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ABSTRACT 

The design and evaluation of City Logistics applications requires an integrated framework in 
which all components could work together. Therefore, City Logistics models should account 
for vehicle routing applications and fleet management models capable of including also the 
dynamic aspects of the underlying road network, namely when ICT applications are taken 
into account. This paper develops a methodological proposal based on an integration of 
vehicle routing models and real-time traffic information. In the computational experiments 
conducted in this paper, a dynamic traffic simulation model has been used to emulate the 
actual traffic conditions providing, at each time interval, estimates of the traffic state on each 
link of the road network that are then used, by a real time fleet management system, to 
determine the optimal dynamic routing and scheduling of the fleet. 
 
Keywords: real-time traffic information, time-dependent travel times, dynamic vehicle routing, 
tabu search 

1. INTRODUCTION 

Fleet management in urban areas has to explicitly account for the dynamics of traffic 
conditions leading to congestions and variability in travel times severely affecting the 
distribution of goods and the provision of services. An efficient management should be based 
on decisions accounting for all factors conditioning the problem: customers’ demands and 
service conditions (time windows, service times and others) fleet operational conditions 
(positions, states and availabilities of vehicles) and traffic conditions. Instead of making 
decisions based on trial and error and operator’s experience a sounder procedure would be 
to base the decisions on the information provided by a Decision Support System. Regan et 
al. (1997, 1998) provide a conceptual framework for the evaluation of real-time fleet 
management systems (see Figure 1), which considers dynamic rerouting and scheduling 
decisions implied by operations with real-time information as new orders or updated traffic 
conditions. 
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 Figure 1 – Conceptual scheme for the evaluation of real-time fleet management systems 

Unlike the classic approach, where routes are planned with the known demand and they are 
unlikely to be changed throughout the planning period, the real-time fleet management 
approach (inside the dotted frame) assumes that real-time information is constantly revealed 
to the fleet manager who has to decide whether the current routing plan should be modified 
or not.  
 
The logic process, depicted in the diagram of Figure 1, assumes a partial knowledge of the 
demand. The service starts at the beginning of the time period (i.e. one day) proposing an 
initial schedule of the available fleet to service the known demand. This is the initial 
operational plan which will be modified accordingly later on, when the operation is ongoing 
and new real-time information is available. This information can correspond to new demands, 
unsatisfied demands, changes in the routes due to traffic conditions, changes in the fleet 
availability (i.e. vehicle breakdowns) and others, which feeds a dynamic router and scheduler 
that computes and suggests a new dynamic operational plan. In Figure 2, we depict an 
example of how the conceptual process described in Figure 1 can be handled by a dynamic 
router and scheduler system. 
 
The various colors identify the initially assigned routes to a set of five vehicles and the order 
in which customers will be served according with the initial schedule. We also assume that 
vehicles can be tracked in real-time. At time t, after the fleet has started its operational plan, 
a new customer calls requiring a service which has not been scheduled. If real-time 
information, such as positions and states of the vehicles and current and forecasted traffic 
conditions, is available to the fleet manager, he can use it to make a better decision on which 
vehicle to assign to the new call and whether the new assignment results in a direct diversion 
from a route (vehicle 2) or a later scheduling (vehicle 1). 
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Figure 2 – Dynamic vehicle rerouting in a real-time fleet management system 

1.1 Motivation for the Dynamic Approach 

Although the static version of the vehicle routing problem (VRP) has been widely studied in 
the literature, the developments in ICT have accelerated the research in the dynamic case of 
the problem. The dynamic VRP assumes a partial knowledge of the demand and that new 
real-time information is revealed to the fleet manager throughout the operational period. A 
comprehensive review of the dynamic problem can be found in Ghiani et al (2003). 
 
The VRP with time-dependent travel times acknowledges that traffic conditions have an 
influence on the routing planning. An introduction to the problem and a heuristic development 
is made in Malandraki and Daskin (1992). Further algorithm developments for the static VRP 
with time-dependent travel times can be found in Ichoua et al (2003), Fleishman et al (2004) 
and Tang (2008). To our knowledge, the dynamic VRP with time-dependent information has 
only been addressed by Chen et al (2006) and Potvin et al (2006). In our approach, time-
dependent information is generated by means of traffic simulation of a real-world urban 
network in order to emulate the role of an Advanced Traffic Information System providing 
reliable real-time information on traffic conditions and short-term forecasts. As far as we 
know, the combination of dynamic traffic simulation tools and vehicle routing models has not 
been addressed in the literature. 
 
Thus, the methodological proposal object of this paper assumes the availability of such real-
time information and develops ad hoc version of decision rules and time-dependent route 
scheduling algorithms as core components of such dynamic router and scheduler. 
 
In order to test the management strategies and algorithms assuming real-time information, 
we have used a dynamic traffic simulation model, emulating in this way the estimates of the 
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current travel times as a function of the prevailing traffic conditions and the short-term 
forecast of the expected evolution of travel times that an advanced traffic information system 
would provide. This is the basis for more realistic decisions on the feasibility of providing the 
requested services within the perceptive time windows. Furthermore, simulation can also 
emulate real-time vehicle tracking giving access to positions and availabilities of the fleet 
vehicles, which is the information required by a dynamic router and scheduler. 

2. THE DYNAMIC ROUTER AND SCHEDULER 

The Dynamic Router and Scheduler (DRS) configure the core of the proposed Decision 
Support System. It is the main objective of this paper and it consists of a set of algorithmic 
tools to decide which vehicle will be assigned to the new task and to provide an on-line 
solution to the underlying real-time vehicle routing problem. Under the proposed platform, the 
DRS is triggered by events generated by a discrete-event simulator, which emulates the 
dynamics of the operation of a fleet of vehicles throughout the planning period. We 
distinguish two types of events, external and internal. The external events depend mostly on 
the demand and other factors which are independent of the traffic conditions experienced in 
the road network, e.g. a new customer request, a cancelation of an order, changes in 
demand or time windows, breakdown of vehicles, etc. Internal events, in contrast, depend on 
the observed traffic flow dynamics which could be the cause, for instance, of delays in the 
estimated arrival times or service start times.  
 
The interactive logic of the process is conceptually illustrated in the diagram of figure 3. The 
dynamic events simulator emulates the evolution of general traffic flows in the network, the 
progress of the tracked fleet and the random events experienced by the fleet manager. An 
event-based mechanism within the simulation platform generates the external events that are 
likely to change the fleet operational plan. Internal events are triggered when certain 
condition or criteria is met due to the prevailing traffic conditions of the network. Internal and 
external events and the associated information are the primary inputs to the DRS. Whenever 
an event is triggered, the DRS re-computes routes on the basis of a modified tabu search 
heuristic, derived from the tabu search methodology used in the computation of static 
operational plans. 
 
