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ABSTRACT 

From the point of view of the information supplied by an ATIS to the motorists entering a 
freeway of one of the most relevant is the Forecasted Travel Time, that is the expected travel 
time that they will experience when traverse a freeway segment. From the point of view of 
ATMS, the dynamic estimates of time dependencies in OD matrices is a major input to 
dynamic traffic models used for estimating the current traffic state and forecasting its short 
term evolution. Travel Time Forecasting and Dynamic OD Estimation are thus two key 
components of  ATIS/ATMS and the quality of the results that they could provide depend not 
only on the quality of the models but also on the accuracy and reliability of the 
measurements of traffic variables supplied by the detection technology. 
 
The quality and reliability of the measurements produced by traditional technologies, as 
inductive loop detectors, is not usually the required by real-time applications, therefore one 
wonders what could be expected from the new ICT technologies, as for example Automatic 
Vehicle Location, License Plate Recognition, detection of mobile devices and so on. A 
simulation experiment is proposed prior to deploy the technology for a pilot project. The 
simulation emulates the logging and time stamping of a sample of equipped vehicles 
providing real-time estimates of travel times for the whole population of vehicles and OD 
pattern of the equipped vehicles are considered real-time estimates of the dynamic OD 
pattern for the whole population of vehicles. The main objective of this paper is to explore the 
quality of the data produced by the Bluetooth and Wi-Fi detection of mobile devices 
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equipping vehicles to estimate time dependent OD matrices. Ad hoc procedures based on 
Kalman Filtering have been designed and implemented successfully and the numerical 
results of the computational experiments are presented and discussed. 
 
Keywords: Travel Time, Origin Destination Matrices, Estimation Prediction, ATIS, ATM. 
 
INTRODUCTION 
 
Conceptually the basic architectures of Advanced Traffic Information Systems (ATIS) and 
Advanced Traffic Management Systems (ATMS) share the main model components; Figure 
1 depicts schematically that of an integrated generic ATMS/ATIS:  

• A road network equipped with detection stations, suitably located according to a detection 
layout which timely provides the data supporting the applications 

• A Data Collection system collecting from sensors the raw real-time traffic data that must 
be filtered, checked and completed before being used by the models supporting the 
management system 

• An ad hoc Historic Traffic Database storing the traffic data used by traffic models in 
combination with the real-time data 

• Traffic models aimed at estimating and short term forecasting the traffic state fed with 
real-time and historic data 

• Time dependent Origin-Destination (OD) matrices are inputs to Advanced traffic models . 
The algorithms to estimate the OD matrices combine real-time and historic data along 
with other inputs (as the target OD matrices) which are not directly observable  
Estimated and predicted states of the road network can be compared with the expected 
states, if the comparison is OK (predicted and expected by the management strategies 
are close enough) then there is no action otherwise, depending on the differences found, 
a decision is made which includes the most appropriate actions (traffic policies) to 
achieve the desired objectives. 

• Examples of such actions could be: ramp metering, speed control, rerouting, information 
on current status, levels of service, travel time information and so on. 

The objective of this paper is to explore the design and implementation of methods to 
support the short-term forecasting of expected travel times and to estimate the time 
dependent OD matrices when, new detection technologies complete the current ones. This is 
the case of the new sensors detecting vehicles equipped with Bluetooth mobile devices, i.e. 
hands free phones, Tom-Tom, Parrot and similar devices. From a research stand point this 
means starting to explore the potential of a new technology in improving traffic models at the 
same time that, for practitioner, provides sound applications, easy to implement, exploiting 
technologies, as Bluetooth, whose penetration is becoming pervasive. 
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Figure 1 – Conceptual approach to ATIS/ATMS architecture 

 
From the point of view of the information supplied by an ATIS to the motorists entering a 
freeway there is a wide consensus in considering Forecasted Travel Time one of the most 
useful from a driver’s perspective. Forecasted Travel Time is the expected travel time that 
they will experience when traversing a freeway segment, instead of the Instantaneous Travel 
Time, the travel time of a vehicle traversing a freeway segment at time t if all traffic conditions 
remain constant until the vehicle exits the freeway, which usually under or overestimates 
travel time depending on traffic conditions; or Reconstructed Travel Time, the travel time 
realized at time t when a vehicle leaves a freeway segment, which represents a past travel 
time, see for instance Travis et al (2007).  
 
The dynamic estimates of time dependencies in OD matrices is a major input to dynamic 
traffic models used in ATMS to estimate the current traffic state as well as to forecast its 
short term evolution. Travel Time Forecasting and Dynamic OD Estimation are thus two of 
the key components of ATIS/ATMS and the quality of the results that they can provide 
depends on the quality of the models as well as on the accuracy and reliability of the traffic 
measurements of traffic variables supplied by the detection technology. The quality and 
reliability of the measurements provided by traditional technologies, as inductive loop 
detectors, usually is not the one required by real-time applications, therefore one wonders 
what could be expected from the new ICT technologies, i.e. Automatic Vehicle Location, 
License Plate Recognition, detection of mobile devices and so on. Consequently the main 
objectives of this paper are: to explore the quality of the data produced by the Bluetooth 
detection of mobile devices equipping vehicles for Travel Time Forecasting and to estimate 
time dependent OD matrices. 

CAPTURING TRAFFIC DATA WITH BLUETOOTH SENSORS 

The sensor integrates a mix of technologies that enable it to audit the Bluetooth and Wi-Fi 
spectra of devices within its coverage radius. It captures the public parts of the Bluetooth or 
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Wi-Fi signals. Bluetooth is the global standard protocol (IEEE 802.15.1) for exchanging 
information wirelessly between mobile devices, using 2.4 GHz short-range radio frequency 
bandwidth. The captured code consists in the combination of 6 alphanumeric pairs 
(Hexadecimal). The first 3 pairs are allocated to the manufacturer (Nokia, Panasonic, 
Sony…) and the type of manufacturer’s device (i.e. phone, hands free, Tom-Tom, Parrot….) 
by the Institute of Electrical and Electronics Engineers (IEEE) and the last 3 define the MAC 
address, a unique 48-bit address assigned to each wireless device by the service provider 
company. The uniqueness of the MAC address makes it possible to use a matching 
algorithm to log the device when it becomes visible to the sensor. The logged device is time 
stamped and when it is logged again by another sensor at a different location the difference 
in time stamps can be used to estimate the travel time between both locations. Figure 2 
illustrates graphically this process. A vehicle equipped with a Bluetooth device traveling 
along the freeway is logged and time stamped at time t1 by the sensor at location 1. After 
traveling a certain distance it is logged and time stamped again at time t2 by the sensor at 
location 2. The difference in time stamps τ = t2 – t1 measures the travel time of the vehicle 
equipped with that mobile device, and obviously the speed assuming the distance between 
both locations is known. Data captured by each sensor is sent for processing to a central 
server by GPRS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Vehicle monitoring with Bluetooth sensors 

 
Raw measured data cannot be used without a pre-processing aimed at filtering out outliers 
that could bias the sample, e.g. a vehicle that stops at a gas station between the sensor 
locations. To remove these data from the sample a filtering process consisting of an adaptive 
mechanism has been defined, it assumes a lower bound threshold for the free flow speed vf 
in that section estimated by previous traffic studies, for example 70Km/h, which defines an 
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upper bound τf to the travel time between sensors at 1 and 2 in these conditions. Travel 
times larger than that threshold are removed as abnormal data. The system monitors every 
minute the aggregated average speed of the detected vehicles and if it is slowing down and 
getting closer to the threshold speed, for example average speed – vf<α, for example α=10 
Km/h, then the estimate of the speed threshold is decreased to vf - 2α, and the lower bound 
threshold for the section is updated accordingly. Smaller values of the average speeds (i.e. 
60 Km/h) could be interpreted in terms of a congestion building process and the threshold 
adaptation continues until a final value of 5 KM/h. If the minute average speeds are 
increasing the process is reverted accordingly. In some especial conditions like an accident 
the changes in speed are not fluent and for these situations the rules are changed, if the 
system is unable to generate any match in more than 2 minutes, the range is open to a 
maximum time value (5Km/h). 
 
