first element is obtained by solving an OOP, using a shortest path search 

procedure. Assuming that the travel time on the path is the path cost, a cost matrix may be 

defined, in which the generic element is the travel time between an origin/destination pair. 

The second element consists of three components: the before-time (BTl,k), after-time (ATl,k) 

and operation time (OTl,k) for client l visited by path k. These components are calculated for 

each client reached by vehicle v that follows the path considered.  

Before-time indicates the time penalty for advance arrival at the node. It is assumed that 

before-time is a linear function of arrival time. After-time indicates the time penalty for 

delayed arrival at the node.  

Several formulations can be used to define the cost associated to before-time and after-time: 

the cost function can be linear, non-linear, constant, continuous or discontinuous. In figure 3 

(in which the x axis indicates time as minutes after midnight) two possible cases are 

reported: in case a) the before-time and after-time costs are linear; in case b) the before-time 

cost is a linear function, and before-time is a constant value. Of course, various combinations 

are possible.  

In this work, for the penalty, the case reported in figure 3b is assumed. 
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Figure 3- Non-additive path cost: penalty 

Operation time indicates the time for unloading operations, it is a function of the quantity of 

goods delivered to client l: 

 

OTl = µ • ql  (7) 

 

in which 

µ is the proportionality factor; 

ql is the quantity of goods delivered to node (client) l. 

The non-additive path cost can then be formalized as: 

 

gk
NA = Σl (BTl.k+ ATl,k + OTl,k) 

 (8) 

 

Finally, (6) is a constraint on the variables xkv of the problem which can be set to 0 or 1. 

ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM 

A special class of heuristic algorithms for the VRP is made up by bio-inspired algorithms, that 

is algorithms designed to simulate natural systems. Examples of bio-inspired algorithms 

include the Genetic Algorithm (GA) (Goldberg, 1989), Ant Colony Optimization (ACO) 

(Dorigo et al., 2006), and Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 2001). 

An extended review concerning bio-inspired algorithms for VRP is reported in Potvin (2009). 

The genetic algorithm is a heuristic approach that allows an optimization problem to be 

solved by imitating the natural evolution of a living species. Baker and Ayechew (2003) use a 

genetic algorithm in which selection and crossover operators are supported by a method for 

children placement in the new generation. In Haghani and Jung (2005) the genetic algorithm 

is used for optimizing the vehicle fleet routes on the basis of data collected in real time. 

Hanshar and Ombuki-Berman (2007) propose a crossover in which some nodes are deleted 

from a parent, and placed in the other in the position that minimizes the cost; while 

placement is not possible a new route is created. A parallel genetic algorithm (Berger and 

Barkaoui, 2004) can also be used, in which two populations of solutions evolve 
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simultaneously to optimize two different objectives; the aim of the parallel is to improve the 

algorithm convergence. In some cases (Prins, 2004; Alverenga et al., 2007; Marinakis and 

Marinaki, 2010) the genetic algorithm is used with another algorithm to improve its 

performance. 

Specification 

The solution procedure proposed is a genetic algorithm based on the concepts of natural 

selection and genetic theory. Indeed, the algorithm combines the survival of the fittest 

individuals (natural selection) with their mating (genetic theory) (Goldberg, 1989). 

We define: 

� trip chain as an ordered sequence of nodes associated to one vehicle: κj= (d…, i, …d) ∀ i 

∈ Z; each trip chain has the depot d as the initial and final node; 

� solution S: a set of trip chains S={(κ1, κ2,…, κj,…)  j=1,2,…, m}.  

In general, each trip chain is associated with a vehicle: it is a case of parallel VRP. In the 

cases where the vehicle number is smaller than the trip chains, there are one or more 

vehicles that undertake more than one trip chain. The proposed formulation takes both cases 

into account. 

Performance of the genetic algorithm depends on the operators (selection, crossover and 

mutation) implemented. In the literature various operators are proposed (Gwiazda, 2006); the 

aim is to accelerate the algorithm’s convergence and find a good solution. The implemented 

operators are reported below. 

The selection operator depends on the fitness value. Indeed, the selection probability is the 

ratio between the fitness FFi of element i and the sum of fitness of all elements of the 

population: 

pri=(FFi/ΣjFFj) = exp(-α• Σk(gk(f) • xki)/Σjexp(-α • Σk(gk(f) • xkj)) 

The proposed formulation of the fitness function allows the selection probability to be 

calculated with a Logit model. The selection operator is applied to the parent population to 

select the fittest parents. In the proposed algorithm, a random selection procedure is defined: 

the population is represented by a roulette plate; part of the roulette plate, proportional to the 

selection probability, is associated to each parent, and a number of random extractions 

(equal to population size) is made. The higher the selection probability, the higher the 

probability that the element is extracted. The parents set is the output of the selection 

operator and the input for the crossover operator. 