Additionally, several solving strategies can be considered at this stage to propose a solution 
and evaluate the best alternative. For example, under a one-by-one treatment, a new 
solution is proposed for every customer request received. An alternative might be to “pool” 
several requests using certain criteria (e.g. distance, proximity, etc). These strategies are 
considered to be reactive as they react to a request or set of requests. Preventive strategies 
might look to relocate vehicles in anticipation of new requests. By using waiting strategies, a 
fleet manager could intentionally delay or anticipate a vehicle’s move to the next location. 
 
 



Fleet Rerouting Strategies with Real-Time Traffic Information 
BARCELO, Jaume; OROZCO, Jesús Arturo  

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
5 

 
 

Figure 3 – Processes at the Dynamic Router and Scheduler 

3. DEALING WITH TIME-DEPENDENT TRAVEL TIMES 

Typical urban networks are subject to numerous random events resulting in traffic conditions 
with high levels of variability. This is particularly visible in commuting hours (morning and 
afternoon extended rush hours) when travel times in many streets rise significantly in 
comparison with other time slots due to traffic congestion on the roads. Thus, one vehicle 
traveling from origin O to destination D and leaving at time t1 will likely have a different travel 
time when leaving at time t2.  
 
In order to illustrate this argument, we have calculated the travel time averages and 
variances of all links for several replications of a dynamic traffic simulation model of the 
downtown area of Barcelona (Barcelona’s model and its calibration were available to us as a 
result of previous research projects.). The results, computed from 7:00 to 17:00 hours every 
five minutes, are shown in Figure 4. As not all links on the road network have the same 
lengths and capacities, some variance is expected. Thus, it is possible to identify two time 
regions where the variability of link travel times is significantly different. The first period, 
approximately from 7:30 to 10:00, corresponds to the morning extended rush hour, where the 
network, which begins simulation with light traffic conditions, passes rapidly to a heavy 
congestion state resulting in a higher variability of the travel times. The same behavior can 
be observed in the afternoon extended hours (last 2 hours of simulation). Between these two 
periods, we have a time slot where variability is stationary due to normal traffic conditions. 
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Figure 4 – Average travel times and travel time variances in Barcelona’s downtown 

 
Moreover, there is evidence that a large proportion of fleet operations take place during rush 
hours, as pointed out by Robusté (2005), where the results from a survey, in 60,000 retail 
outlets in the city of Barcelona, found that at 11:00 hours more than 50% of the goods have 
been delivered with an average service time between 13 and 16 minutes. 
 
The above results state that working exclusively with average travel times may lead to 
significant deviations in city logistics problems where temporality is an important factor such 
as the vehicle routing and scheduling problem with time windows. In our research, the 
proposed platform is able to emulate an advanced traffic information system (ATIS) which 
provides link time-dependent data, which in turn is used to build routes and guide vehicles 
through the urban network. Therefore, given that time-dependent data is available, the 
decision support system is able to compute time-dependent shortest paths between any pair 
of nodes of the road network and provide them to a user, which, in this case, is the dynamic 
router and scheduler.  
 
In the literature, the most studied form of shortest path problems are static, that is, they 
assume that link travel times or costs are constant. When link travel times change over time, 
shortest paths are said to be dynamic. Cooke and Halsey (1996), Orda and Room (1990), 
Ziliaskopoulos and Mahmassani (1993), among others, have proposed algorithms that take 
into account the variability of link travel times. In this research, we have selected the 
algorithm proposed by Chabini (1998, 1999). His algorithm, known as Decreasing Order of 
Time (DOT), computes shortest paths from all nodes to one destination for all departure 
times. DOT assumes that after certain time period Tmax, all link costs remain constant. The 
algorithm starts calculating static shortest paths at time Tmax and moves backwards 
calculating shortest paths for the previous departure time and so forth.  
 
Let us now describe the DOT algorithm. Let GR = (NR,AR) be a directed graph that represents 
the road network where NR = {1,…,n} is the set of nodes and AR = {(i,j) | i,j ∈ NR, i ≠ j} is the 
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set of links. Let dij(t) be the travel time between nodes i and j when departure time is t, t ∈ 
{0,1,… Tmax }. Let us assume that we are interested in compute the shortest paths from all 
nodes of the network to certain destination node q. Let C be a matrix where entry aij denotes 
the cost (or travel time) of an optimal path from node i to node q, when departing time is j. Let 
N be a matrix where entry aij represents the next node to visit on the optimal path from node i 
to node q departing at time j. The following is a pseudo-code for DOT algorithm: 
 

1. Initialization 
 For i = 1 to n do: 
  For t = 0 to Tmax do: 
   C[i][t] = ∞ 
   N[i][t] = 0 
 For t = 0 to Tmax do: 
  C[q][t] ← 0 
 Compute static shortest paths at t = Tmax 

2. Main Loop. 
 For t = Tmax – 1 down to 0 do: 
  For (i,j) ∈ AR do: 
   t’ = min{Tmax, t + dij(t)} 
   if C[i][t] > C[j][t’] + dij(t) then: 
    C[i][t] = C[j][t’] + dij(t) 
    N[i][t] = j 

 
The output of DOT has two components. First, we can determine the estimated travel time 
from any point in the urban network to a certain customer location given that a vehicle 
departs at a specific time instant. Second, DOT provides the sequence of nodes 
(representing streets and turnings) that a vehicle must follow in order to arrive from any point 
of the network to a customer address. The first output helps us determine the optimal routing 
of the fleet. The latter emulates the use of a GPS device that guides a vehicle to a given 
destination point. 

4. HEURISTICS OF THE DYNAMIC ROUTER AND SCHEDULER 

In this section, we describe the heuristics used by the Dynamic Router and Scheduler when 
a new customer request takes place. We assume that requests are attended one-by-one and 
that the initial routing plan has been previously computed using some optimization technique 
as tabu search. First, we describe a method to generate a quick solution to the problem. 
Then, we use this solution as an initial input for an optimization method based on tabu 
search. 

