
An Ant Colony Optimisation (ACO) algorithm for solving the Local Optimisation of Signal 
Settings (LOSS) problem on real-scale networks 

D’ACIERNO, Luca; GALLO, Mariano; MONTELLA, Bruno 
 

 
12

th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
1 

AN ANT COLONY OPTIMISATION (ACO) 
ALGORITHM FOR SOLVING THE LOCAL 
OPTIMISATION OF SIGNAL SETTINGS 
(LOSS) PROBLEM ON REAL-SCALE 

NETWORKS 

D’ACIERNO, Luca; Department of Transportation Engineering, ‘Federico II’ 
University of Naples, Italy, luca.dacierno@unina.it 

GALLO, Mariano; Department of Engineering, University of Sannio, Benevento, Italy, 
gallo@unisannio.it 

MONTELLA, Bruno; Department of Transportation Engineering, ‘Federico II’ 
University of Naples, Italy, bruno.montella@unina.it 

ABSTRACT 

In this paper we propose an Ant Colony Optimisation (ACO) algorithm for optimising the 

signal settings on urban networks following a local approach. This problem, also known as 

LOSS (Local Optimisation of Signal Settings), has been widely studied in the literature and 

can be formulated as an asymmetric assignment problem (Cascetta et al., 2006). The 

problem consists in optimising the signal settings of each intersection of an urban network as 

a function only of traffic flows at the accesses to the same intersection, taking account of the 

effects of signal settings on costs and on user route choices. 

The proposed ACO algorithm is based on two kinds of behaviour of artificial ants which allow 

the LOSS problem to be solved: traditional behaviour based on the response to pheromones 

for simulating user route choice, and innovative behaviour based on the pressure of an ant 

stream for solving the signal setting definition problem. Our results on a real-scale network 

show that the proposed approach allows the solution to be obtained in less time but with the 

same accuracy as in traditional MSA approaches. 

 

Keywords: Ant Colony Optimisation, signal settings, stochastic assignment. 

1. INTRODUCTION 

Generally, travel time of private system users can be split into three parts: 
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– running time, that is the time spent by vehicles travelling along roads; 

– waiting time (delay) at intersections, that is the time spent crossing intersections; 

– searching parking time, that is the time spent at destination looking for a parking 

space. 

 

In urban contexts, the second term can make a substantial contribution to total travel time. 

Therefore, the effective optimisation of signalised intersections can significantly improve 

performance of private road systems. 

The problem of optimising signal settings, generally indicated as the Signal Setting Design 

Problem (SSDP), can be considered as a particular case of the more general Network 

Design Problem (NDP) where the design variables are only the signal setting parameters 

(number of phases, cycle length, effective green times, etc.) while all other supply variables 

(such as widths or lane numbers) are fixed and invariable. In this kind of problem, link flows 

are descriptive variables, i.e. the analyst cannot directly modify them, but can influence them 

by changing design variables. 

In the literature (see for instance Marcotte, 1993; Cantarella et al., 1991; Cantarella and 

Sforza, 1995; Cascetta et al., 2006; Cascetta, 2009) two kinds of approaches can be 

identified for solving the SSDP: the global approach and the local approach. In the first case, 

the problem, known as Global Optimisation of Signal Settings (GOSS), consists of 

calculating signal parameters by minimising an objective function, that is: 

 

( )*,Zˆ fgg
g

 min arg=  (1) 

 

subject to: 

 

( )( )*,fgcΛf * =  (2) 

gSg ∈  (3) 

fSf * ∈  (4) 

 

where: 

g is the vector of signal setting parameters to be optimised; 

ĝ  is the optimal value of g; 

Z is the objective function, for instance the total travel time, to be minimised; 
*f  is the equilibrium vector of link flows to be calculated by means of eqn (2); 

Λ  is the equilibrium assignment function; 

c is the link cost vector depending on signal setting parameters (vector g) and equilibrium 

flows (vector *f ); 

gS  is the feasibility set of vector g; 

fS  is the feasibility set of vector *f . 

 

The first constraint (eqn. 2) represents the equilibrium assignment constraint that provides 

user flows ( *f ) as a function of link costs (vector c) which are depend on design variables 

(vector g) and equilibrium flows (vector *f ). This constraint is formulated as a fixed-point 
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problem because user choices (and related flows) are generally influenced by network 

performance (i.e. users tend to choose the least cost alternatives) and transportation system 

performance is affected by user flows (i.e. an increase in on-road vehicles generally 

produces an increase in travel times). 

According to constraint (3), signal setting parameters have to satisfy some conditions. For 

example, minimum green times, the sum of all effective green times, have to be equal to the 

effective cycle. Finally, constraint (4) expresses the fact that flows have to belong to 

feasibility sets that impose flow consistency (for instance, the sum of all incoming flows in a 

node has to be equal to the sum of all outgoing flows if the node is not a centroid). 

A static approach to the GOSS problem is adopted by Sheffi and Powell (1983), Yang and 

Yagar (1995), Wong and Yang (1997), Chiou (1999), and Cascetta et al. (2006). The GOSS 

in the case of coordinated intersections is studied by Pillai et al. (1998) and Wey (2000). 

Moreover, a dynamic approach for the GOSS problem is proposed by Abdelfatah and 

Mahmassani (1999), and Abu-Lebdeh and Benekohal (2003). 