 

The crossover operator allows us to cross two parents to obtain a new solution. In this paper, 

some crossovers are proposed: 

� endo-crossover, the crossover is made inside the solution (between two trip chains) and 

between two solutions; the elements involved in the crossover are selected and crossed 

randomly; 

� eso-crossover, the crossover is made between two solutions, the elements involved in the 

crossover are selected and crossed randomly; 

� eso-spread crossover, the elements involved in the crossover are selected randomly and 

inserted in the solution optimizing the objective function. 
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Only one element of the population, selected randomly, is involved in the endo-crossover. In 

the selected element two trip chains to cross are selected (figure 4, a). For each trip chain a 

node interchange set is selected; the nodes in the interchange set are swapped for a random 

crossover, obtaining two new trip chains with a new sequence and a different number of 

nodes (figure 4, b). Moreover, given that a load is associated to each node, the total load 

associated to a trip chain also changes. This may violate the capacity constraint: a capacity 

test is thus required to ascertain whether the goods quantity is less than or equal to vehicle 

capacity. If the test is verified, the crossover is stopped, or else the cut points are shifted one 

position until the constraints are satisfied. If shifting the cut points does not allow an 

admissible solution to be obtained, two new trip chains are selected and the procedure is 

repeated. If the solution coincides with a trip chain (as is the case where we have a single 

vehicle) the endo-crossover degenerates into a mutation operator. The capacity test was 

described above for the random crossover. Finally, the solution cost is updated. The endo-

crossover steps are schematized below: 

 

STEP 1 Select 

Select a parent from the parent set. 

In the parent select two trip chains. 

For each trip chain, select a node interchange set. 

STEP 2 Swap  

Swap the two node sets.  

If the swap is not possible (because a constraint is broken) shrink the node  ---

--------  interchange sets. 

If shrinking is not possible, go to step 1.  

STEP 3 Update 

Update the solution cost 

 

Depot Depot Depot Depot Depot Depot Depot Depot Depot Depot

14 10 7 24 17 14 10 7 24 17

11 20 5 16 12 11 20 5 16 12

13 22 23 6 2 13 22 23 6 2

8 25 9 4 8 4 9 25

15 21 19 19 21 15

18 18

3 3

Depot Depot Depot Depot Depot Depot Depot Depot Depot Depot

a) b)
 

Figure 4 - Endo-crossover procedure 

Two randomly selected solutions (parents) are involved in the eso-crossover, which consists 

in four steps. In the first step, for each parent a trip chain is selected, for each of which a 

node interchange set that will be crossed is selected (figure 5, a). In the second step, the 

interchange node sets are swapped and appended (figure 5, b). If the swap is not possible 

because the capacity constraint is broken, one or both node interchange sets are shrunk until 

the constraint is satisfied. At the third step, an admissibility test is made to search and 
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eliminate repeated nodes (figure 5, b). Finally, the cost solution is updated. The eso-

crossover steps are schematized below: 

 

STEP 1 Select 

  Select a parent pair from the parent set. 

  For each parent in a pair, select a trip chain. 

For each trip chain, select a node interchange set. 

STEP 2 Swap  

  Swap the two node interchange sets. If the swap is not possible (because the 

-  capacity constraint is broken) shrink the node sets. 

STEP 3 Search and eliminate 

  For each parent search and eliminate the repeated nodes. 

STEP 4 Update 

  Update the solution cost. 

 

Depot Depot Depot Depot Depot Depot Depot Depot Depot Depot

20 17 2 22 18 14 10 17 24 7

16 5 7 25 6 11 20 12 16 5

23 24 14 9 4 13 22 2 6 23

12 21 3 11 19 8 4 9 25

8 10 13 15 19 21 15

18

3

Depot Depot Depot Depot Depot Depot Depot Depot Depot Depot

Depot Depot Depot Depot Depot Depot Depot Depot Depot Depot

20 17 2 22 18 14 10 17 24 7

16 5 7 25 6 11 20 12 16 5

23 24 14 9 4 13 22 2 6 23

12 21 3 11 19 6 8 4 9 25

8 10 13 15 11 4 19 21 15
13 19 18

3

Depot Depot Depot Depot Depot Depot Depot Depot Depot Depot

repeated nodes

a)

b)

 
Figure 5 – Eso-crossover procedure 

The eso-spread crossover involves two solution selected randomly. The procedure can be 

summarized in four steps. 