4.1 Dynamic Insertion Heuristic (DINS). 

The heuristic used in the DRS is derived from the basic insertion heuristic proposed in 
Campbell and Savelsbergh (2004), where every unrouted customer is evaluated at every 
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insertion point. The evaluation of this movement consists in checking the feasibility and 
profitability of every insertion, which is the negative of the amount of additional travel time 
added to the route. The customer with a feasible insertion having the maximum profitability is 
then selected and inserted in the route. The authors proved that the total complexity for this 
algorithm is given by O(n3). We have adapted this heuristic for the case of the Dynamic 
Vehicle Routing Problem with Time Windows (DVRPTW) by introducing some new elements 
to reflect the dynamics of the operations of a fleet in an urban environment. The objective of 
DINS heuristic is to insert a new client into the current routes plan once the vehicles have 
started the services. The general idea of the algorithm is simple. When a new client arrives to 
the system, the algorithm checks the current state of the vehicles. Then, routes with 
insufficient time to visit the new client within their schedule are rejected. Finally, the algorithm 
checks, on the candidate routes, for the least cost feasible insertion. If no feasible insertion is 
possible and there are idle vehicles on the depot, a new route is created including the new 
customer. 

4.1.1 Notation. 

We assume that there are n routed customers in R different routes at the beginning of the 
time planning horizon. We also suppose that there is one single Depot with a homogeneous 
fleet of vehicles with capacity Q. A route is a sequence of customers beginning and ending at 
the Depot. For convenience, the Depot is identified with 0 (start of route) and n+1 (end of 
route). The following additional notation is required for the construction of the algorithm: 
 

• Ti,j(t) = travel time between customers i and j when vehicle departs at time t. 
• Vr = vehicle assigned to route r, r = 1, 2,..,R. 
• qr = total demand assigned to route r. 
• di = demand of customer i. 
• Ei = time window lower bound of customer i. 
• Li = time window upper bound of customer i. 
• ei = earliest service start time at customer i. 
• li = latest service start time at customer i. 
• Si = service time at customer i. 

 
The time window of a customer i is denoted by (Ei, Li) and we assume that the time window 
of the depot is given by (0, T), where T is the end of the planning period. The values ei and li, 
refer to the earliest and latest time a service can take place at customer i, and they must 
satisfy the following condition: Ei ≤ ei ≤ li ≤ Li. When a new call is received, the system must 
decide where to insert the new customer. Let us assume that a new customer w arrives to 
our system at time instant t > 0. When this happens, the vehicles of the fleet may have one of 
the following three states: 

1. The vehicle is in service at some customer i (SER). 

2. The vehicle is moving to the next planned customer on the route or waiting at the 
customer location to start service within the time window. (MOV). 
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3. The vehicle is idle at the Depot, without a previously assigned route (IDL). 

We call this situation the status of a vehicle. This status will let us know when a vehicle 
should be diverted from its current route, be assigned to a new one if is idle or keep the 
planned trip. Whenever a new customer arrives, the status of each vehicle must be known to 
compute travel times from their current positions to the new customer.  

4.1.2 Algorithm. 

The first iteration of the algorithm consists of rejecting those routes that are definitely 
infeasible. To do this, it is necessary to compute the total available time of the routes, i.e. the 
sum of the available time (if any) of a vehicle on the assigned route. We define the available 
time of a vehicle as those periods of time where: a) a vehicle is waiting to provide service to 
a customer or, b) a vehicle has finished the scheduled route and is returning to the depot. 
This is, in fact, the maximum slack time a vehicle has available to travel and service a new 
customer call. 
 
The calculation of the available route time can be done by estimating the arrival times at 
each of the scheduled customer locations that has not been served at the time of the new 
request w. The arrival time ai at customer i, is computed from the current position of the 
vehicle and we assume that the vehicle will start service as soon as it arrives if the 
customer’s time window is already open; otherwise, the vehicle waits. The calculation of 
arrival times is done with the following procedure. If, at instant t, the vehicle is moving toward 
the next customer then the estimated arrival time ai is given by )(, tTta iVi r

+= . The arrival 

times at subsequent customers on the route are computed as follows: 
 

)},(max{},max{ 111,1111 −−−−−−− +++= iiiiiiiii SaETSaEa    (1) 

 
Hence, the available time of a vehicle in route r at some node i (including the depot) is the 
difference between the associated lower limit of the time window and the arrival time of the 
vehicle to that location. That is, }0,max{ ii

r
i aEW −= . Therefore, the total available time of a 

route r is given by ∑= i
r

ir WAT .  

 
From each route, we choose the unvisited node that is the closest to the new client. If the 
travel time from that node to the new customer is greater than the total available time ATr, 
then we reject the route. If every route is rejected, a new route must be created for this new 
customer. The routes obtained, as a result of this previous iteration, are possibly feasible in 
the sense that vehicles serving those routes have enough time to travel to the new customer. 
This is a necessary condition, but not sufficient, because we have to check for time windows 
feasibility. The second major iteration of the algorithm consists, therefore, in checking the 
feasibility and profitability of an insertion in every arc of the possible feasible routes. The 
feasible insertion with the highest profitability is then selected and the corresponding route 
must be updated. 
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Feasibility. In order to evaluate the feasibility of the insertion of customer w between nodes i 
and i+1, we must compute ew and lw, the expected earliest and latest service start times, 
respectively. The earliest service start time at the new customer w is given by: 
 

⎩
⎨
⎧

+++
=+

=
otherwise)},(,max{

 if)},(,max{

,

,

iiwiiiw

rwVw
w SeTSeE

iVtTtE
e r     (2) 

 
The latest service start time is calculated through a backward procedure starting with the 
depot (the last node to be visited by the vehicle) as follows: 
 

}~,min{ wwww StLl −=        (3) 

 
where )(},)({maxarg~

1,111, tTltltTtt iiiiii
t

i ++++ −≤∀−+=  is the latest possible departure time 

that allows the vehicle to arrive to the next scheduled customer i+1 at time li+1. If ew ≤ lw and 
Dw < Q - qr, the insertion is feasible.  
 
Profitability. The profit of an insertion is defined as the negative of the additional travel time 
incurred from inserting the new customer in a route. If a new customer w is to be inserted 
between nodes i and i+1, the profitability of this insertion is given by: 
 

[
])},(max{               

)},(max{)},(max{

1,

1,,

iiiii

wwwiwiiiwi

SaET
SaETSaETprofit

+

−+++−=

+

+
  (4) 

 
If no insertion is possible and there are available vehicles at the depot, then a new route that 
includes customer w is created. If the whole fleet of vehicles is already occupied, then the 
call is rejected and postponed for service within the next planning period. Given the arrival of 
a new client w at time t and a set R of pre-planned routes, the pseudo-code of the heuristic is 
as follows: 
 
1. For each route r in R do: 
 Compute available time ATr 
 Find travel time from w to closest neighbor 
 If available time is not enough, then reject route r 
 Else, add route r to R’, the set of possible feasible routes 
2. For each route r in R’ do: 
 Check the status of the vehicle and set its position as the starting node of the route. 
 For each arc (i, i+1) of the remaining route sequence do: 
  If insertion of w is feasible and profit is improved then: 
   Store current profit and insertion places 
3. If insertion is possible then:  
Insert w in least cost arc and update selected route. 
4. Else: create a new route with an available idle vehicle (if any). 
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4.2 Dynamic Tabu Search (DTS). 