Since this sensor system can monitor the path of a vehicle, this could raise questions about 
the privacy of drivers. However, working with the MAC address of Bluetooth device ensures 
privacy, since the MAC address is not associated with any other personal data; the audited 
data cannot be related to particular individuals. Besides, so as to reinforce the security of 
data, an asymmetric encryption algorithm is applied before data leaves the sensor and gets 
to the database, making it impossible to recover the original data, SanFeliu et al. (2009). 
 

ESTIMATION OF TIME DEPENDENT OD MATRICES 

Data collection to estimate time dependent OD 

 
The possibility of tracking vehicles equipped with Bluetooth mobile raises naturally the 
question of whether this information can be used for estimating the dynamic or time 
dependent OD matrix whose entries Tij(k) represent the number of vehicles accessing the 
freeway at time interval k by the entry ramp i with destination the exit ramp j. 
 
A simulation experiment has been conducted prior to deploy the technology for a pilot 
project. The selected site has been a 11.551 km long section of the Ronda de Dalt, a urban 
freeway in Barcelona, between the Trinitat and the Diagonal Exchange Nodes. The site has 
11 entry ramps and 12 exit ramps (including main section flows) in the studied section in 
direction Llobregat (to the south of the city), Figure 3 depicts a part of the site with the 
suggested sensor layout. Di denotes the location of the i-th sensor at the main section; Ej 
denotes the sensor located at the j-th entry ramp and Sn the sensor located at the n-th exit 
ramp. Distance between detectors is shown in Table 1. 
 
Vehicles are generated randomly in the simulation model according to a selected probability 
distribution, i.e. a exponential shifted time headway, whose mean has been adjusted to 
generate the expected mean ( )kijT of vehicles for each OD-pair (i,j) at each time interval k. 

Once a vehicle is generated it is randomly identified as an equipped vehicle depending on 
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the proportion of penetration of the technology, a 30% in our case according to the available 
information. The simulation emulates the logging and time stamping of this random sample of 
equipped vehicles. Sensors are modeled located in each entry and exit ramps and in the 
main stream immediately after each ramp. 
 
Bluetooth and WiFi data are collected every second, and are matched when the same 
emulated MAC address is detected by sensors at entry ramps, exit ramps and main sections, 
providing the corresponding counts for each time interval. As a result travel times between 
detectors can be obtained (Figure 2). Bluetooth and WiFi sensors provide traffic counts and 
travel times between pairs of sensors for any time interval up to 0.1 seconds for equipped 
vehicles. The measured travel times at each time interval are  
 

• Travel times from each on-ramp entering the corridor to every off-ramp exiting the 
corridor. 

• Travel times from each on-ramp entering the corridor to every main-section where a 
sensor has been installed. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  A segment of the site for the OD estimation showing part of the detection layout and diagram with the 
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Table 1: Distance between main section detectors (in meters) 
 

From  E1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

To  D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 S12

Distance 498 841 609 555 470 423 718 507 338 743 950 495 618 435 629 77 210 362 991 303 780

 
 
Taking into account that Bluetooth sensors are tagging and time stamping vehicles entering 
the motorway by entry ramp i at time interval k and tagging them again when leaving the 
motorway by exit ramp j, then Bluetooth detection is generating a sample ( )kijT̂ of the 

number of vehicles entering the motorway at i during time interval k and later on leaving at j. 
Therefore it is natural to think of expanding the sample to the whole population to estimate 
the time-dependent OD matrix Tij(k). This is question that deserves further research. 
Comparing the number of detected Bluetooth equipped vehicles with the number of vehicles 
counted by well calibrated inductive loops located at the same position, and taking as 
reference the inductive loop sample, we found that, although it was a high correlation 
between both samples and the variability of the Bluetooth sample matched quite well that of 
the reference sample, the variability of the Bluetooth sample yield unacceptable expansion 
errors that invalidate any simple expansion procedure. In consequence it is still risky to do a 
straightforward estimation of OD matrices based only on Bluetooth counting of vehicles but, 
on the other hand the accuracy in measuring speeds and travel times opens the door to 
more efficient possibilities of using Kalman Filtering for OD estimates, simplifying the 
equations and replacing state variables by measurements, as described in the next section. 

A Kalman Filter approach for estimating time dependent OD matrices 

 
The estimation of OD matrices from traffic counts has received a lot of attention in the past 
decades. The extension to dynamic OD estimation in a dynamic system environment from 
time-series traffic counts has been frequently proposed, see Nihan and Davis (1987),  Van 
Der Zijpp and Hamerslag (1994), Chang and Wu (1994) and more recently  Chu et al. (2005) 
and Work et al. (2008). A review of the studies until 1991 is available in Bell (1991).  
 
The system equations for OD estimation from static counts are underdetermined because 
there are far more OD pairs than number of equations, but since dynamic methods employ 
time-series traffic counts then the number of equations is larger than the number of OD and a 
unique O-D matrix can thus be obtained.  Both in the static and the dynamic methods the 
relations between OD matrices and traffic counts must be usually defined in terms of an 
assignment matrix. Static methods, usually specialized for urban networks, establish the 
relations between OD pairs and link flows through static traffic assignment models embed 
into entropy or bilevel mathematical programming models, depending on the approach, 
Spiess (1990), Florian and Chen (1995), Codina and Barcelo (2004). The availability of 
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multiple alternative paths for each OD pair is the crucial difference between linear networks, 
i.e freeways, and more complex network topologies, i.e. urban networks, thus route choice 
becomes a key component in this case, and therefore the estimates are formulated in terms 
of the proportions of OD flows using each of the available paths. Approaches are then 
usually based on an underlying Dynamic Traffic Assignment and are object of research, see 
for details Ashok and Ben-Akiva(2000), Ben-Akiva et al. (2001), Mahmassani and Zhou 
(2005). 
 
We have oriented our research to the dynamic OD estimation in linear congested corridors, 
without route choice strategies since there is only a unique path connecting each OD pair, 
taking into account travel times between OD pairs affected by congestion. If no congestion 
exists but a constant delay for each OD pair is considered the problem can be solved by any 
of the methods proposed by Bell (1990), Van Der Zijpp and Hamerslag (1994); or Nihan and 
Davis (1987) if OD travel times are negligible compared to the counting interval. 
 
Nihan and Davis (1987) proposed a recursive method based on Kalman filter ( Kalman, 
1960) and state-space models, where the state variables are OD proportions, constant or 
time dependent, between an entry and all possible destination ramps, the observation 
variables are exit flows on ramps for each interval and the relationship between the state 
variables and the observations includes a linear transformation, where the numbers of 
departures from entries during time interval k are explicitly considered. Sensors are assumed 
in all origins and destinations and provide time-varying traffic counts. Average RMS errors 
are presented for several algorithmic approaches. There are constraints in the OD 
proportions: non-negativity, the sum of each row in the matrix is 1 and the total number of 
vehicles entering the system must be equal to the total number of vehicles exiting the 
system. Unconstrained estimators are computed first and constraints are enforced later, and 
several proposals are listed. The proposal is well-suited for intersections where OD travel–
times are negligible compared to the counting interval time length.  
 