The second approach of the SSDP, known as Local Optimisation of Signal Settings (LOSS), 

is based on assuming that signal settings at each intersection depend only on entering flows 

of the intersection according to a pre-specified control policy, such as the equisaturation 

method (Webster, 1958), the local delay minimization and Smith’s P0 policy (Smith, 1980, 

1981), or other isolated intersection optimisation methods (such as those of Chang and Lin, 

2000; Wong and Wong, 2003). Hence, the LOSS problem can be formulated as: 

 

( )*ˆ fΩg =  (5) 

 

subject to: 

 

( )( )*,fgcΛf * =  (6) 

gSg ∈  (7) 

fSf * ∈  (8) 

 

where Ω  is the control policy which provides signal setting parameters as a function of 

equilibrium flows. In this case constraints (6), (7) and (8) assume the same meaning as 

constraints (2), (3) and (4). 

Since control policy (5) has to provide a unique value of vector g for each value of 

equilibrium flow vector *f , the LOSS problem can be reformulated as a fixed-point problem 

indicated also as an asymmetric equilibrium problem (Cascetta et al., 2006), that is: 

 

( )( )( )** ,ffΩcΛf * =  (9) 

fSf * ∈  (10) 

 

The asymmetric equilibrium problem has been extensively studied elsewhere: the static 

approach is analysed by Allsop (1974), Dafermos (1980, 1982), Florian and Spiess (1982), 

Smith and Van Vuren (1993), Lee and Hazelton (1996) and Cascetta et al. (2006), and the 

dynamic approach by Han (1996), Hu and Mahmassani (1997) and Lo et al. (2001). Finally, 
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real-time applications of actuated signals are studied by Rakha (1993), Wolshon and Taylor 

(1999) and Mirchandani and Head (2001). 

The LOSS approach vis-à-vis the GOSS has the advantage of solving signal settings 

optimisation with a significantly lower computing time, leading to a solution that is not 

significantly worse than that obtained by solving the GOSS problem (see Cascetta et al., 

2006). This issue is of great importance for real-scale problems. 

The aim of this paper is to provide a solution algorithm based on the Ant Colony Optimisation 

(ACO) paradigm for solving the SSDP in the case of the LOSS approach. Indeed, the 

solution of the asymmetric assignment problem requires more computing time than a classic 

assignment problem, since the signal settings have to be updated at each iteration and there 

is a double circular dependence (local optimal signal settings depend on flows that, in turn, 

depend on costs, that depend on both flows and signal settings). Therefore, we steered our 

research into ACO-based algorithms which, based on the food source search of ant colonies, 

have in many cases shown their efficiency in terms of calculation times (an extended 

overview of ACO-based algorithms can be found in Dorigo and Stützle, 2004). 

Real world applications of the LOSS approach are mainly related to two cases: (a) to 

estimate the total travel time on the network produced at equilibrium by a system of actuated 

traffic signals; (b) to adopt it within urban network design models and algorithms for the joint 

calculation of equilibrium traffic flows and local optimal signal settings. 

While reducing computing times in case (a) is not very important, since the solution has to be 

found only once, it is of great importance in case (b) where the solution has to be found 

many times inside the algorithm for solving the urban network design problem. An example 

of the urban network design model and algorithm that uses the LOSS approach for 

estimating traffic flows and signal settings can be found in Gallo et al. (2010), where a classic 

MSA-FA was adopted for solving the LOSS problem, leading to high computing times on 

real-scale networks. Indeed, the LOSS problem had be solved 52,735 times, resulting in over 

113 hours spent on processing. 

An exhaustive review of applications to transportation systems can be found in Teodorovic 

(2008). However, the main applications were proposed by Poorzahedy and Abulghasemi 

(2005) in the case of network design, by de Oliveira & Bazzan (2006) for traffic control, and 

D’Acierno et al. (2006) and Mussone et al. (2007) for traffic assignment. 

The application of ACO theory in the case of (symmetric) assignment problems can be 

considered as an ‘algorithmic trick’ to speed up the calculation of the equilibrium solution 

(D’Acierno et al., 2006; Mussone et al., 2007). Hence, in this paper we modify the ACO 

algorithm proposed by D’Acierno et al. (2006) for solving the LOSS problem on real-scale 

networks, where reducing computing times is an important task. 

This paper is organised as follows: Section 2 describes the general framework of ACO 

algorithms in the case of the traffic assignment problem; in Section 3, an ACO algorithm for 

solving the LOSS problem is proposed; in Section 4, a comparison among traditional 

algorithms and the proposed ACO algorithm is provided in the case of a real-scale network; 

Section 5 summarises conclusions and further research prospects; finally in Appendix A 

theoretical properties of the fixed-point problem and solution algorithms are described in 

detail. 
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2. THE ACO APPROACH IN THE TRAFFIC ASSIGNMENT 
PROBLEM 

As shown in the previous section, a LOSS problem can be formulated by means of a  

fixed-point problem. Since D’Acierno et al. (2006) have shown that the use of artificial ants 

(i.e. the Ant Colony Optimisation approach) allows solution of a fixed-point problem to be 

obtained in less time but with the same accuracy compared with traditional algorithms, we 

propose to adopt the ACO approach for solving the LOSS problem. 