In order to optimize the solution obtained by the DINS heuristic, we have implemented an 
adaptation of the Unified Tabu Search (UTS) heuristic proposed by Cordeau et al (2001) for 
the vehicle routing problem with time windows. The heuristic was modified to take into 
account the dynamic aspects of the problem. Mainly, we have changed the heuristic to 
perform local searches only on the unvisited nodes of the scheduled routes and added a 
stopping criterion which takes into account the rate of improvement of the search process. 
First, we will introduce the UTS heuristic and then we will describe the adaptations made for 
our algorithm. 

4.2.1 The Unified Tabu Search 

 The UTS meta-heuristic is an iterative procedure that drives the search from a current 
solution s to the best solution found in a subset of the solution space called the neighborhood 
of s, or N(s), by performing local searches. N(s) consists of the set of solutions that are 
reached when a switch operator is applied to the current solution s. As it is based on tabu 
search, UTS uses anti-cycling rules (tabu lists) and diversification mechanisms that allows 
the search to explore other areas of the solution space while escaping from local optima. 
Let S be the set of solutions of the vehicle routing problem. Each s ∈ S satisfies the following 
constraints: i) every route starts and ends in the depot, and ii) every customer is assigned to 
exactly one route. During the search process, a solution s may be unfeasible as it may 
violate the time windows or capacity constraints. 
 
For the evaluation of solutions, Cordeau et al (2001) proposed the cost function 

)()()()()( swsdsqscsf γβα +++= , where c(s) denotes the estimated total travel time of the 
routes; q(s) denotes the total capacity violation of the vehicles; d(s) denotes the total duration 
violation of the routes; w(s) denotes the total violation of the time windows constraints, and α, 
β and γ are positive parameters. 
 
The N(s) is generated by applying a shift operator to the current solution s. A shift operator 
removes a customer i from route k and inserts it in route k’. In the search process, all 
insertion positions are evaluated. When customer i is removed from route k, its reinsertion in 
that route is forbidden for the next θ iterations. Let B(s) = {(i,k): customer i is visited by 
vehicle k} denote the attribute set of a solution s. To diversify the search, every solution s’ 
such that f(s’) ≥ f(s) is penalized with a function ∑ ′∈

′=′
)(),(

)()(
sBki iknmscsp ρλ , where n is 

the number of customers, m is the current number of routes, λ is a positive parameter and ρik 
is defined as the number of times the attribute (i,k) has been added to a solution.  
 
The method begins with the construction of the initial solution by an insertion algorithm. This 
solution is used by the tabu search procedure as the starting point of the iterative process. In 
every iteration, the algorithm selects the best non-tabu solution s’ ∈ N(s) that minimizes the 
values of the cost function f(s) or satisfies an aspiration criteria. The criteria used by Cordeau 
et al (2001) is that the tabu status of a solution may be revoked if that would lead to a 
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solution of smaller cost than the currently best solution identified having the attribute B(s). 
When the selected solution s’ is feasible, the value of the best feasible solution is updated 
and the values of parameters α, β, γ are reduced by dividing the current values by 1 + δ; 
otherwise, the values are increased by multiplying the current values by the factor 1 + δ. 

4.2.2 A Dynamic Tabu Search for the Vehicle Routing Problem with Time Windows. 

The proposed heuristic is based on the UTS algorithm, but incorporates the dynamic 
elements of the problem. As in the DINS algorithm, we first need to know the position of the 
vehicles and their current state (in transit, in service, waiting or idle). Based on this 
information, the algorithm uses a modified cost function 

)()()()()( swsdsqscsf DDDD γβα +++=  that takes into account the current network 
conditions, where cD(s) denotes the estimated total travel time of the routes on the pending 
scheduled customers; dD(s) denotes the total duration violation of the routes, and wD(s) 
denotes the total violation of the time windows constraints of the customers to be visited. 
 
As real-time traffic information is assumed to be available, the computation of cD(s), the total 
traveling time, must take into account the departure times of vehicles from a given location. 
Therefore, before any evaluation of cost function fD(s), the algorithm must compute an 
estimation of the arrival and departure time of each vehicle for each one of the scheduled 
customers in the route. In our algorithm, these calculations assume that a vehicle departs as 
soon as it finishes a service in a customer, or, as soon as the depot is open. That is, it is 
assumed that vehicles will follow a drive-first policy. 
 
The neighborhood N(s) of a solution is generated through shift operations with some rules. 
The possible list of insertion positions in a route starts from the current position of the vehicle 
and not from the depot. If a vehicle is waiting to start service or heading to a customer’s 
location, the heuristic allows the diversion of the vehicle, that is, the route can be modified to 
visit a different customer than the originally scheduled. Figure 5 depicts the shift operation in 
a dynamic environment. In this figure, the shift of customer i from route k implies that vehicle 
k diverts its current scheduling to visit customer i+1. The vehicle in route k’ is not diverted but 
is ordered to make a change in his scheduled route. 
 
As in the UTS heuristic, we keep B(s), the attribute set of solution s. The number of iterations 
that a move is forbidden is given by θ = 7.5log10nu, where nu is the current number of 
customers that have not been serviced when the algorithm is executed. The choice of this 
number is based on the results provided by Cordeau et al (2001). During the search process, 
if a solution s’ ∈ N(s) is such that )()( sfsf DD ≥′ ,we penalize it with function 

∑ ′∈
′=′

)(),(
)()(

sBki ikuDD mnscsp ρλ . 
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Figure 5 – Shift operation for the dynamic vehicle routing problem 

 
The solution provided by the dynamic insertion heuristic represents the initial solution for the 
tabu search heuristic. The iterative steps are the same used in UTS, except for two criteria. 
First, our aspiration criterion accepts a solution if its cost improves the best solution found so 
far. Second, as fast on-line solutions are required by a fleet manager, we added a criterion 
that stops the search if a certain number of iterations κ has been reached without observing 
an improvement larger than ε.  
 