Bell (1990) formulates a space-state model and applies Kalman filter considering for each 
OD pair a fixed and non negligible OD travel time distribution where no counts on the main 
section are considered. Stability on traffic conditions is needed during the estimation process 
and arising congestion cannot be captured by the formulation.  
 
Van Der Zijpp and Hamerslag (1994) proposed a space-state model assuming for each OD 
pair a fixed and non negligible OD travel time distribution, the state variables are time-varying 
OD proportions (between an entry and all possible destination ramps), the observation 
variables are main section counts for each interval, no exit ramp counts are available and the 
relationship between the state variables and the observations includes a linear 
transformation that explicitly accounts for  the number of departures from each entry during 
time interval k and a constant indicator matrix detailing OD pairs intercepted by each section 
detector. Suggestions for dealing with structural constraints on state variables are proposed. 
The Kalman filter process is interpreted as a Bayesian estimator and initialization and noise 
properties are widely discussed. Tests with simulated data were conducted comparing 
several methods and Kalman filter was reported to perform better than the others. Fixed OD 
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travel time delays are not clearly integrated in the space state model, although is somehow 
considered by the authors. 
 
Chang and Wu (1994) proposed a space-state model considering for each OD pair a non 
fixed OD travel time estimated from time-varying traffic measures and traffic flow models are 
implicitly included in the state variables. The state variables are time-varying OD proportions 
and fractions of OD trips that arrive at each off-ramp m interval after their entrance at interval 
k. The observation variables are main section and off-ramp counts for each interval and the 
relationship between the state variables and the observations is complex and nonlinear. An 
Extended Kalman-filter approach is proposed and two algorithmic variants are implemented, 
one of them well-suited for on-line applications.  
 
Work et al (2008) propose the use of an Ensemble Kalman Filtering approach as a data 
assimilation algorithm for a new highway velocity model proposal based on traffic data from 
GPS enabled mobile devices.  
 
Hu et al (2001, 2004) propose an adaptative Kalman Filtering algorithm for the on-line 
estimation dynamic OD matrices incorporating time-varying model parameters provided by 
simulation or included as state variables in the model formulation, leading to an Extended KF 
formulation. The approach applies to freeway corridors where spatial issues of route choice 
are not present, but temporal issues of traffic dispersion are taken into account. Lin and 
Chang (2007) proposed an extension of Chang and Wu (1994) to deal with traffic dynamics 
in a K-F approach assuming travel time information is available. 
 
Bierlaire and Crittin (2004)  propose an LSQR algorithm with application to any linear KF 
approach aimed to solve large-scale problems. 
 
We propose a space-state formulation for dynamic OD matrix estimation in corridors 
considering congestion that combines elements of Hu et al (2001), Chang and Wu (1994) 
and Van Der Zijpp and Hamerslag (1994) proposals. A linear Kalman-based filter approach is 
implemented for recursive state variables estimation. Tracking of the vehicles is assumed by 
processing Bluetoooth and WiFi signals whose sensors are located as described above. 
Traffic counts for every sensor and OD travel time from each entry ramp to the other sensors 
(main section and ramps) are available for any selected time interval length higher than 1 
second. Ordinary traffic counts (inductive loops) are assumed for each on ramp entrance. 
Distribution of travel time delays between OD pairs or between each entry and sensor 
locations are directly provided by the detection layout and are no longer state variables but 
measurements, which simplify the approach and make it more reliable. 
 
A basic hypothesis that requires a statistic contrast for test site applications is that equipped 
and non equipped vehicles are assumed to follow common OD patterns. We assume that it 
holds in the following. Time interval length is suggested between 1 and 5 minutes to be able 
to detect arising congestion. Consider a corridor section containing ramps and sensors 
numbered as in Figure 3.  
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FORMULATION 1: OD PATTERN AS STATE VARIABLES 

The notation is defined in Table 2. 
 
Table 2. Notation for Formulation 1: state variables as OD proportions from each Entry 
( )kqi  : Number of equipped vehicles entering the freeway from on-ramp i during interval k and Ii K1=  

( )ks j  : Number of equipped vehicles leaving the freeway by off-ramp j during interval k and Jj K1=  

( )kyp  : Number of equipped vehicles crossing main section sensor p and Pp K1=  

( )kGij  : Number of vehicles entering the freeway at on-ramp i during interval k with destination  to off-ramp j  

( )kgij  : Number of equipped vehicles entering the freeway from ramp i during interval k that are headed  
towards off-ramp j  

IJ : Number of feasible OD pairs depending on entry/exit ramp topology in the corridor. This is the 
maximum number of IxJ 

( )ktij  : Average measured travel time for equipped vehicles entering from entry i and leaving by off-ramp j 
during interval k 

( )ktip  : Average measured travel time for equipped vehicles entering from entry i and crossing sensor p 
during interval k 

( )kbij  : ( ) ( )kqkg iij=  the proportion of equipped vehicles entering the freeway from ramp i during 

interval k that are destined to off-ramp j. 

( )kU h
ijq

 

: = 1 If the average measured time-varying travel time during interval k to traverse the freeway 
section from entry i to sensor q takes h time intervals, where Mh K1=  , Qq K1=  and 

PJQ += (the total number of main section and off-ramp sensors), and M is the maximum 
number of time intervals required by vehicles to traverse the entire freeway section considering a 
high congestion scenario. 
= 0 Otherwise 

( ) eke =
 

: A fixed column vector of dimension I containing ones 

( )kz  : The observation variables during interval k; i.e. a column vector of dimension I+J+P, whose 

structure is  ( ) ( ) ( ) ( )( )TT kekykskz =  

 
The state variables are time-varying OD proportions for equipped vehicles entering the 
freeway from ramp i during interval k and that are destined to off-ramp j. The observation 
variables are main section and off-ramp counts for each interval k. The relationship between 
the state variables and the observations involves a time-varying linear transformation that 
considers: 
 
• The number of equipped vehicles entering from each entry during time interval k, ( )kqi .  

• M time-varying indicator matrices, ( )[ ]kU h
ijq ,   

The state variables ( )kbij  are assumed to be stochastic in nature and evolve in some 
independent random walk process as shown by the state equation: 
 

     
for all feasible OD pairs (i,j) where ( )kwij ’s are independent Gaussian white noise 

sequences with zero mean and covariance matrix Q . The structural constraints should be 
satisfied for the state variables, 

(1) ( ) ( ) ( )kwkbkb ijijij +=+1
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Where b(k) is the column vector containing all feasible OD pairs ordered by entry ramp.  
Equality constraints summing one are imposed to ensure the consistence with the definition 
of state variables in terms of proportions. When solving numerically the measurement 
equations relating to the state variables and observations the satisfaction of these constraints 
is checked. This is not usually the case in these implementations of the filter. The 
measurement equation becomes in this case: 
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where ( )kv ij' ’s are independent Gaussian white noise sequences with zero mean and 

covariance matrix 'R , leading to a singular covariance matrix for the whole random noise 
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RV kv . The size of matrix R  is (I+J+P). 

Since the time varying travel times have to be taken into account to be able to model 
congestion, then time varying delays from entries to sensor positions have to be considered 
(they are described in the building process of the observation equations) and thus on ramp 
entry volumes for M+1 intervals Mkkk −− ,,1, K . State variables for intervals 

Mkkk −− ,,1, K are required to model interactions between time-varying OD patterns, 
counts on sensors and travel times delays from on-ramps to sensor positions. 
 
Let b(k)be a column containing state variables for intervals Mkkk −− ,,1, K of dimension 
(M+1)xIJ. 