In order to describe the main features of the ACO approach analytically, a short introduction 

to the behaviour of real and artificial ants is worth providing. In particular, in the case of real 

ants the search for food sources is based on the following simple rules: 

 

– each ant provides a pheromone trail along its path; 

– each ant follows a path if there is a pheromone trail; 

– if there is no pheromone trail, ants choose their paths randomly; 

– there is evaporation of pheromone trails, which causes short paths to have a more 

intense trail pheromone; 

– if there is a diversion point (i.e. where different paths start), ants follow the path with 

the most intense pheromone trail. 

 

Hence, if a path is blocked by an obstacle, ants initially choose their path randomly. Hence, 

due to evaporation, they choose to follow the path with the most intense pheromone trail, 

which is the shortest path. 

Similarly, artificial ants can be described by these simple rules: 

 

– the probability of choosing a path, indicated as transition probability, which depends 

on the intensity of the pheromone trail and, sometimes, a visibility term which 

expresses a sort of distance that could affect probability choices, that is: 

 

( ) ( ) ( )

( )

( ) ( )βα

βα

ητ

ητ
t

'l

t

'l
iFS'l

t

l

t

lt i|lp
⋅

⋅
=
∑

∈

 (11) 

 

where: 

( )i|lp t  is the probability of choosing link l, with l=(i, j), at diversion node i; 
t

lτ  [ ]t

'lτ  is the intensity of the pheromone trail on link l [l’ ] at iteration t; 
t

lη  [ ]t

'lη  is the visibility term on link l [l’ ] at iteration t; 

FS(i) is the set of links belonging to the forward star of node i; 

α and β are model parameters; 

 

– the pheromone increase is the rule that expresses the quantity produced by each ant 

at any iteration, that is: 
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( )Xp ,t

l

t

l λτ∆ =  (12) 

 

where: 
t

lτ∆  is the pheromone trail produced by each ant on link l at iteration t; 

pt is the transition probability matrix at iteration t whose generic element is ( )i|lp t ; 

X is the matrix of model parameters; 

λl is the function that expresses the increase in the pheromone trail on link l 

depending on pt and X; 

 

– the pheromone trail update is the rule governing the evaporation of pheromone trail 

and how the trail is increased by the contribution of each ant, that is: 

 

( ) ( ) t

l

t

l

t

l τ∆ρτρτ ⋅+⋅−= −11  (13) 

( ) ( )[ ]t

l

t

l

t

l τ∆τρτ +⋅−= −11  (14) 

 

where ρ is the evaporation term. 

 

Generally, a traffic assignment problem can be formulated as a fixed-point problem which 

can be obtained by combining the supply model with the demand model. The supply model 

describes transportation systems performance depending on user flows, that is: 

 

( ) NA, CfgcAC += T  (15) 

 

where: 

C is the vector of path generalised costs whose generic element Ck is the path cost related 

to path k; 

A is the link-path incidence matrix whose generic element al,k is equal to 1 if link l belongs 

to path k, 0 otherwise; 

c is the vector of link costs whose generic element cl is the cost of link l; 

g is the matrix of signal setting parameters whose generic element gl,h is the h-th 

parameter (such as effective green or cycle length) related to link l; 

f is the vector of link flows whose generic element fl is the flow on link l; 

CNA is the vector of non-additive path costs whose generic element NA

kC  is the non-additive 

path cost of path k (such as: road tolls at motorway entrance/exit points or transit fares). 

 

Likewise, the demand model imitates user choices influenced by transportation system 

performance, that is: 

 

( )dCAPf −=  (16) 

 

where: 

P is the matrix of path choice probabilities whose generic element pk,od expresses the 

probability of users travelling between origin-destination pair od choosing path k; 
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d is the demand vector whose generic element dod expresses the average number of users 

travelling between origin-destination pair od in a time unit. 

 

Therefore, the traffic assignment model can be obtained by combining eqn (15) with (16), 

that is: 

 

( )( )dCfgcAAPf NA, +−= T  (17) 

 

It is worth noting that eqn (17) represents the assignment constraint described by eqn (2) or 

equivalently eqn (6). 

The existence and the uniqueness of the (equilibrium) solution of problem (17) may be 

stated, as shown by Cantarella (1997) and Cascetta (2009), if: 

 

– choice probability functions, P( –C ), are continuous; 

– link cost functions, c( g, f ), are continuous; 

– each origin-destination pair is connected (i.e. Iod ≠ Φ   ∀ od); 

– path choice models are expressed by strictly decreasing functions with respect to 

path generalised costs, that is: 

 

( ) ( )[ ] ( ) ''''''''' CCCCCPCP ≠∀<−−−−      0
T

 (18) 

 

– cost functions are expressed by monotone non-decreasing functions with respect to 

link flows, that is: 

 

( ) ( )[ ] ( ) '''''''',', fffffgcfgc ≠∀≥−−     0
T

 (19) 

 

Cantarella (1997) proposed to solve problem (17) by means of a solution algorithm known as 

the Method of Successive Averages (MSA). In particular, two algorithms, a Flow Averaging 

(MSA-FA) and a Cost Averaging (MSA-CA) algorithm, were proposed based respectively on 

the following sequences: 

 

( ) ( )( )( )tttt ,t ffgcfff −⋅+=+ 11   with  fSf ∈t  (20) 

( ) ( )( )( )tttt ,t ccfgccc −⋅+=+ 11   with  ( )11 fcc = ; fSf ∈t  (21) 

 

where f (.) is the network loading function described by eqn (16). 