In the first step (figure 6a), using a random procedure, a parent pair is selected in the parents 

set. In the same way, for each parent a trip chain is selected. Finally, the two trip chain are 

swapped; this procedure have, generally, two effects on the parents: a) some nodes are 

repeated; b) some nodes are missing. Those defects are make up in the second and in the 

third step. 

The second step (figure 6a) consisting of a search procedure and a build procedure, applied 

at each parent. The search procedure is used to find the repeated nodes that are removed 
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from the parent. The built procedure allows to build (for each parent) a list of missing nodes 

that will be used in the third step. 

In the third step (figure 6b) an insertion procedure is performed in order to insert the missing 

nodes in the solution. When a node is select for insertion, two phase are developed: I) find 

the trip chain in which the node will be inserted; II) insert the node in the best position. In the 

phase I) it is select a trip chain in which to insert a node respecting the problem constraints 

(in this case the vehicle capacity). If the insert is not possible (because the constraints are 

violated), an adaptation procedure is used: the adaptation procedure allows to modify the trip 

chain moving one or more nodes to another trip chain. In the phase II) all the possible 

positions to insert the node in the trip chain are considered: for each position is valued the 

trip chain cost and it is chosen the position for which the cost is the lowest (best node 

position). Note that a node insertion is not influenced by nodes in the list of missing nodes. 

In the fourth step, finally, for each trip chain in the solutions the costs are updated. 

The figure 6 depict the eso-spread crossover procedure in the case in which the adaptation 

procedure is not necessary. The eso-spread crossover steps are schematized below: 

 

STEP 1 Select and swap  

  Select a parent pair from the parent set. 

  For each parent in a pair, select a trip chain. 

  Swap the trip chains. 

STEP 2 Search, eliminate and build 

  For each parent, search and eliminate the repeated nodes. 

  For each parent, build the list of missing nodes. 

STEP 3 Swap 

  For each parent and for each node in the missing nodes list, insert in a trip 

  chain a missing node minimizing the trip chain cost. If insertion is not possible 

  (because a constraint is broken) adapt the trip chain until the constraint is  

  respected. 

STEP 4 Update 

  Update the solution cost 
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Figure 6 - Eso-spread crossover procedure 

The crossover output is the child population; some of the children are selected (according to 

the mutation rate) and the mutation operator is applied. The mutation operator is needed 

because the selection and crossover operator, recombining the current population, can 

remove helpful genetic material. The mutation operator proposed consists in reversing a trip 

chain. The mutation output is the children set, which can be the next parent population. 

 

The problem data concern the number of clients to reach, the goods to deliver and the 

operation time at each stop, the time windows, fleet size, vehicle capacity. The problem 

variables are population size, crossover and mutation rate and the max number of iterations. 

Calibration 

In this section, we present an application test to calibrate the proposed procedure. The 

problem parameters are the following:  

� 24 clients to reach; 

� the fleet consists of 5 homogeneous vehicles (NVmax=5); 

� each vehicle has a capacity of 40 units (b=40). 

 

The problem variables are the following: 

� the initial population size is 30 elements; 

� crossover rate 60%; 

� mutation rate 10%; 

� max number of iterations 1000. 
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The solutions found by the genetic algorithm using the operators described above show in 

particular (figure 7) the results obtained using respectively the eso-crossover, the eso-

crossover and endo-crossover simultaneously and the spread crossover. In all cases, the 

problem parameters and variables are the same. Note that the spread crossover allows us to 

find a good solution in a smaller iteration number than the eso-crossover and the combined 

eso and endo-crossovers. 

Figure 8 reports the performance of the spread-crossover obtained by varying the crossover 

rate and fixing the other variables and parameters. We note that if the crossover ratio 

increases, in a few iterations a better solution can be found than that found by a smaller 

crossover ratio. 
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Figure 7. Problem test results varying the crossover operator 
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Figure 8. Problem test results using the spread crossover operator 

 

EXPERIMENTATION FOR THE VEHICLE ROUTING PROBLEM 

In this section we describe how the proposed procedures were tested. Application to a real 

case was carried out in Catania, a city in southern Italy. The application involved some 

carriers who deliver foodstuffs (milk, cheese and so on) to clients.  
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Real case application was designed to detect the paths and stops of some vehicles (2-6 

tons) to deliver dairy products at retailers. The instrumentation consisted of a PDA equipped 

with GPS tracking (figure 9) and software that mapped the points (to identify the paths) at 

fixed time intervals (in this case 15 seconds); the stops were identified interactively by the 

driver. By using the PDA other data were obtained to determine characteristics of the 

shipment (quantity delivered, vehicle type, etc.) that were not considered in this phase. 