( )TT M )b(k)1b(kb(k) −−= Kb(k)  
And the state equations have to be written using a matrix operator D for shifting one interval 
(following Chang and Wu (1994)), which allows eliminating the state variable for the last time 
interval (i.e., k-M) as: 

( ) ( ) ( )kwkDb1kb +=+   and  
 
where ( ) ( )( )00 KkwT =kw  is a white noise sequence with zero mean and singular 

covariance matrix ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

00
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WkwV ,  where Q of dimension IJ has been previously 

defined.  
 
In approaches found in the references it is usually a diagonal matrix. We have successfully 
tested multinomial variance pattern in our computational experiments. Let us detail in Eq. (6), 
the time-varying linear operator relating OD patterns and current observations for time 
interval k in Eq. (4): 
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Table 3. Formulation 1: Matrix definitions in measurement equations 
E : Matrix of row dimension I containing 0 for columns related to state variables in time intervals  

Mkk −− ,,1K  and B for time interval k .  
B : Matrix of dimension I x IJ defining equality constraints (sum to 1 in OD proportions for each entry) for 

state variable in time interval k. 
F(k)  : Matrix of dimensions (1+M)IJ x (1+M)IJ consisting on diagonal matrices ( )Mkfkf −,),( K  

containing input on-ramp volumes. This applies to each OD pair and time interval. Each (.)f is a 
squared diagonal matrix of dimension IJ. 

( )kg  : Column vector of OD flows of equipped vehicles for time intervals Mkkk −− ,,1, K  
U(k) : Matrix of dimensions (1+M)IJ x (1+M)(J+P) consisting on diagonal matrices ( )MkUkU −,),( K  

containing 0s or 1s. For )( hkU − is a matrix of dimensions IJx(J+P) containing 1 if travel-time from 
entry i to a given sensor q takes h intervals for vehicles captured by the q sensor at time interval k 
and 0 otherwise. Average measured time – varying travel times are critical and the clue for taking 
into account congestion effects. 

A : Matrix of dimensions (J+P) x (1+M)(J+P) that adds up for a given sensor q (main section or off-ramp) 
traffic flows from any previous on-ramps arriving to sensor at interval k assuming their travel times 
are ( )ktiq  

 
Let be a part of the observation equations, where the linear operator )H(k  relates dynamic 
OD proportions, dynamic travel time delays and dynamic on-ramp entry flows with dynamic 
counts on sensors (main section and off-ramp) for equipped vehicles. 

⎟⎟
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⎞
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b(k)F(k)AU(k)b(k)H(k T

 
The space-state formulation is almost completed, 

( ) v(k)
(k)v

kz +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= R(k)b(k)b(k)

E
H(k)

0
'

 

 
A recursive linear Kalman-filter approach, well-suited for on-line applications, has been 
implemented in MatLab, using simulated data for the Test-Site. Matlab has been selected by 
its ability in working  with the large matrices involved in this approach. 
 
Table 4. Formulation 1: KF Algorithm  
 
KF Algorithm : Let K be the total number of time intervals for estimation purposes and M maximum 

number of time intervals for the longest trip 
Initialization : k=0; Build constant matrices and vectors: e, A, B, D, E, R, W      

and [ ]b(0)VPk
k =  

Prediction Step : k
k

k
1k Dbb =+  

WDDPP Tk
k

k
1k +=+  

Kalman gain 
computation 

: Get observations of counts and travel times: 

)1()1(),1(),1(),1( +++++ ktktkykskq ipij  . 

Build ( )1+kz , ( )1kF + , ( )1kU + . 

Build ( )1kRR 1k +=+ . 

Compute ( )−++++++ += RRPRRPG T
1k

k
1k1k

T
1k

k
1k1k  

Filtering : 
Compute ( )( )k

1k1k1k1k bRGd ++++ −+= 1kz filter for state variables and errors 

)b(b 0=k
k

 (8) 

(7) 
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( )( )k
1k1k1k bRε +++ −+= 1kz  

Search maximum step length 10 ≤≤α  such that 01 ≥+= ++
+
+ 1k

k
k

1k
1k dbb α  

( ) k
1k1k1k

1k
1k PRGIP +++
+
+ −=  

Iteration : k=k+1 
if k=K EXIT otherwise GOTO Prediction Step 

Exit : Print results 
 
 
FORMULATION 2: OD FLOWS AS STATE VARIABLES 
 
According to Ben Akiva et al (2001), formulations on OD flows present more difficulties on 
the estimation process, but have a higher performance in the prediction process and thus 
seem more suitable for Advanced Traffic Management Systems (ATMS). 
 
Table 5. Notation for Formulation 2: state variables as OD flows 
 

( )kQi  
: Number of vehicles entering the freeway from on-ramp i during interval k and Ii K1=  

( )kqi  
: Number of equipped vehicles entering the freeway from on-ramp i during interval k and Ii K1=  

( )ks j  : Number of equipped vehicles leaving the freeway by off-ramp j during interval k and Jj K1=  

( )kyp  : Number of equipped vehicles crossing main section sensor p and Pp K1=  

( )kGij  : Number of vehicles entering the freeway at on-ramp i during interval k with destination  to off-ramp j  

( )kgij  : Number of equipped vehicles entering the freeway from ramp i during interval k that are headed  
towards off-ramp j  

IJ : Number of feasible OD pairs depending on entry/exit ramp topology in the corridor. This is the 
maximum number of IxJ 

( )ktij  : Average measured travel time for equipped vehicles entering from entry i and leaving by off-ramp j 
during interval k 

( )ktip  : Average measured travel time for equipped vehicles entering from entry i and crossing sensor p 
during interval k 

( )kbij  : ( ) ( )kqkg iij=  the proportion of equipped vehicles entering the freeway from ramp i during 

interval k that are destined to off-ramp j. 

( )ku h
iq  

: Fraction of vehicles that takes h time intervals to reach sensor q at time interval k that entered the 
corridor from on ramp i (during time in interval ( ) ( )[ ]thkthk Δ−Δ−− ,1 ). 

( )ku h
ijq

 

: Fraction of vehicles, according time-varying model parameters (updated from measured travel time 
on equipped vehicles), that during interval k are to be detected since they traverse the freeway 
section from entry i to sensor q in h time intervals, where Mh K1=  , Qq K1=  and 

PJQ += (the total number of main section and off-ramp sensors), and M is the maximum 
number of time intervals required by vehicles to traverse the entire freeway section considering a 
high congestion scenario. 

( )kz  : The observation variables during interval k; i.e. a column vector of dimension J+P+I, whose 

structure is  ( ) ( ) ( ) ( )( )TT kqkykskz =  

 
The state variables are time-varying OD flows for equipped vehicles entering the freeway 
from ramp i during interval k and that are destined to off-ramp j. The observation variables 
are main section and off-ramp counts for each interval k. The relationship between the state 
variables and the observations involves a time-varying linear transformation that considers: 
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• The number of equipped vehicles entering from each entry during time interval k, ( )kqi .  

• M time-varying model parameters in form of fraction matrices, ( )[ ]kU h
ijq . 

 
Even for stable traffic conditions with no congestion, in the view of speed variation among 
drivers, it is reasonable to assume that at crossing time k of sensor q for vehicles from on-
ramp entry i to any feasible exit ramp j are distributed among time intervals k, k-1, …k-M, 
where M is the maximum number of intervals needed for vehicles to traverse the entire 
freeway section. This is, there is a travel time distribution from on ramp i to sensor q (either 
an exit or a main section sensor), that under stability conditions of traffic could be defined as 

a random variable iqT with a density function ( )ttiq  for t>0 with expected value iqμ and 

variance 
2
iqσ . The fraction of the vehicles that takes h intervals to travel from on ramp i to 

sensor q at time interval k is 
h
iqu and can be interpreted as the probability of the discretization 

of the density function to bins whose length is equal to the time interval used tΔ . A fixed time 
interval between 1.2 and 5 minutes is documented in literature. 
 