The pseudo-code for the dynamic tabu search (DTS) procedure is described as follows: 
 
1. Find a solution s using DINS algorithm. 
2. If solution s is feasible then make s* = s, α = 1; β = 1; γ = 1 
3. For i = 1,…, η do: 
3.1 Choose solution s’ ∈ N(s) that minimizes f(s’) + p(s’) such that s is not tabu or 
satisfies aspiration criteria 
 3.2 If s’ is feasible and c(s’) < c(s*), then s* = s’; c(s*) = c(s’) 
 3.3 If q(s’) = 0 then α = α /(1+δ), else α = α (1+δ) 
      If d(s’) = 0 then β = β /(1+δ), else β = β (1+δ) 
      If w(s’) = 0 then γ = γ /(1+δ), else γ = γ (1+δ) 
3.4 Set s = s’ 
3.5 If (number of iterations without improvement is κ) and (last improvement < ε) then STOP 
 

5. PLATFORM FOR THE DECISION SUPPORT SYSTEM 

Our proposed decision support system is based on the combination of dynamic traffic 
simulation and the algorithms defined on the dynamic router and scheduler. The platform in 
which all components are integrated is able to emulate the operation of an Advanced Traffic 
Information System providing real-time data and the operations of fleet management center. 

route k

route k’
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Figure 6 shows the different components of the platform and how they are connected to each 
other. Next, we will briefly explain the role and interactions of each one of these components. 

5.1 Dynamic Traffic Simulation 

The first component of our approach is dynamic traffic simulation, which is used as a 
supporting tool to model the road network and generate databases of time-dependent link 
travel times. As a modeling tool, dynamic traffic simulation helps us to build and model urban 
networks by defining the set of sections, intersections, traffic controls, origin-destination 
matrices and other important characteristics. We also use this tool to generate two types of 
databases. The first one is created from several replications of a traffic simulation and it 
represents the historical records of a traffic information database. The second is associated 
to a single replication and it is used to represent the dynamics of the traffic flows within the 
simulation of the fleet operational plan. It is important to remark that dynamic traffic 
simulation has a subsidiary role in our model and its usage is motivated by the fact that it can 
emulate with great detail and realism the traffic conditions of a road network. 
 
 

 
 

Figure 6 – Integrated platform for a decision support system for real-time fleet management. 

5.2 Shortest Path Engine 

A second component is represented by the shortest path engine, which calculates the 
optimal paths of the vehicles among customers and the corresponding travel times. A path is 
represented by the sequence of nodes belonging to the road network that a vehicle follows 
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when travelling among customers. As in the case of a real-life traffic information system, we 
assume the existence of short and long-term travel time forecasts. Short-term forecast come 
out of the current replication database and they represent the travel time information for the 
next 15 minutes. Long-term forecasts, in turn, are provided by the historical database and 
estimate the travel times beyond the 15-minute period of the short-term forecasts. 
 
The calculations of shortest paths are carried out by an implementation of the DOT 
algorithm, which receives, as input, the combined information of short and long-term 
forecasts of travel times. Shortest paths calculations are made whenever a vehicle departs 
from the depot or from a customer’s location and when required by the DRS. DOT provides 
two types of output: i) the optimal paths followed by the vehicles among the scheduled 
locations and, ii) the current estimated travel times among customers and vehicles. 

5.3 Dynamic Event and Vehicle Tracking Simulation 

The core of the simulation is represented by the third component, the dynamic event and 
vehicle tracking simulator, which i) randomly generates the different external and internal 
events defined in section 2 and, ii) moves vehicles along the road network according to the 
operational plan keeping track of their positions and activities at every time step. It is based 
on the general approach of a next-event time-advance simulation by Law and Kelton (2000) 
with some additional features according to our needs.  
 
In an initialization step, the simulator loads all the required data for the emulation of the 
systems, which include the road network, the clients and depot attributes and, the current 
and historical travel times generated by the dynamic traffic simulation. Once the required 
data has been loaded, the simulator asks the DRS to calculate an initial route assignment, 
which is used to set the initial vehicle attributes which are, among others, the sequence of 
customers to visit and the path on the road network that the vehicle will follow. Additionally, it 
is set the list of events and their time of occurrence. 
 
A timing routine controls the following event that has been set to occur, advancing the 
simulation clock and executing the corresponding set of instructions. Whenever there is a 
change in the simulation clock, the simulator “moves” the vehicles along the network, using 
the average link travel times from the current replication database. The simulation ends when 
the simulation clock reaches an ending time. 
 
In this paper, we deal with two types of events: the departure of a vehicle from a customer’s 
location and, the arrival of a new customer request. When a vehicle departs from a location, 
the simulator records the exit time of the vehicle and computes the time-dependent shortest 
path to the next customer in the route sequence. The simulator then changes the vehicle’s 
internal state to “in transit” and updates the path on the network that the vehicle must follow 
to arrive to the next scheduled customer. When a new request is received, the simulator 
processes and passes all the required information to the DRS, which include current vehicle 
positions, customers that have not been fulfilled, and the time-dependent travel times 
computed from the current network conditions. If a solution is found, the route plan is 
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updated accordingly and the next new customer event is scheduled. A penalty may be 
applied if the algorithm is not able to find a feasible solution that includes the new customer. 

5.4 Dynamic Router and Scheduler 

The last component of our platform is the DRS, which interacts with the event simulator and 
the shortest path engine in order to recalculate routes and propose new solutions if needed. 
It is important to remark that the proposed platform has been designed in such a way that 
their components can be replaced by real-time systems while keeping the logic and 
interactions among customers. For instance, the dynamic traffic simulation component might 
be replaced by any real-time traffic information system capable of providing travel times and 
vehicle guidance, while the dynamic event and vehicle tracking simulator can be replaced by 
any real-time fleet tracking and communication system. Therefore, the framework in which 
the DRS is developed can be implemented in any fleet management system. 

6. COMPUTATIONAL EXPERIMENTS 

A set of computational experiments has been designed and conducted to evaluate the 
performance of a fleet using the simulation platform to emulate daily traffic city conditions, 
under different scenarios. For this paper in particular, we are interested in assessing: i) the 
added value of real-time traffic information in the performance of the fleet and, ii) the quality 
of the solutions provided by the proposed algorithms when new customer orders are 
received during the operational period. 
 
All algorithms and the integrated simulation platform have been implemented in C++. The 
computational tests described in this section were executed on a PC with Intel Core 2 Duo 
3.16Ghz and 3.25 GB in RAM. 