MSA algorithms stop when a stopping criterion is satisfied. In particular, in the case of  

MSA-FA and MSA-CA the stopping criterion is always: 

 

( )( )
MSAt

l

t

l

t

l

l f

f,f
max ε<

−fgc
 (22) 

 

where: 
t

lf  is the link flow associated to link l at iteration t; 
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fl(.) is the link flow function which provides the flow of link l by means of eqn (16); 

εMSA is the threshold used in the stopping criterion of MSA algorithms. 

 

Both MSA algorithms can be used for solving the fixed point problem (17), providing the 

same results if the existence and uniqueness of the solution can be stated. Therefore, use of 

one algorithm rather than the other can be addressed only out of computational or 

implementing reasons. 

Eqn (22) should represent the threshold that we accept as the maximum difference between 

the theoretical solution of problem (17) and the numerical result obtained by implementing a 

solution algorithm. Since we can solve problem (17) only numerically, we are not able to 

evaluate a priori the theoretical value of (17). Hence, we may adopt as a threshold the 

maximum difference between two successive iterations of the same algorithm. Indeed, at 

each iteration these algorithms generally provide asymptotically a solution ever closer to the 

theoretical value. Moreover, if we are able to implement two different algorithms, whose 

difference in solutions, evaluated by means of  

 













 −−
2

21

1

21

  ;  
lgA

l

lgA

l

lgA

l

llgA

l

lgA

l

lgA

l

l f

ff
max

f

ff
maxmax  (23) 

 

where 1lgA

lf  and 2lgA

lf  are solution flows on link l of Algorithm 1 and Algorithm 2, provides a 

value lower than (2 · εMSA), we may state that these algorithms converge to the same results. 

However, it is necessary to fix a threshold value (value εMSA in eqn 22) which represents a 

fair trade-off between the accuracy of the solution and the calculation times involved. 

Moreover, it is worth noting that, since algorithm solutions represent vehicle flows on road 

network, in real cases it is not necessary to have a number of significant digits higher than a 

predetermined value related to the analysed problem. Hence, the evaluation of term εMSA is 

related to the input data accuracy. 

By means of an extension of Blum’s theorem (Blum, 1954), Cantarella (1997) stated the 

convergence of MSA algorithms described by eqns (20) and (21). Indeed, these algorithms 

satisfy convergence conditions as shown in Appendix A. 

On analysing eqns (20) and (21), we may note that an assignment algorithm can be 

formulated as a sequence of network loadings. In particular, Dial’s algorithm (Dial, 1971) is a 

stochastic network loading algorithm based on the following rules: 

 

– let Zd,i be the minimum cost between node i and destination node d; 

– a link l = (i, j) is considered for a feasible path, indicated as a Dial-efficient path, only 

if: 

 

j,di,d ZZ >  (24) 

 

– it is possible to associate a numerical quantity to each node and each link, indicated 

respectively as node weight and link weight, calculated as: 
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1=d,dW  (25) 

( )
( )( )





≤

>⋅−
=

j,di,d

j,di,dj,dj,i

j,i,d ZZ

ZZWcexp
w

  if0

  ifθ
 (26) 

( ) ( )
( )h,i,d

iFSh,i
i,d wW ∑

∈

=  (27) 

 

where: 

Wd,i is the node weight associated to node i in the case of destination node d; 

wd,(i,j) is the link weight associated to link (i, j) in the case of destination node d; 

c(i,j) is the link cost associated to link (i, j); 

FS(i) is the set of links belonging to the forward star of node i; 

 

– the probability of choosing link l = (i, j) at diversion node i is equal to: 

 

( ) ( ) i,dj,i,d Wwi|lp =  (28) 

 

– the link flow fl of generic link l can be calculated as: 

 

( ) ( ) ( ) i,dj,i,di,d
d

j,i,d
d

j,il WwEef ⋅== ∑∑=  (29) 

 

with: 

 

( ) ( )
( )j,h,d

jBSj,h
i,d eE ∑

∈

=  (30) 

odo,d dE =  (31) 

 

where: 

BS(j) is the set of links belonging to the backward star of node j; 

dod is the average number of users travelling between origin-destination pair od in a 

time unit. 

 

D’Acierno et al. (2006) proposed an ACO algorithm for solving the (symmetric) traffic 

assignment problem based on the following assumption: 

 

– the initial intensity of the pheromone trail on each link l, associated to ant colony od, 

indicated as 0

  l,odτ , is a function of path costs, that is: 

 
0

   

0

  k,od
kl:k

l,od T∑
∈

=τ  (32) 

 

with: 
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( )




∉

∈−
=

od

odk

k,od
Ik

IkCexp
T

  if0

  if
0

0

   

θ
 (33) 

 

where: 
0

   k,odT  is the initial intensity of the pheromone trail on path k; 
0

kC  is the initial cost of path k; 

θ is the parameter of the path choice model; 

Iod is the set of all available (or considered) paths that join origin node o with 

destination node d; 

 

– the increase in the pheromone trail, indicated as t

l,od   τ∆ , can be expressed by a 

function of path costs, that is: 

 
t

k,od
kl:k

t

l,od T      ∆τ∆ ∑
∈

=  (34) 

 

with: 

 

( )




∉

∈−
=

od

od

t

kt

k,od
Ik

IkCexp
T

  if0

  if
   

θ
∆  (35) 

 

where: 
t

k,odT   ∆  is the increase in the pheromone trail at iteration t; 
t

kC  is the path k cost at iteration t; 

 

– updating of the pheromone trail can be expressed as: 

 

( ) 11 1 ++ ⋅+⋅−= t

l,od

t

l,od

t

l,od τ∆ρτρτ  (36) 

 

where evaporation coefficient ρ is variable and equal to 1/t (according to the approach 

proposed by Li and Gong, 2003). 