 
Figure 4.- Travel time distribution approximation in M bins 

 
Model parameters to account with temporal traffic dispersion are fractions h

iqu , but in fact to 

account for variable traffic conditions, time-varying model parameters are needed and 
thus ( )ku h

iq  and structural constraints have to be satisfied, where H<M: 

 
( )
( ) ,1,,11

1,1,10

1
QqIiku
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t
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According to traffic conditions evolution, iqT with a density function ( )ttiq  is not stationary and 

a more general formulation leading to define ( )kTiq  (travel time distribution for vehicles 

reaching sensor q at time interval k that entered from on-ramp i) with density function ( ) ( )tt k
iq  

is proposed, ( ) ( )tt k
iq  has approximation bins ( )ku h

iq  that have to be updated from the 

(assumed random) sample of on-line travel time data of equipped vehicles. A discretization 
in H<M time intervals will be initially assumed, but it has to be studied if a (i,q) (entry, sensor) 
dependent horizon is more suitable (see Figure 4). 
 
Fractions ( )ku h

iq  have to be extended to all feasible OD pairs and in fact, for all feasible 

exit ramps j (according to network topology) ( ) ( )kuku h
iq

h
ijq ← .  

 
Let g(k) be a column vector containing state variables ( )kgij for interval k for all feasible OD 

pairs (i,j) ordered by entry ramp; i.e, in the test site there are IJ=74 OD pairs. The state 
variables ( )kgij  are assumed to be stochastic in nature and OD flows at current time k are 

related to the OD flows of previous time 
intervals by an autoregressive model of order r 
<<M: 

     
 
where ( )kwij ’s are independent Gaussian white noise sequence with zero mean and 

covariance matrix kQ  , kC  IJxIJ  are known matrices ( ICk = in Formulation 1) and ( )wD  
are  IJxIJ  transition matrices which describes the effects of previous OD flows ( )1+− wkgij  

on current flows ( )1+kgij  for w=1..r  and  all feasible OD pairs (i,j). AR(1) is assumed in 

preliminary results.  The structural constraints should be satisfied for the state variables, 
 

( )
( ) ( ) Iikqkg

JjIikg
J

j
iij

ij

K

KK

1

1,10

1
==

==≥

∑
=  

 

Equality constraints have been explicitly considered in the observation equations through the 
definition of dummy sums sensor counts where no measurement error is allowed adapting a 
suggested but not tested proposal found in Van Der Zijpp and Hamerslag (1994). 
 
Structural constraints should also be satisfied for the time-varying model parameters ( )ku h

ijq  

reflecting temporal traffic dispersion, 
( )
( ) ,1,1,11

1,1,1,10

1
QqJjIiku

HhQqJjIiku
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ijq

h
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( ) ( ) ( ) ( )kw1wkgwD1kg
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Structural constraints for ( )ku h
ijq  have not been explicitly considered in the observation 

equations since it can be guaranteed by the updating process of time-varying model 
parameters from travel-time data on equipped vehicles at current time. 
  
Since the time varying travel times have to be taken into account to be able to model 
congestion, then time varying delays from entries to sensor positions have to be considered 
(they are described in the building process of the observation equations) and thus on ramp 
entry volumes for M+1 intervals Mkkk −− ,,1, K . State variables for intervals 

Mkkk −− ,,1, K are required to model interactions between time-varying OD patterns, 
counts on sensors and distribution of travel times delays (traffic dispersion) from on-ramps to 
sensor positions. 
 
Let g(k) be a column containing state variables for intervals Mkkk −− ,,1, K of dimension 
(M+1)xIJ. 

( )TT M )g(k)1g(kg(k) −−= Kg(k)  

The relationship between the state variables and the observations takes into account equality 
constraints for the current state variables ( )kgij  as non-error conservation flows for on-ramp 

observations and a Gaussian error measurement for observed sensor counts during time 
interval k. It will be justified that the following equation holds: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
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⎠
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=

0
(k)v'

kz g(k)
E

H(k)
 

where ( )kv ij' ’s are independent Gaussian white noise sequence with zero mean and 

covariance matrix 1
kR (related to traffic counts on exits and main sections) and 2

kR related to 
traffic counts on entry ramps and modeling the structural equation (11). In Formulation 1, no 
error was accepted for structural constraints and thus 02 =kR  leading to a singular 

covariance matrix for the whole random noise vector [ ] ⎥
⎦

⎤
⎢
⎣

⎡
== 2

1

0
0

v(k)
k

k
k R

R
RV . The size of the 

squared matrix R  k  is (I+J+P). 
 
The state equations have to be written using a matrix operator D for shifting and modelling 
autoregressive intervals (following Chang and Wu (1994) and Hu (2001)), that allows 
eliminating the state variable for the last time interval (i.e., k-M) as: 
 

( ) ( ) ( )kwCkDg1kg k+=+   
where ( ) ( )( )00kw K=Tkw  is a white noise sequence with zero mean and singular 

covariance matrix ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

00
0Q

WkwV k
k ,  where QQk =  of dimension IJ has been 

previously defined for Formulation 1 and (it is a diagonal matrix in reported applications) and  

 

 (13) 

 (14) 

(15) 

 (16) 
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For the particular state-space model AR(1) considered in Formulation 1, C, D matrices 
become , 
 
 
 
Let us detail in Eq. (18), the time-varying linear operator relating OD flows and current 
observations for time interval k in Eq. (14). 
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)( hkU −  for h=0,…,M reflects corridor structure and travel times delays in terms of fractions 
on travel time bins (time-varying model parameters). Implicit structural restrictions in Eq 9 are 
satisfied and U(k)  dimensions are (1+M)IJ x (1+M)(J+P). 
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And thus, ⎟⎟
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⎞
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⎛
≈=
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)
ky
ks

g(k)AU(k)g(k)H(k T , the linear operator )H(k  relates dynamic  OD 

flows, dynamic travel time delays and dynamic on-ramps entry flows with dynamic counts on 
sensors (main section and off-ramp) for equipped vehicles. The space-state formulation is 
almost completed, 
 
 
 
A recursive linear Kalman-filter approach is detailed in Table 6. 
 
Table 6-KF Algorithm for Formulation 2 
KF Algorithm : Let K be the total number of time intervals for estimation purposes and M maximum 

number of time intervals for larger trip 
Initialization : k=0; Build  constant matrices and vectors: A, B, C, D, E.  

Inicialize Q k (and  W k ),  R k  

in Eq. (13) ( )[ ]0wVPk
k =  

Prediction Step : k
k

k
1k Dgg =+    and   k

Tk
k

k
1k WDDPP +=+  

Kalman gain 
computation 

: Get observations of counts and  update fractions in travel times bins: 

)1()1(),1(),1(),1( +++++ kukukykskq h
ip

h
ij  . 

Build ( )1kz + and ( )1kU + in  Eq (19). 

Build ( )1kFF 1k +=+  in  Eq (20). 