The arrival time at the customer was indicated by the driver. The start was derived by 

analyzing the points that spatially coincide with the stop and assuming that the departure 

moment is the instant of observation of the last of these points. The stop duration (operation 

time) was calculated accordingly. 

Three vehicles were monitored for four days, their tours starting at 7:00 a.m. and ending at 

2:00 p.m. Preliminary analysis was performed considering a single vehicle which, starting 

from the depot, delivered to 26 clients.  

 
Figure 9. The PDA used 

The used software interfaces with the driver through two main forms. The first one allows to 

record the start/return at the depot (to take the paths) and to indicate the positions where the 

clients are located. The second one, contains the questions text provided by the analyst. The 

software is managed by an input file in which parameters (i.e. log interval) and questions 

type and text are supplied. 

There are two question types: L-type questions, are open questions (that is, the driver must 

write the answer), M-type questions, are multiple-choice questions (that is, the answers were 

provided by the analyst and the driver chooses one). The questions are activated when the 

driver pushes a command button provided in the first form.  

Costs 

The link cost (and the path cost) can be simulated through a model that measures costs 

against variable characteristics of the problem (link length, flow, and so on). In a previous 

section we specified a model to simulate the travel time on a link ij, in table I the calibrated 

parameters are reported. The links were divided into four classes, according to their 

characteristics (the total database is constituted by 244 observations), for each class were 

calibrated the parameters of the proposed model. 
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Table I – Link cost function calibration 

Link class β1 (km/h) β2 β3 β4 ρ2 

A 54.999 2.551E-05 0.168 0.147 0.976 

B 49.953 9.057E-01 1.455 2.244 0.837 

C 49.981 5.020E-01 1.942 1.752 0.887 

D 31.072 5.000E-02 1.775 2.006 0.689 

One to one analysis 

The shortest path between every stop (client pair) was determined by considering the cost 

function reported in a previous section, for the link cost. To perform one-to-one analysis, a 

graph was developed and the paths between each client pair calculated on the basis of 

minimum time and minimum length criteria. A choice probability was associated to each path 

(Russo and Vitetta, 2006). The paths provide the input for many-to-one analysis.  

We focused our attention on only one vehicle: this vehicle reached 26 clients (observed trip 

chain in figure 10). The shortest paths between each pair of users were analyzed in terms of 

the shortest time and shortest length. It was noted that in some cases the path followed by 

the vehicle is neither the shortest time path nor that of shortest length: if the vehicle were to 

use the shortest time path there would be a 4.40% reduction in travel time; were it to use the 

shortest length there would be a 2.50% reduction in distance travelled (table II). 

 
Table II – One-to-one analysis: path cost 

Origin Destination  Observed Paths  Shortest Paths  

   time (min) length (km)  time (min) length (km)  
Depot 2  17.48 12.91  17.48 12.91  

2 3  0.45 0.31  0.40 0.27  
3 4  0.51 0.30  0.51 0.30  
4 5  2.10 0.64  2.10 0.64  
5 6  0.36 0.26  0.36 0.26  
6 7  5.54 4.41  5.54 4.41  
7 8  0.12 0.10  0.12 0.10  
8 9  3.84 2.98  3.84 2.98  
9 10  0.59 0.49  0.59 0.49  
10 11  1.01 0.21  1.01 0.21  
11 12  1.31 0.45  0.89 0.45  
12 13  0.48 0.33  0.48 0.33  
13 14  2.93 2.09  2.93 2.09  
14 15  0.37 0.32  0.37 0.32  
15 16  0.28 0.24  0.11 0.09  
16 17  1.33 0.78  1.33 0.78  
17 18  2.13 1.69  2.13 1.69  
18 19  2.75 2.29  2.75 2.29  
19 20  4.38 2.81  4.38 2.81  
20 21  1.50 0.76  1.50 0.76  
21 22  1.83 1.09  1.83 1.09  
22 23  9.90 5.98  9.90 5.98  
23 24  1.79 1.39  1.79 1.39  
24 25  0.77 0.60  0.77 0.60  
25 26  3.38 1.10  2.22 1.39  
26 27  6.07 3.94  6.07 3.94  
27 Depot  28.43 20.67  25.80 18.86  

Total 101.63 69.12  97.20 67.41  
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Many-to-one analysis 

In figure 9 we report a trip chain followed by a monitored vehicle (9a) and the trip chain 

obtained by applying the genetic algorithm (9b). From a comparison of trip chain costs (Table 

3) it may be noted that the genetic solution leads to a cost reduction of 2.88%. 