 

In particular, D’Acierno et al. (2006) stated the theoretical equivalence of the proposed ACO 

algorithm to the application of an MSA algorithm where the successive averages were 

applied to the weight of Dial’s algorithm (Dial, 1971), that is: 

 

( ) ( ) ( ) ( ) ( )( )t

j,i,d

t

j,i,d

t

j,i,d

t

j,i,d wwtww −⋅+= ++ 11 1 ∆  (37) 

( ) ( )t

i,d

t

i,d

t

i,d

t

i,d WWtWW −⋅+= ++ 11 1 ∆  (38) 

 

by fixing 11 ++ = t

l,od

t

l,od wτ  and 11 ++ = t

l,od

t

l,od w∆τ∆ . 

In this case, the MSA stopping criterion was: 
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( )( )( ) ( )( )( )
MSAt

l

t

l

t

l

lt

l

t

l

t

l

l f

f,f
max

f

f,f
max ε<

−
=

− fgcfgcw ττττ
 (39) 

 

where: 

w is the vector of Dial weights, whose generic element is ( )j,i,dw ; 

ττττ is the vector of intensity of the pheromone trail, whose generic element is τl. 

 

Finally, D’Acierno et al. (2006) stated the convergence of the proposed algorithm by means 

of the extension of Blum’s theorem (Blum, 1954) provided by Cantarella (1997). Details of 

the convergence proof are reported in Appendix A. 

3. THE PROPOSED ASSIGNMENT ALGORITHM 

In order to develop an ACO-based algorithm for solving the LOSS problem, we modified 

artificial ants proposed by D’Acierno et al. (2006) by adding the following behaviour: at 

intersections each ant flow provides a pressure value which is directly proportional to the 

number of ants which travel in a time unit (flow) and inversely proportional to the ‘net’ width 

of their road (i.e. the road width reduced by the space occupied by parked vehicles). 

Therefore, in a simple case where there is an intersection with two entering one-way roads 

(as shown in Fig. 1), pressure values are: 

 





=

=

222

111

LfPress

LfPress
 (40) 

 

Figure 1 – Example of intersection with two entering one-way roads. 

 

L1 

 
L2 

f1 

 
f2 
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As in the case of two flows with the same priority level (for instance the case of people 

evacuation), the number of elements able to cross the intersection in a time unit is directly 

proportional to their pressure level. Therefore we may consider that each road has a shutter 

whose opening times are directly proportional to pressure levels, that is: 

 

( )
( )




+=

+=

2122

2111

PressPressPresstime%

PressPressPresstime%
 (41) 

 

In the case of an intersection with four bi-directional roads (as shown in Fig. 2), we may 

assume that influences between opposite roads can be neglected (the lower the flows of left 

turns, the more this assumption holds). In this case the pressure value which affects crossing 

phenomena can be calculated by means of the following relation: 

 

( ) ( )
( ) ( )




==

==

WWEEWE

SSNNSN

Lf;LfmaxPress;PressmaxPress

Lf;LfmaxPress;PressmaxPress

2

1
 (42) 

 

while the shutter operations can be described by eqn (41). 

 

Figure 2 – Example of intersection with four bi-directional roads. 

 

With reference to the behaviour of real road users, it may be stated that shutter operations 

are equivalent to a traffic light where signal setting parameters are calculated by means of 

the equisaturation method (Webster, 1958). Indeed, since saturation flows (i.e. the maximum 

flows which can cross an intersection with the assumption that traffic lights are always green) 

is directly proportional to the net width of the road, that is: 

 

LS 

LN 

LW 

LE 

fS 

fN 

fW 

fE 
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ii Ls ∝  (43) 

 

%timei terms are directly proportional to saturation rates (where the saturation rate is the 

ratio between a flow and the related saturation), that is: 

 

( ) ( )
( ) ( )




+=

+=

2211222

2211111

sfsfsftime%

sfsfsftime%
 (44) 

 

According to the definition of shutter operations, term %timei represents the effective green 

ratio, that is: 

 





=

=

E

E

Cgtime%

Cgtime%

22

11
 (45) 

 

where: 

g1 and g2 are effective green lengths; 

CE is the difference between the cycle length and the total lost time per cycle. 

 

By combining eqn (44) with eqn (45), we obtain: 

 

( ) ( )
( ) ( )




+=

+=

2211222

2211111

sfsfsfCg

sfsfsfCg

E

E
 (46) 

 

which is the analytical formulation of the equisaturation method for determining green 

distributions. 

The modified behaviour of artificial ants allows simulation of the control policy Ω  for solving 

the LOSS problem. 