Compute ( )−++++++ += k
T

1k
k

1k1k
T

1k
k

1k1k RFPFFPK  
Filtering : 

Compute ( )( )k
1k1k1k1k gFKd ++++ −+= 1kz filter for state variables and errors 

( )( )k
1k1k1k gFε +++ −+= 1kz
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Search maximum step length α≤0  such that 01 ≥+= ++
+
+ 1k

k
k

1k
1k dαgg  

( ) k
1k1k1k

1k
1k PFKIP +++
+
+ −=  

Iteration : k=k+1 
if k=K EXIT otherwise GOTO Prediction Step 

Exit : Print results 

 
FORMULATION 3: DEVIATES FROM HISTORIC OD FLOWS AS 
STATE VARIABLES 
 
According to Ben Akiva et al (2001) and Antoniou et al (2007) formulations where state 
variable are defined as deviations of OD flows with respect to best historical values present 
several benefits from considering directly OD flows as state variables:  
 
• OD flows have skewed distributions, but Kalman filtering theory is developed for normal 

variables and thus symmetric distributions. Deviations from historical values would have 
more symmetric distributions and thus a proper approximation to normal theory.  

• OD flow deviates from the best historical values allow to incorporate more historical data 
in the model formulation as a priori structural information. 

 
According to our experience on Formulations 1 and 2 for the dynamic OD flow estimation on 
corridors, KF iterations on the filtering stage, the step size α becomes 0 very often to prevent 
creating unfeasibility on state variables; non-negativity constraints on state variables become 
critical in the evolution of the KF estimates. But KF scheme was developed for normal state 
variables. Reformulation on state variables being deviates from historical values adapts to a 
more normal scheme.And last, but not least, a higher performance in the prediction process 
seems a good value for Advanced Traffic Management Systems (ATMS). Historical data 
from the previous type of day will be easily available. The notation is defined as in the previous 
section, but increased by definitions given in Table 7. 
 
Table 7. New notation for Formulation 3 
 

( ) ii QkQ ~~
=

 
: Historic number of vehicles entering the freeway from on-ramp i for a time interval length Δt 

and Ii K1=  

( ) ii qkq ~~ =
 

: Historic number of equipped vehicles entering the freeway from on-ramp i for a time interval 
length Δt and Ii K1=  

( ) jj sks ~~ =  : Historic number of equipped vehicles leaving the freeway by off-ramp j during a time interval 
length Δt  and Jj K1=  

( ) pp yky ~~ =  : Historic number of equipped vehicles crossing main section sensor p and Pp K1=  for a 
time interval length Δt 

( )kGij  : Number of vehicles entering the freeway at on-ramp i during interval k with destination  to 
off-ramp j  

( ) ijij gkg ~~ =
 

: Historic flow of equipped vehicles entering the freeway from ramp i for a time interval length 
Δt  that are headed  towards off-ramp j  

( )kgijΔ  : Deviate of equipped vehicles entering the freeway from ramp i during interval k that are 
headed  towards off-ramp j with respect to historic flow ( ) ( ) ( )kgkgkg ijijij

~−=Δ
. 

( )kz~  : The historic observation variables during interval k when historic OD flows for a time interval 
length Δt; are considered given current model parameters (observed travel time delays), i.e. 

a column vector of dimension J+P+I, whose structure is  ( ) ( ) ( ) ( )( )TT kqkykskz ~~~~ =  
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The state variables are time-varying OD flow deviates from historic OD flows for interval 
length Δt for equipped vehicles entering the freeway from ramp i during interval k and that 
are destined to off-ramp j. Let Δg(k)  be a column containing state variables (in the deviation 
form) for intervals Mkkk −− ,,1, K of dimension (M+1)xIJ. 
 

( )TT M )g(k)1g(kg(k) −Δ−ΔΔ= KΔg(k)  

The state equations have to be written using a matrix operator D for shifting and modeling 
autoregressive intervals (following Chang and Wu (1994) and Hu (2001) , that allows 
eliminating the state variable for the last time interval (i.e., k-M) as: 
 

( ) ( ) ( )kwkDΔ1kΔg +=+ g  

where ( ) ( )( )00kw K=Tkw  is a white noise sequence with zero mean and singular 
covariance matrix ( )[ ] kWkwV = ,  has been previously defined in the former section 
Formulation 2  
 
The relationship between the state variables (in the deviation form) and the observations 
takes into account equality constraints for the current state variables ( )kgijΔ  as non-error 

conservation flows for on-ramp observations and a Gaussian error measurement for 
observed sensor counts during time interval k. It will be justified that the following equation 
holds: 

 
 
 
 

where ( ) (k)gF(kkz ~)~ =  assign historic OD flows according to current model parameters (travel time 
delays) and ( )kvij ’s are independent Gaussian white noise sequence with zero mean and covariance 

matrix 1
kR (related to traffic counts on exits and main sections) and 2

kR related to traffic counts on 
entry ramps and flow conservation giving  a covariance matrix for the whole random noise vector 
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RV  of size (I+J+P). 

The time-varying )F(k linear operator relating the difference on the current OD flows minus 
the historic OD flows to the current deviate observations for time interval k is defined as in 
Formulation 2. )F(k is meaningful when applied to non-negative OD flows and thus has to be 
computed for current ( ) ( )kgΔg(k)kg ~+=  OD flows and for historic OD flows ( )kg~ .  

And thus, 
⎟
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linear operator )F(k  relates dynamic  OD flows, dynamic travel time delays and dynamic on-
ramps entry flows with dynamic counts on sensors for equipped vehicles. The space-state 
formulation is completed and the adapted KF Algorithm is described in Table 8. 
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Table 8 - KF Algorithm for Formulation 3 
 
KF Algorithm : Let K be the total number of time intervals for estimation purposes and M maximum 

number of time intervals for larger trip 
Initialization : k=0; Build  constant matrices and vectors: A, B, C, D, E.  

Inicialize Q k (and  W k ),  R k  

( )[ ]0wVPk
k =  

Prediction Step : k
k

k
1k DΔΔg g=+   and   k

Tk
k

k
1k WDDPP +=+  

Kalman gain 
computation 

: Get observations of counts and  update fractions in travel times bins: 

)1()1(),1(),1(),1( +++++ kukukykskq h
ip

h
ij  . 

Build Δ ( )1kz + and ( )1kU + . 

Build ( )1kFF 1k +=+ . 

Compute ( )−++++++ += k
T

1k
k

1k1k
T

1k
k

1k1k RFPFFPK  
Filtering : 

Compute ( )( )k
1k1k1k1k ΔgFΔKd ++++ −+= 1kz filter for state variables and errors 

( )( )k
1k1k1k ΔgFΔε +++ −+= 1kz .  

Search maximum step length α  such that ( )kgdΔΔ 1k
k
k

1k
1k

~
1 −≥+= ++

+
+ αgg   and 

( ) k
1k1k1k

1k
1k PFKIP +++
+
+ −=  

Iteration : k=k+1 
if k=K EXIT otherwise GOTO Prediction Step 

Exit : Print results 

 
 
COMPUTATIONAL RESULTS 
 
Two sets of computational experiments have been conducted with simulated data, assuming 
for debugging purposes in all cases a 100%  rate of equipped vehicles. OD pattern is fixed 
for all the experiments and OD flows are defined variable according to 1 slice 
(congested/uncongested situations) in the First Set and 4 slices in the Second Set. OD 
pattern and OD flows for the 1 slice uncongested situation are shown in Table 9.  
 