6.1 Test Instances. 

For our computational tests, a microscopic simulation model of the downtown area of 
Barcelona has been used. It covers 746.5 hectares and it is one of the most important 
districts in the city due to the high volume of commercial activity (see Figure 7). The graph 
that represents the road network consists of 1,570 nodes and 2,797 arcs.  
 
Real-time Traffic Information System 
In order to emulate the real-time traffic information system of the urban network, we 
generated a database of historic travel times through Aimsun, a microscopic traffic simulation 
software. This database, which represents the long-term travel time forecasts, contains the 
average travel times of all links on the network for every 5-minute interval of 15 replications 
of a simulation under normal traffic conditions. We additionally generate a set of 12 
replications that are used by the dynamic event and vehicle tracking simulator to move 
vehicles along the network. These replications also represent the short-term travel time 
forecasts that combined with the long-term forecasts of the historic travel time database 
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provides the input to the time-dependent shortest paths calculations that are used to guide 
vehicles through the network. 

 
Figure 7 – Barcelona’s Downtown Network 

 
Customer Datasets 
We have generated two datasets of 100 customers with different geographic locations on the 
network. The first dataset contains customers that are randomly distributed across the 
network (see Figure 7 where customers are represented by the black dot). For the second 
dataset, we have used commercial data from the Council of Barcelona to generate 
customers that are distributed in clusters. Besides their geographic location, we also 
distinguish customers by their time windows characteristics, which can be: i) narrow, that 
have a time length between 0.5 and 1 hour, and ii) wide, with a time length between 4 and 6 
hours. For both datasets, we assume that there is a logistics center with one depot and a 
fleet of 7 homogenous vehicles with a capacity of 1,000 units. The depot service runs from 
08:00 to 16:00 hours. It is also assumed that all customers have a constant demand of 10 
units and a service time of 10 minutes1. 
 
Scenarios 
We have defined two main scenarios. In the first one, we assume that all demands are 
known in advance and that there are no new customer requests. We then compare the 
performance of the fleet when routing plans are computed and carried out assuming two 
types of traffic information: static and real-time time-dependent travel times. In the second 
scenario, we deal with the dynamic problem where new customer orders arrive during the 
day. We assume four degrees of dynamism (20%, 40%, 60% and 80%), which is defined as 
the proportion of new orders that are received by the fleet manager during the day. In this 
                                                 
1 Beginning June 1st, 2010, datasets can be downloaded in the following webpage: http://www-
eio.upc.es/~jorozco/ 
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scenario we compare the performance of the fleet when a greedy heuristic (DINS) is used to 
insert new orders in the routes and when a metaheuristic (DTS) is used for this purpose. The 
following table summarizes the considered scenarios and the corresponding factors. 
 
Table 1– Main scenarios for the computational experiments 
 

Scenario Factors Levels 
No new 
customers 
requests (S1) 

Link travel times Static; Time-dependent 
Shortest paths calculations At the beginning; When vehicle departs 
Time windows width Narrow (0.5 - 1 hrs); wide (4 - 6 hrs) 

New 
customer 
requests (S2) 

Link travel times Time-dependent 
Shortest paths calculations When a vehicle departs; when a new 

client arrives 
Time windows width Narrow (0.5 - 1 hrs); wide (4 - 6 hrs) 
DRS solving algorithm DINS; DINS + DTS 
Degree of dynamism 20%; 40%; 60%; 80% 

 
 
In order to compare scenarios, the following key performance indicators have been defined: 
 

• Service level (SL). 
• Average travel time of vehicles (ATT). 
• Average waiting time of vehicles (AWT). 

 
The SL is defined as the percentage of scheduled customers that were visited by the 
vehicles within the time windows constraints. ATT is the average time that a vehicle spends 
traveling in the network. AWT is the average time that a vehicle spends waiting at a customer 
location to start service. 
 
Initial Operational Plan Computation 
Before starting simulations, we proceeded to calculate the initial routing plan for each one of 
the instances using a variation of the UTS heuristic (Cordeau et al, 2001). Unlike this 
heuristic, we have used the insertion algorithm of Campbell and Savelsbergh (2004) to 
generate an initial solution. When then applied the UTS iterative process with the following 
parameters: 
 
Table 2 – Parameters used by the UTS to compute initial routes 
 
Parameter Description Value 
α Coefficient of capacity violation function (initial value) 1.00 
β Coefficient of duration violation function (initial value) 1.00 
γ Coefficient of time windows violation function (initial value) 1.00 
δ Update parameter of violation functions parameters 0.50 
θ Number of iterations for which a move is forbidden 7.5log10(100) 
λ Diversification parameter in penalty function 0.015 
η Maximum number of iterations 10000 
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We assume two different kinds of inputs to calculate routes in scenario S1: static and time-
dependent travel times. When static data is assumed, routes are computed using the 
average travel times observed during a 10-hours period. That is, we assume that travel times 
among customers remain static during the planning period. Therefore, vehicles are guided 
through the network with shortest paths computed from static information. When time-
dependent information is assumed, routes are calculated using the historic average travel 
times observed for different departure times. In this case, vehicles are guided by time-
dependent shortest paths which depend on the estimated departure time from a customer. 
In real-life applications of vehicle routing models, companies usually estimate their travel 
times by adding a “buffer factor” to their calculations in order to protect themselves against 
unexpected variability in the traffic conditions. Therefore, we additionally tested the 
performance of the vehicles when a buffer factor is considered. In our case, we have set a 
buffer factor of 1.20, which is the average ratio of the observed mean and standard deviation 
in all links of the network. Thus, when computing routes, travel time estimates were 
increased in 20%. 

6.2 Results of Scenario S1 

We first simulated the initial routing plans assuming that there are no new customer orders 
during the operational period. In this case, the only source of variability faced by the fleet is 
given by the current traffic conditions in the service area. We assume that vehicles always 
follow shortest paths between customers in their route sequence. However, we use two 
different approaches related to shortest path calculations. First, we assume that there is no 
real-time traffic information system providing on-line travel times. Therefore, vehicles are 
guided through the network using static shortest paths computed with average travel time 
data. The second approach considers that real-time time-dependent link travel times are 
available and they are used to compute new time-dependent shortest paths that guide 
vehicles to their next destination. 
 
An additional assumption is that vehicles depart as soon as they are ready from their current 
position following a drive-first policy. That is, after finishing a service, a vehicle departs 
immediately to the next assigned customer. 
 
Customers in random locations 
We first analyze the results for the set of instances where customers are randomly 
distributed along the service area. Table 3 shows the results obtained under normal traffic 
conditions. 
 