 

3.1. Formulation of the algorithm for solving the LOSS problem 

The MSA-FA algorithm for solving the LOSS problem proposed by Cascetta et al. (2006) can 

be described as follows: 

 

Step 0: 1=k   ;  01

SNLff =  

Step 1: ( )kk fΩg =  

Step 2: ( )kkk ,fgcc =  

Step 3: ( )dCcAAPf NAkk

SNL −= T  

Step 4: ( )( ) kk k

SNL

kk 11 1 ++ +⋅−= fff  

Step 5: If { }
MSA

k

l

k

l,SNL

k

l
l

fff ε<− ++ 11max  then go to Step 7 
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Step 6: 1+= kk   ;  go to Step 1 

Step 7: STOP 

 

Likewise, it is possible to develop an MSA-CA algorithm for solving the LOSS problem. The 

algorithm features can be summarised as follows: 

 

Step 0: 1=k   ;  gSg ∈0   ;  fSf ∈0   ;  ( )001 fgcc ,=   ;  ( )dCcAAPf NA

SNL −= 1T1  

Step 1: k

SNL

k ff =  

Step 2: ( )kk fΩg =  

Step 3: ( )kkk ,fgcy =  

Step 4: ( )( ) kk kkk ycc +⋅−=+ 11  

Step 5: ( )dCcAAPf NAkk

SNL −= ++ 1T1  

Step 6: If { }
MSA

k

l

k

l

k

l,SNL
l

fff ε<−+1max  then go to Step 8 

Step 7: 1+= kk   ;  go to Step 1 

Step 8: STOP 

 

Finally, we may develop an ACO-based algorithm, indicated as MSA-ACO, for solving the 

LOSS problem that can be described as follows: 

 

Step 0: 1=k   ;  gSg ∈0   ;  fSf ∈0   ;  ( )000 fgcc ,=   ;  ( )00 cττττττττ =   ;  ( )01 ττττff =SNL  

Step 1: k

SNL

k ff =  

Step 2: ( )kk fΩg =  

Step 3: ( )kkk ,fgcc =  

Step 4: ( )kk cττττ∆τ∆τ∆τ∆τ =  

Step 5: ( )( ) kk kkk ∆τ∆τ∆τ∆τττττττττ +⋅−= −11  

Step 6: ( )kk

SNL ττττff =+1  

Step 7: If { }
MSA

k

l

k

l

k

l,SNL
l

fff ε<−+1max  then go to Step 9 

Step 8: 1+= kk   ;  go to Step 1 

Step 9: STOP 

 

where ( )00 cττττττττ = , ( )kk cττττ∆τ∆τ∆τ∆τ =  and ( )kk

SNL ττττff =+1  are respectively the synthetic formulations of 

eqns (32), (34) and (29), since kk w=ττττ  and kk w∆∆∆∆∆τ∆τ∆τ∆τ = . 
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As shown by Cascetta et al. (2006), the use of control policy Ω  does not allow us to state 

the uniqueness of equilibrium solution of problem (17) and hence related algorithm 

convergence. 

4. FIRST RESULTS 

The proposed ACO-based algorithm was applied on a real-scale network in order to compare 

its performance with that of traditional MSA algorithms. In this respect, Fig. 3 shows the 

network in Benevento (a town of about 62,000 inhabitants). Table I shows features of the 

analysed network, whereas Table II, as well as Figs. 4 and 5, indicates algorithm 

performance. In particular, ‘FA solution error’ in Table II represents the maximum percentage 

flow difference between the solution of the MSA-FA algorithm and that of the other 

algorithms, evaluated by means of: 

 

 

Figure 3 – Benevento network (Italy) 
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FAMSA

l

CAMSA

l

FAMSA

l

l f

ff
max

−

−− −
 (47) 

FAMSA

l

ACOMSA

l

FAMSA

l

l f

ff
max

−

−− −
 (48) 

 

where FAMSA

lf
− , CAMSA

lf
−  and ACOMSA

lf
−  are flows on link l calculated respectively by means of 

MSA-FA, MSA-CA and MSA-ACO algorithms. 

Likewise, ‘CA solution error’ in Table II can be calculated by means of: 

 

CAMSA

l

FAMSA

l

CAMSA

l

l f

ff
max

−

−− −
 (49) 

CAMSA

l

ACOMSA

l

CAMSA

l

l f

ff
max

−

−− −
 (50) 

 

and ‘ACO solution error’ in Table II can be calculated by means of: 

 

ACOMSA

l

ACOMSA

l

FAMSA

l

l f

ff
max

−

−− −
 (51) 

ACOMSA

l

ACOMSA

l

CAMSA

l

l f

ff
max

−

−− −
 (52) 

 

 
Table I – Network features 

Number of 

links 

Number of 

nodes 

Number of 

centroid nodes 

Number of 

OD pairs 

Number of 

peak-hour trips 

382 161 36 1,296 17,870 

 

 
Table II – Algorithm performances 

Algorithm 

name 

Number of 

iterations 

Convergence 

> 98.00% 

Calculation 

Time [s] 

FA 

solution 

error 

CA 

solution 

error 

ACO 

solution 

error 

MSA-FA 321 73 15  6.48% 1.26% 

MSA-CA 7 5 1 6.09%  5.25% 

MSA-ACO 4 3 <1 1.25% 5.54%  

 