Table 9- First Test Set – Uncongested OD flows (veh/h) and  OD Pattern 

OD Flows
Entry/Exit 1 2 3 4 5 6 7 8 9 10 11 12 Total

1 93 245 96 169 146 106 136 153 256 92 329 2513 4334
2   10 0 8 9 19 21 24 9 25 113 238
3    0 0 0 20 23 21 5 30 119 218
4     0 0 11 14 21 0 26 99 171
5     0 0 0 0 15 0 32 98 145
6      0 0 0 0 0 34 77 111
7       1 0 0 0 26 60 87
8        0 2 0 25 73 100
9         0 0 75 101 176

0Δgk
k =
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10          13 25 53 91
11           26 50 76

Total 93 245 106 169 154 115 187 211 339 119 653 3356 5747
OD Pattern

Entry/Exit 1 2 3 4 5 6 7 8 9 10 11 12 Total 
1 2.1% 5.7% 2.2% 3.9% 3.4% 2.4% 3.1% 3.5% 5.9% 2.1% 7.6% 58.0% 100%
2   4.2% 0.0% 3.4% 3.8% 8.0% 8.8% 10.1% 3.8% 10.5% 47.5% 100%
3    0.0% 0.0% 0.0% 9.2% 10.6% 9.6% 2.3% 13.8% 54.6% 100%
4     0.0% 0.0% 6.4% 8.2% 12.3% 0.0% 15.2% 57.9% 100%
5     0.0% 0.0% 0.0% 0.0% 10.3% 0.0% 22.1% 67.6% 100%
6      0.0% 0.0% 0.0% 0.0% 0.0% 30.6% 69.4% 100%
7       1.1% 0.0% 0.0% 0.0% 29.9% 69.0% 100%
8        0.0% 2.0% 0.0% 25.0% 73.0% 100%
9         0.0% 0.0% 42.6% 57.4% 100%

10          14.3% 27.5% 58.2% 100%
11           34.2% 65.8% 100%

Total 1.6% 4.3% 1.8% 2.9% 2.7% 2.0% 3.3% 3.7% 5.9% 2.1% 11.4% 58.4% 100%

 
In the First Set of computational experiments, two fixed OD patterns with static OD flows 
have been used for testing purposes, for a time horizon of 1 hour. An OD flows for 
uncongested conditions and another one for congested.  
 
The Second Set of computational experiments has been conducted with time sliced OD flows 
sharing the same OD Pattern as in the First Test Set, but the time horizon (1h 40min) splits 
in four time intervals of 25 minutes and demand is distributed to account for the 15%, 25%, 
35% and 25% of the total demand in each slice. We remark that the OD pattern is still fixed, 
but not the OD flows which are slice dependent. 
 
RESULTS FOR FORMULATION 1 
 
Tests in the First Set show that the proposed Kalman Filtering approach for Formulation 
1converges successfully to the true results in few iterations for the uncongested and 
congested situations.  Figure 5 graphically depicts the convergence progress for OD 
proportions from entry 1 to 11 of the feasible off-ramps for the uncongested matrix of OD 
flows. KF filter initialization is always non-informative (every off-ramp of one on-ramp has the 
same probability), for the 74 OD pair in the site’s model, which is considered a very difficult 
initialization. 
 
Table 10 summarizes the values of the RMSE for each OD proportion at the end of the 
process. And compares the RMSE error values for congested and uncongested tests for 
some OD pairs (Root Mean Squared Error on OD proportions). The results show no 
significant differences in the accuracy of the estimates of target OD proportions. Initialization 
of covariance has a key effect on convergence in accordance with the experience reported 
by other researchers. 
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Figure 5- OD Pairs 1-1 to 1-11. Convergence to truly OD Proportion for constant OD pattern without congestion 
(time horizon 1h) 

 
Table 10- First Test Set - RMSE values (multiplied by 10-2) for a sample of OD pairs 

RMSE x10-2  Some OD pairs – Fix OD Pattern – Static OD flows 
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10  1-11 1-12 

Interval 
length 
(seconds) 

90  Uncongested 4.63 2.49 4.84 3.98 4.20 5.15 6.02 4.82 4.98 7.30 4.55 5.40 
150 Congested 5.14 2.54 5.22 4.26 4.75 6.92 6.87 5.56 6.98 0.83 5.52 4.10 

 
 
The results for the Second Set of computational experiments can be summarized as follows: 
for time intervals where traffic flow varies from free flow to dense but not yet saturation 
conditions the filtering approach works as expected and its performance seems not to be 
affected for congested flows. RMSE values are of a similar order of magnitude. The 
equivalent results to those in Figure 5 for the same set of OD pairs are depicted in Figure 6. 
Table 11 summarizes the values of the RMSE for some OD proportions for the 4th time slice. 
 

 
 

Figure 6- OD Pairs 1-1 to 1-11. Convergence to truly OD Proportions for time-sliced OD (time horizon 1h40min) 
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Table 11 - Second Test Set - RMSE values (multiplied by 10-2) for a sample of OD proportions (from Entry 1). 
 

4 th time slice: 
RMSEx10-2 

 Some OD pairs – Fix OD Pattern – Time Sliced OD flows 
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1- 11 1- 12 

Interval length150 seg 5.61 2.77 6.07 4.14 4.52 7.09 5.22 5.70 3.88 5.84 1.23 5.21 
  
 
RESULTS FOR FORMULATION 2 
 
Figure 7 graphically depicts the convergence progress for OD flows from entry 1 to each of 
the 12 off-ramps for the static and uncongested OD matrix. The KF approach for Formulation 
2 is shown to be stable under variance-covariance pattern initialization and no sensitive to 
diagonal or multinomial blocked variance of state variables in the uncongested situation. 
Convergence and results seem more seriously affected by the initialization of OD flows than 
Formulation 1. 
 
Table 12 summarizes the values of the RMSE for OD flows of entry 1 at the end of the 
process and compares the RMSE error values for the uncongested in terms of OD 
proportions (as in Formulation 1). The results show no important differences in the accuracy 
of the estimates of target OD flows or target OD Proportions, in relative terms.  A 
discretization in 3 bins for travel time distributions has been used. Variance-covariance 
matrices are diagonal proportional to historic variance for OD flows, entry, exit and section 
counts. 

 
Figure 7. OD Pairs 1-1 to 1-12. Convergence to OD flows for First Set experiments without congestion (time 

horizon 1h) 

Table 12- First Set Uncongested Situation: RMSE values for a sample of OD pairs (interval length 90 seg) 
 

RMSE  Some OD pairs – Fix OD Pattern – Static OD flows (Uncongested Situation) 
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10   1-11 1-12

ODPattern 
x10-2 0,51 0,77 0,40 0,66 0,52 0,38 0,67 0,80 1,12 1,08 1,32 2,47 
ODflows 0,66 1,02 0,50 0,86 0,63 0,48 0,87 0,98 1,42 1,34 1,65 3,90 
Target  flows 2,72 7,15 2,81 4,93 4,26 3,10 3,97 4,47 7,48 2,68 9,60 73,34 
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Considering a very poor informative starting point, equivalent to the maximum entropy for 
each entry (no previous information on destinations proportions is assumed and equal 
probability is set) and diagonal variance matrices based on historical variance KF 
convergence is found without difficulties for uncongested situations, but errors are greater 
(see Figure 8 and Table 13). 
 