A vehicle shuttling between the depot and customers (customer - depot - customer) would 

take approximately 1300 minutes (covering about 900 kilometers) along the shortest path to 

serve all customers. If the vehicle were to visit all users on any one route (one-to-many), it 

would save about 81% in time (and 81% in length).  

Moreover, a trip chain design in the many to one approach allow a further reduction in the 

costs. This is an objective of the carriers that allow to optimize the vehicles use and their 

deployment. The trip chain design can also consider some constraints imposed at political 

level (i.e. time windows, weight limit and so on) to limit the goods vehicles transit in urban 

area.  

 
Table III – Solution cost 

 time* (min) length (km) reduction (%) 

Observed 260.23 69.12 0.00 

Genetic 252.74 66.24 2.88 
*Travel time + operation time 

 

  

a) 

 

b) 
 

Figure 9. Solution comparison (schematic representation) 

Below, we analyse and compare the observed trip chain and calculated trip chain. The 

analysis consists in searching for similarities within the two trip chains (figure 10). We 

introduce the following definitions: 

� identical sub-trip chain: a node sequence that occurs in the observed trip chain and that 

calculated (not necessarily in the same position); 

� inverted node sub-trip chain: node sequences present in the observed trip chain that can 

be made identical to calculated trip chain sequences by exchanging a single node; 

� scattered nodes: these are isolated nodes that cannot be collected in comparable 

sequences. 
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Figure 10. Similarity analysis 

This comparison reveals the presence of four identical sub trip chains (figure 10a) (nodes 

12/13, 14/16, 19/22, 23/25), four inverted node sub-trip chains (figure 10 b) (node sequence 

in the calculated trip chain: 11-10-9, 8-7, 4-3-2, 6-5) and four scattered nodes (figure 10c) 

(17, 18, 26 and 27). The presence of identical sub-trip chains is due to the small difference 

between the observed and calculated trip chain. 

The proposed approach can be extended at the case in which we have n vehicles (n≥2). In 

this case was considered two routes of two distinct carriers to weight the possibility of moving 

some customers from one operator to another. In table IV have reported the data related to 

this scenario. In the observed data the first carrier reaches 24 clients, the second carrier 31 

clients (then a problem with 55 clients). In the optimum routes we have the moving of a node 

from the first carrier to the second. The results are (optimal result compared with observed 

data):  

1) an increment (1.81%) in the travel time for the first carrier; 

2) a decrement (3.84%) in the travel time for the second carrier; 

3) a decrement (1.50%) of the total travel time. 
 
Table IV – Approach extension  

  Observed  Optimized   

carrier ID  Clients number Time
*
 (min)  Clients number Time

*
 (min)  Time variation (%) 

1  24 291.84  25 297.13  +1.81 

2  31 414.55  30 398.64  -3.84 

Total  55 706.39  55 695.77  -1.50 

*Travel time + operation time 
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CONCLUSIONS 

In this paper, a macro-architecture was reported for a model system to simulate goods 

movements in an urban area. In the macro-architecture proposed, the goods movements 

were analysed from the upper macro-levels (commodity and vehicle level) to path choice. 

Path choice was analysed by considering two problems: the one-to-one problem and the 

many-to-one (or one-to-many) problem. The many-to-one was formulated as a VRP which 

must be solved in the case of goods distribution. In this paper goods distribution was tackled 

and a VRPTW was solved to simulate the distribution process. The VRPTW was formulated 

by referring to some cost terms (travel time, operation time and penalty time). The solution 

procedure consisted of a genetic algorithm in which some crossovers were tested. 

Application to a real case was also proposed, based on preliminary data gathered by 

monitoring some vehicles for the delivery of dairy products. In this phase we reported the trip 

chain followed by a single vehicle and a case in which we have 2 vehicles in which are 

optimized simultaneously two trip chains. The route followed by the observed vehicle was 

compared with that optimized by the proposed procedure, which allows a reduction in both 

travel time and travel distance. A comparison was also made to highlight the superiority of 

the many-to-one over the one-to-one approach, noting that the many-to-one approach saves 

about 90% of time (compared to the one-to-one). The observed trip chain was compared with 

that found from the application of the GA proposed. 

The proposed procedure can be applied in both policy and business sector: in the first case 

to regulate the goods vehicle access in the urban area (and consequently reducing the 

interaction between goods vehicles and other traffic components); in the second case is a 

means for business users to manage the fleet (and reducing the operating costs). 

Future developments should focus on improving the database, performing new calibrations 

of the cost function and adopting a dynamic approach to solving the VRPTW in which 

observations are allocated to time slots in each of which a function will be performed for 

calculating the link cost and penalties. 
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