 

The proposed algorithm (termed MSA-ACO) is shown to provide the same solution as the 

algorithm proposed by Cascetta et al. (2006) (indicated in Table II as MSA-FA) in lower 

calculation times. Indeed, the difference in results, evaluated by applying eqn (23) to eqns 

(48) and (51), is 1.26% which is lower than (2 · εMSA), since we fixed εMSA = 1.00%. 
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Figure 4 – Algorithm performances in terms of termination test values 

 

 

Figure 5 – Algorithm performances in terms of convergent links 
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Moreover, calculation times (expressed in terms of number of iterations) of the proposed 

algorithm are 98.75% lower if we want algorithm convergence to be achieved when all links 

satisfy the termination test. By contrast, if we accept only 98% of links satisfying the 

termination test, calculation times are reduced by 95.89%. 

Interestingly, although MSA-CA allows a 97.82% reduction in calculation times with respect 

to the MSA-FA in the case of 100% convergent links and 93.15% in the case of 98% 

convergent links, it provides a higher solution error (6.48%) with respect to the proposed 

ACO algorithm. However, the ACO algorithm provides a 42.86% reduction in calculation time 

over the MSA-CA algorithm in the case of 100% convergent links and 40.00% in the case of 

98% convergent links. In this case, the maximum difference in terms of solution error is 

5.54%. 

Finally, these results show that only MSA-FA and MSA-ACO provide the same results, since 

comparisons with MSA-CA provide respective differences of 6.48% and 5.54%, which are 

always higher than (2 · εMSA). Therefore, the MSA-CA does not seem to be advisable for 

implementing real-scale networks. 

5. CONCLUSIONS AND RESEARCH PROSPECTS 

In this paper we proposed an ACO-based algorithm that can be used to solve the LOSS 

problem. In particular, in modifying the behaviour of artificial ants, we stated the perfect 

equivalence in terms of control policy between artificial ants (simulated with the proposed 

approach) and the equisaturation method (simulated with traditional algorithm of asymmetric 

traffic assignment). We also showed, in the case of a real-scale network, its numerical 

efficiency with respect to traditional MSA algorithms. In terms of future research, the 

proposed algorithm could be applied in various real-scale networks in order to verify whether 

its efficiency is maintained. Further, we propose to extend the model to the case of the 

GOSS problem and more complex path choice models (such as C-Logit and Probit). Finally, 

we advocate using the proposed algorithm as a simulation model for imitating the behaviour 

of transportation systems in more complex design problems or in real-time management in 

order to highlight the advantages of adopting an ACO approach. 

APPENDIX A. THEORETICAL PROPERTIES OF THE FIXED-
POINT PROBLEM AND SOLUTION ALGORITHMS 

In this appendix, we propose the proof of existence and uniqueness of the equilibrium 

solution proposed by Cantarella (1997) and Cascetta (2009). Moreover, we describe in detail 

the extension of Blum’s theorem (Blum, 1954) provided by Cantarella (1997) in order to state 

the convergence of solution algorithms. 

A.1. Existence of equilibrium solution 

Cantarella (1997) and Cascetta (2009) stated that the fixed point problem: 
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( )( )dCfgcAAPf NA, +−= T  (A.1) 

 

has at least one solution if: 

 

– choice probability functions, P( –C ), are continuous; 

– link cost functions, c( g, f ), are continuous; 

– each origin-destination pair is connected (i.e. Iod ≠ Φ   ∀ od). 

 

Proof. 

The equilibrium solution f is a fixed point of the compound function 

( )( ) ( )xψdCxgcAAPy =+−= NA,T , which under the above assumption is a continuous 

function defined over the non-empty, compact and convex set Sf (since each OD pair is 

connected). Furthermore, the function ( )xψy =  assumes values only in the definition set Sf, 

thus satisfying all the assumptions of Brouwer’s theorem on the existence of fixed points. 

Hypotheses of Brouwer’s theorem are reported below for the reader’s convenience. 

A.1.1. Hypotheses of Brouwer’s theorem 

A fixed-point problem ( )yψy =  has at least one solution, i.e. the function ( )xψ  defined in 

the set nES ⊆  with values in the set ( ) nESψT ⊆=  has at least one fixed-point if: 

 

– T is a subset of S, ST ⊆ , i.e. ( ) Sxψ ⊆    Sx ∈∀  ; 

– S is a compact and a convex non-empty set; 

– ( )xψ  is a continuous function. 

A.2. Uniqueness of equilibrium solution 

Cantarella (1997) and Cascetta (2009) proved that the fixed-point problem (A.1) has at most 

one solution if: 

 

– path choice models are expressed by strictly decreasing functions with respect to 

path generalised costs, that is: 

 

( ) ( )[ ] ( ) ''''''''' CCCCCPCP ≠∀<−−−−      0
T

 (A.2) 

 

– cost functions are expressed by monotone non-decreasing functions with respect to 

link flows, that is: 

 

( ) ( )[ ] ( ) '''''''',', fffffgcfgc ≠∀≥−−     0
T

 (A.3) 

 

Proof. 