 
Figure 8. OD Pairs 1-1 to 1-12. Convergence to OD flows for First Set experiments without congestion (time 

horizon 1h): no information as starting point 

 
Table 13- First Set Uncongested Situation: RMSE values for a sample of OD pairs (interval length 90 seg) : no 
information as starting point 
 

 Some OD pairs – Fix OD Pattern – Static OD flows 
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10  1-11 1-12

In
te

rv
al

 le
ng

th
 9

0 
se

g 

RMSE x10-2 
ODPattern 2,38 0,33 2,85 1,20 2,58 2,69 2,08 1,63 1,73 2,79 1,55 14,62 
RMSE x10-2 
ODPattern(no  
transient) 1,67 0,17 2,54 0,88 1,79 1,60 1,01 0,64 1,75 2,10 0,81 4,51 
RMSE ODflows  3,10 0,59 3,68 1,63 3,39 3,52 2,74 2,15 2,24 3,57 1,94 18,07 
RMSE ODflows 
(no  transient) 2,14 0,38 3,23 1,15 2,29 2,05 1,31 0,85 2,24 2,66 1,05 6,16 
Target flows 2,72 7,15 2,81 4,93 4,26 3,10 3,97 4,47 7,48 2,68 9,60 73,34
Average of 
filtered values 5,49 7,20 6,40 6,39 7,26 6,01 6,04 4,65 6,07 1,08 8,60 62,31 
Average of 
filtered values 
(no transient) 4,81 6,96 6,02 6,04 6,47 5,04 5,19 3,72 5,29 0,02 8,89 68,17 

 
Figure 9 depicts the convergence progress for OD flows from entry 1 to each of the 12 off-
ramps for the First Set of tests in a congested situation. The KF approach for Formulation 2 
is shown to be stable under variance-covariance pattern initialization and no sensitive to 
diagonal or multinomial blocked variance of state variables in the uncongested situation. 
Convergence and results seem to be affected by the initialization of OD flows. 
 
Table 14 summarizes the values of the RMSE results for OD flows of entry 1 relative to 
target OD flows and shows the RMSE error values for the congested First Set situation in OD 
proportions (as in Formulation 1) and OD flows, for the whole time horizon with and without 
transient time intervals. The results show no important differences in the accuracy of the 
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estimates of target OD flows or target OD Proportions compared to the uncongested 
situation. 

 
 
Figure 9. OD Pairs 1-1 to 1-12. Convergence to OD flows for First Set experiments with congestion (time horizon 

1h40min) 

The Second Set of Experiments with Variable OD flows in 4 slices (but estable OD Pattern) 
resulting a combination of very uncongested, uncongested, congested and congested slices 
are a challenge for the KF algorithm in Formulation 2. The number of bins in the empirical 
discrete travel time distributions has a serious effect in the performance as depicted in Figure 
10. The starting point is set to equiprobability in OD Pattern for each Entry. RMSE errors for 
H=3 bins are shown in Table 15. 
 
 
Table 14- First Set Congested Situation: RMSE values for a sample of OD pairs (interval length 150 seg) 
 

Interval length 
150 seg Some OD pairs – Fix OD Pattern – Static (1-Slice) OD flows with Congestion

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12
RMSE x10-2 
ODPattern 2,19 0,62 1,96 0,67 0,76 0,94 2,09 0,94 2,55 2,47 1,82 8,82 
RMSE x10-2 
ODPattern (no  
transient) 1,84 0,49 1,66 0,15 0,21 0,16 1,88 0,34 2,57 2,12 1,70 0,96 
ODflows- RMSE 4,69 1,33 4,17 1,13 1,28 1,73 4,45 1,65 5,94 5,43 4,32 22,05 
ODflows (no  
transient) - RMSE 4,13 1,35 3,70 0,52 0,39 0,31 4,16 0,68 6,07 4,89 4,12 2,65 
Target flows 
(equipped) 4 11 5 8 7 4 6 7 11 4 15 118 
Target flows  5 14 6 9 9 6 8 8 14 5 17 130 
Average of filtered 
values 9,4 12,6 9,9 9,3 9,6 6,2 12,5 9,2 8,2 0,9 13,0 125,6 
Av. filtered values 
(no transient) 9,0 12,4 9,6 9,0 9,3 5,8 12,3 8,9 7,9 0,0 13,1 130,3 
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Figure 10. OD Pairs 1-1 to 1-12. Convergence to OD flows for the Second Set of experiments with 4 sliced OD 
flows (time horizon 1h40min). Discrete travel time distributions in H=3 bins (left) and H=1 bin (right). Target in 

black for OD pair 1-12. 

Table 15- Second Set of Tests: RMSE values for a sample of OD pairs (interval length 150 seg) 
 
Interval length 150 seg Some OD pairs – Fix OD Pattern – 4 Sliced OD flows 

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12

R
M SE

 x10-2 ODPattern 2,59 1,01 2,72 1,08 1,17 1,28 2,54 1,94 1,52 2,28 1,17 16,58 
ODflows 4,1 4,4 4,1 4,4 4,5 3,5 4,1 4,0 6,0 4,4 6,9 51,4 

O
D

 
flo
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Slice 1: 15 min 2 6 3 4 4 2 3 4 7 2 7 52 
Slice 2: 15 min 4 10 4 7 7 5 6 7 13 4 14 103 
Slice 3: 15 min 5 13 6 9 8 6 7 7 14 4 15 117 
Slice 4: 15 min 5 13 5 9 8 4 7 7 11 4 15 118 

 

PRELIMINARY RESULTS FOR FORMULATION 3 

The deviate formulation relative to historic values does not seem to take benefit over 
Formulation 2 for the uncongested situation. Diagonal var-cov matrices with values 
proportional to historical flows are used. State variables defined as deviates from historical 
OD flows of equipped vehicles in Formulation 3 does not improve accuracy with respect to 
Formulation 2. Figure 11 depicts the convergence progress for OD flows from entry 1 to each 
of the 12 off-ramps for the First Set of tests in the uncongested situation and Table 16 
summarizes the values of the RMSE for OD flows of entry 1 and shows RMSE error values 
relative to target values for OD flows for the whole time horizon with and without transient 
time intervals. 
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Figure 11. OD Pairs 1-1 to 1-12. Convergence to OD flows for First Set experiments without congestion (time 

horizon 1h) 

 
Table 16- First Set Uncongested Situation: RMSE values for a sample of OD pairs (interval length 90 seg) : no 
information as starting point 
 

 Some OD pairs – Fix OD Pattern – Static OD flows – No Congestion
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12

In
te

rv
al

 le
ng

th
   

  
90

se
g

ODflows- RMSE 0,82 2,50 1,08 1,61 1,34 0,93 1,26 1,76 3,05 1,19 6,19 16,71 
ODflows (no  
transient) - RMSE 0,63 1,05 0,85 0,81 0,73 0,67 0,75 1,33 2,11 1,13 5,92 6,34 

Target flows 2,72 7,15 2,81 4,93 4,26 3,10 3,97 4,47 7,48 2,68 9,60 73,34
Av. filtered 

values 2,09 5,47 1,93 3,78 3,42 2,52 3,67 4,71 7,67 2,79 13,00 75,37 
Av. filtered 
values (no 
transient) 2,26 6,31 2,10 4,25 3,83 2,74 4,10 5,25 8,83 3,02 15,29 68,17 

 

CONCLUSIONS AND FUTURE RESEARCH 

Bluetooth sensors to detect mobile devices have proved to be a mature technology that 
provides sound measurements of average speeds and travel times between sensor 
locations. These sensors are already in operation at the AP-7 Motorway in Spain between 
Barcelona and the French border. This paper has explored how data available from this 
technology can be used to estimate dynamic origin to destination matrices in motorways by 
proposing several ad hoc linear Kalman Filter approaches. The results on the conducted 
experiments using simulation data prove that the approach works fine for uncongested and 
congested conditions but properly tuning on the initialization points and matrices is critical in 
some situations. Further research is necessary to develop a robust algorithm in congested 
situations that can be used to estimate time-dependent OD matrices from the direct vehicle 
logging by Bluetooth, since precision on the estimated OD pattern is also affected by interval 
length: an adaptive time varying scheme for time interval length according to congestion 
should be included in the near future. 
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