Table 3 –  Simulation results of scenario S1 with customers randomly distributed 
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From the table, we can observe that the total travel time experienced by the fleet is always 
lower when time-dependent data is available and shortest paths are updated when a vehicle 
departs to the following destination in its scheduling. On average, the total waiting time was 
reduced in 4% when real-time traffic information was available. Regarding service level, we 
found that, although routing plans were simulated under normal traffic conditions, there were 
some customers that couldn’t be serviced, but we found that introducing the buffer factor in 
the estimates of travel times had a positive effect in the service levels as they reached 100% 
for both type of time windows. Nevertheless, in the case of wide time windows, this decision 
resulted in the addition of one more vehicle to the routing plan. 
 
Customers distributed in clusters 
Table 4 shows the results for the set of instances where customers are distributed in clusters 
in the network. In this case, we observed that real-time traffic information helped to reduce by 
9% the total travel time of the vehicles, but only when the calculation base of the routing 
plans are the average estimates. Introducing the buffer factor in these instances also had a 
positive effect in the service level in the case of time windows. However, it can be observed 
that there was no significant difference in the total travel times between vehicles guided with 
static data and vehicles guided with real-time traffic information. 
 
 
Table 4 – Simulation results of scenario S1 with customers distributed in clusters 
 

 

6.3 Results of Scenario S2 

In the next set of experiments, we evaluate the performance of the fleet in the presence of 
new customer orders considering various degrees of dynamism. We assume that the new 
customer orders arriving to the fleet manager follow an exponential distribution with a mean 
of 5 minutes. The sum of initial and dynamic customers is assumed to be 100. For each 
instance, there is a set of customers whose demand is known in advance. The initial routing 

Travel Times 
Data

Calculation 
Base

SP Calculation 
Frequency

Number of 
Customers

Time 
Windows

Number 
of Routes

Total Travel 
Time (secs)

Total Waiting 
Time (secs)

Service 
Level

Static Average Once 100 Narrow 5 16631.2 52188.8 100.0%
Time-Dependent Average When departing 100 Narrow 5 15752.2 51411.8 99.8%
Static Average + 20% Once 100 Narrow 5 16536.6 50325.3 100.0%
Time-Dependent Average + 20% When departing 100 Narrow 5 16000.2 47487.7 100.0%
Static Average Once 100 Wide 3 9579.6 5222.8 99.9%
Time-Dependent Average When departing 100 Wide 3 9270.0 5675.2 99.1%
Static Average + 20% Once 100 Wide 4 9088.3 15186.5 100.0%
Time-Dependent Average + 20% When departing 100 Wide 4 8802.9 24037.6 100.0%

Travel Times 
Data

Calculation 
Base

SP Calculation 
Frequency

Number of 
Customers

Time 
Windows

Number 
of Routes

Total Travel 
Time (secs)

Total Waiting 
Time (secs)

Service 
Level

Static Average Once 100 Narrow 4 15229.8 32836.7 99.9%
Time-Dependent Average When departing 100 Narrow 4 13858.3 33997.9 99.6%
Static Average + 20% Once 100 Narrow 5 14688.9 57670.3 100.0%
Time-Dependent Average + 20% When departing 100 Narrow 4 14957.9 32615.4 100.0%
Static Average Once 100 Wide 4 8833.9 18937.7 100.0%
Time-Dependent Average When departing 100 Wide 3 8076.6 6254.8 100.0%
Static Average + 20% Once 100 Wide 4 8048.0 19159.9 100.0%
Time-Dependent Average + 20% When departing 100 Wide 4 7980.8 21497.3 100.0%
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plan for these customers is built using the UTS heuristic as described in section 6.1. In order 
to achieve a 100% service level, we have used a protection or buffer factor against variability 
of 20% in the estimated travel times among customers. During simulation, shortest paths 
calculations are made after a vehicle finishes a service and when a new order assignment 
takes place. 
 
We used two approaches to assign customers to the routes: the dynamic insertion heuristic 
(DINS) and, the dynamic tabu search heuristic (DTS). In preliminary tests of the DTS 
heuristic, we observed that best-found solutions are usually no longer improved after 1,000 
iterations of the algorithm. Therefore, we set DTS to stop the search process at 1,250 
iterations or, if after 500 iterations, the solutions has not been improved in at least 1%. When 
a new order arrives, the simulation is temporarily stopped to calculate the new assignment. 
Simulation is resumed once the new solution is found and routes are updated. In our 
experiments, we have assumed that diversion is allowed, that is, if a vehicle is traveling or 
waiting at a customer location, a vehicle can be diverted to provide service to a new 
customer. 
 
In order to measure the quality of the solutions obtained by these two methods, we also 
evaluate the performance of the algorithms against the value of perfect information (VPI), 
which can be defined as the fleet performance that would be observed if we knew the 
demand in advance when planning routes. We test our algorithms in the datasets of 
customers with random and clustered geographic locations. 
 
Customers in random locations 
Table 5 shows the simulation results for the different degrees of dynamism when customers 
are assumed to be randomly distributed in the service area. Let us first consider the case of 
customers that require narrow time windows. When the degree of dynamism is relatively 
small (20%), assigning a new order with DTS reduces about 14% the total travel time of the 
fleet than when using a greedy heuristic as DINS. The gap between these two methods 
increases along with the degree of dynamism. In problems with 80% of dynamism, we 
observed that DTS could improve the results obtained by DINS in 36%. A similar pattern was 
observed in the case of wide time windows where DTS found solution that, on average, 
improved the total travel time experienced by the fleet in 50%. 
 
Regarding the number of vehicles required by both methodologies, we observed that 
solutions proposed by DTS were always equal or lower for all degrees of dynamism. 
Although the objective function in DTS is in terms of travel time, the shift operation in the 
iterative process drives the search to “more balanced” solutions which require, on average, a 
lower number of vehicles. 
 
Table 5 – Simulation results of scenario S2 for customers in random locations 
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In order to test the quality of the solutions provided by the DTS we compared them with 
those obtained when we assume that perfect information is available. It is expected that 
perfect information will lead to near-optimal solutions as routes can be more carefully 
planned at the beginning of the operational period. From Figure 8, we can observe that DTS 
lead to relatively good results when compared to those obtained when perfect information is 
available. On average, DTS solutions were 6% and 8% larger than those obtained under VPI 
for the narrow and wide time window cases, respectively. In particular, we observed that in 
problems with a relatively high degree of dynamism (more than 60%), DTS seems to perform 
better in the case of narrow time windows than in the case of wide time windows. 
 

      
(a) Narrow time windows                                                       (b) Wide time windows 

Figure 8 – Fleet performance for different degrees of dynamism – Customers in random locations 

 
 
Customers distributed in clusters 
Simulation results when customers are distributed in clusters are shown in Table 6. As in the 
case of random locations, the gap between the solutions found by DINS and DTS algorithms 
increases along with the degree of dynamism. In the case of narrow time windows and for 

Customer 
Distribution
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Dynamism

Time 
Windows

Solving 
Algorithm

Initial 
Routes

Final 
Routes

Total Travel 
Time (secs)

Total Waiting 
Time (secs)

Service 
Level

Random 20% Narrow DINS 4.0 4.0 18,400 28,465 100.0%
Random 40% Narrow DINS 3.0 4.0 19,625 30,795 100.0%
Random 60% Narrow DINS 3.0 6.0 22,629 24,711 100.0%
Random 80% Narrow DINS 2.0 7.0 25,926 40,032 100.0%
Random 20% Narrow DTS 4.0 4.0 15,892 29,918 100.0%
Random 40% Narrow DTS 3.0 4.1 15,890 34,610 100.0%
Random 60% Narrow DTS 3.0 5.5 15,678 33,171 100.0%
Random 80% Narrow DTS 2.0 6.3 16,672 38,600 99.9%
Random 20% Wide DINS 3.0 4.0 11,981 19,607 100.0%
Random 40% Wide DINS 2.0 3.9 16,223 10,706 100.0%
Random 60% Wide DINS 2.0 5.0 19,020 26,241 100.0%
Random 80% Wide DINS 1.0 6.3 22,205 26,478 100.0%
Random 20% Wide DTS 3.0 3.0 9,400 10,040 100.0%
Random 40% Wide DTS 2.0 3.0 9,765 12,317 100.0%
Random 60% Wide DTS 2.0 4.0 10,456 14,329 100.0%
Random 80% Wide DTS 1.0 5.0 11,071 15,795 100.0%
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relatively low levels of dynamism (20%), results show that DTS, on average, found solutions 
that were 11% lower than those found by DINS. In the case of wide time windows, this 
difference is larger as DTS improves the solution in about 26%. In problems with a relatively 
high degree of dynamism, DTS was also found to outperform the solutions of DINS in 41% 
and 51% in the case of narrow and wide time windows, respectively. 
 
Table 6 – Simulation results of scenario S2 for customers distributed in clusters 
 

 
. 
Figure 9 compares the simulation results of the dynamic solving strategies with the value of 
perfect information. Unlike the case of customer randomly located, we found that for a 
relatively low degree of dynamism DTS is closer to the solution found with perfect 
information. When narrow time windows are considered and the degree of dynamism is less 
or equal than 40%, the average gap between DTS and VPI was 1.5%. In the case of wide 
time windows, this gap added up to 5.4% on average. This result suggests that for very low 
degrees of dynamism, a fast insertion heuristic can be used to obtain good results without 
the need of more advanced algorithms that may require significant computational efforts. For 
a relatively larger degree of dynamism (80%), this gap was 8% in the case of narrow time 
windows and, 9.7% when customers are characterized by wide time windows. 
 

       
(a) Narrow time windows                                                       (b) Wide time windows 

Customer 
Distribution

Degree of 
Dynamism

Time 
Windows

Solving 
Algorithm

Initial 
Routes

Final 
Routes

Total Travel 
Time (secs)

Total Waiting 
Time (secs)

Service 
Level

Clustered 20% Narrow DINS 4.0 5.0 15,763 45,349 100.0%
Clustered 40% Narrow DINS 3.0 5.0 20,083 41,049 99.9%
Clustered 60% Narrow DINS 3.0 7.0 24,503 57,254 100.0%
Clustered 80% Narrow DINS 2.0 7.0 25,269 38,575 99.3%
Clustered 20% Narrow DINS + DTS 4.0 4.1 14,034 33,928 100.0%
Clustered 40% Narrow DINS + DTS 3.0 4.9 14,062 42,289 100.0%
Clustered 60% Narrow DINS + DTS 3.0 6.1 14,365 46,313 100.0%
Clustered 80% Narrow DINS + DTS 2.0 6.9 14,928 40,368 99.9%
Clustered 20% Wide DINS 3.0 4.0 11,605 16,587 100.0%
Clustered 40% Wide DINS 2.0 4.0 15,332 17,815 100.0%
Clustered 60% Wide DINS 2.0 5.0 16,421 24,445 100.0%
Clustered 80% Wide DINS 1.0 6.0 20,076 24,908 100.0%
Clustered 20% Wide DINS + DTS 3.0 3.3 8,611 11,534 100.0%
Clustered 40% Wide DINS + DTS 2.0 3.5 8,692 12,928 100.0%
Clustered 60% Wide DINS + DTS 2.0 4.0 9,775 13,714 100.0%
Clustered 80% Wide DINS + DTS 1.0 4.8 9,882 15,621 100.0%
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Figure 9 – Fleet performance for different degrees of dynamism – Customers distributed in clusters 

7. CONCLUSIONS AND FUTURE RESEARCH 

This paper provides an insight of the integration of vehicle routing models with real-time 
traffic information systems as a decision support platform. We propose a platform for the 
evaluation of city logistics applications, in the case of the vehicle routing problems with time 
windows and a new approach to deal with the dynamic case, through fast insertion heuristics 
and tabu search, when new customer requirements arrive during the operational period. The 
results obtained in the simulations proved that, when creating an initial routing plan, although 
feasible solutions are originally obtained based on some historical average data, it may 
happen that not all clients will be served within their time windows due to changes in traffic 
conditions during the day.  
 
Additionally, when dealing with new customer orders in the vehicle routing problem with time 
windows, we observe that for very low degrees of dynamism, fast insertion heuristics can be 
used as solving methodologies without a significant loss in the solution quality. Furthermore, 
when dealing with high dynamism, we observed that tabu search can be used to improve the 
solution obtained by a fast insertion heuristic. The results suggest that the proposed tabu 
search algorithm has a better performance when wide time windows are considered due to 
the higher degree of flexibility to shift customers from one route to another than in the case of 
narrow time windows 
 
The results obtained in this paper assume that the underlying road network presents 
expected traffic conditions during the simulation. A further step on our research is the 
evaluation of the solving strategies when traffic conditions are suddenly altered (e.g. traffic 
incidents). Another issue to be investigated is the optimal calibration of parameters and data 
structures in order to improve the performance of the algorithms.  
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