By multiplying eqn (A.2) by constant quantities, that is A and d, we obtain: 
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( ) ( )[ ] ( ) ''''''''' CCCCdCAPdCAP ≠∀<−−−−      0
T

 (A.4) 

 

Moreover, by replacing eqn (15), we can rewrite the above equation as: 

 

( )( ) ( )( )[ ] ( ) ( )[ ]
( )dCAPf'f'f'

'f'gcAf'gcAC'f'gcAPCf'gcAP

''

,,,, NANA

−=≠∀

<−−−−−−

      with                                                                              

0TTTTT

 (A.5) 

 

Then, by multiplying the first term by a positive quantity, that is d, we obtain: 

 

( )( ) ( )( )[ ] ( ) ( )[ ]
( )dCAPf'f'f'

'f'gcf'gcdC'f'gcAAPdCf'gcAAP

−=≠∀

<−−−−−−

      with                                                                              

0
TTT ,,,, NANA

 (A.6) 

 

By means of eqn (16), we obtain: 

 

( ) ( ) ( )[ ] ( )dCAPf'f'f''f'gcf'gc'f'f' −=≠∀<−−       with     0
T

,,  (A.7) 

 

At this point, the proof is then completed by reductio ad absurdum. Indeed, if two different 

equilibrium link flows existed, f

** Sff ∈≠ 21 , assuming ( )** fg,cc 11 =  and ( )** fg,cc 22 = , eqn 

(A.7) would yield: 

 

( ) ( ) 021

T

21 <−− **** ccff  (A.8) 

 

while, from eqn (A.3), it follows that: 

 

( ) ( ) 021

T

21 ≥−− **** ccff  (A.9) 

 

Thus, there is a contradiction between (A.2) and (A.3). 

A.3. Convergence of solution algorithms 

Cantarella (1997) showed, by adapting Blum’s theorem (Blum, 1954) to the fixed-point 

problem (A.1), that a convergent solution algorithm for solving the fixed-point problem of a 

function ( )xψy =  with: 

 

– xSx ∈  and xSy ∈  where xS  is a non-empty, compact and convex set; 

– a unique fixed-point ( )** xψx = ; 

– a function ( ) xSxx ∈∀≥     0ϕ  where ( )xϕ  is continuous with first ( )xϕ∇  and second 

( )xϕ2∇  derivative continuous; 

– ( ) ( )[ ]
xx

T2 SxSxxxλx ~, ∉∈∀<−∇    0ϕ  and ( ) ( )[ ]
x

T2 Sxxxλx ~
~~~~ ∈∀=−∇    0ϕ  where 

xx
SS ⊆~  and 

x

* Sx ~∈ ; 

– ( ) ( )
xx

* SxSxxx ~, ∉∈∀>−    0ϕϕ  and ( ) ( )
x

* Sxxx ~
~~ ∈∀=−    0ϕϕ ; 



An Ant Colony Optimisation (ACO) algorithm for solving the Local Optimisation of Signal 
Settings (LOSS) problem on real-scale networks 

D’ACIERNO, Luca; GALLO, Mariano; MONTELLA, Bruno 
 

 
12

th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
21 

– ( ) x

2T Sx'x,xx'x ∈∀+∞<=∇    Mϕ ; 

 

can be formulated by the following recursive equation: 

 

( )( ) xSxxxλxx ∈−+=+ ttt

t

tt  h       wit1 µ  (A.10) 

 

if the sequence { }
0>ttµ  satisfies the following conditions: 

 

( ) +∞<=+∞= ∑∑
>>

M, t
t

t
t

2

00

    µµ  (A.11) 

 

Moreover, if the sequence { }
0>ttµ  satisfies the condition: 

 

] ]10,t ∈µ  (A.12) 

 

then the elements of the sequence described by (A.10) belong to set xS , which is convex. 

A sequence { }
0>ttµ  which satisfies both (A.11) and (A.12) is given by { }

0
1

>
=

tt tµ  such that 

(A.10) becomes: 

 

( )( ) ( )tttttt

ttk
xλxxxλxx

11
1

11 +







−=−+=+  (A.13) 

 

With the above assumption we may develop a solution algorithm known as the Method of 

Successive Averages (MSA). In particular, Cantarella (1997) proposed a Flow Averaging 

algorithm (MSA-FA) based on the following sequence: 

 

( )( )( ) ff SfSffcfff ∈∈−+=+ 11      with
1 tttt

t
 (A.14) 

 

which corresponds to eqn (20), and a Cost Averaging algorithm (MSA-CA) based on: 

 

( )( )( ) ( ) fc SfSfccSccfccc ∈∈=∈−+=+ 1111  and      with
1

c

tttt

t
 (A.15) 

 

which corresponds to eqn (21). 

Moreover, in order to prove the convergence of algorithms, assuming that existence and 

uniqueness conditions hold, it is necessary to verify that link cost functions have a symmetric 

continuous Jacobian ( )[ ]fcJac  over set fS , for MSA-FA and choice map functions, which are 

expressed by (16), are additive and continuous with continuous first derivative for algorithm 

MSA-CA. Importantly, these conditions are generally satisfied by almost all functions 

proposed in the literature. 

Finally, D’Acierno et al. (2006) stated the convergence of the ACO algorithm described in 

Section 2, assuming that the existence and uniqueness condition holds, if ( )[ ]ττττcJac  is 

symmetric and continuous. Indeed, this condition satisfies all hypotheses of Blum’s theorem 
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(Blum, 1954) in the case of the fixed-point problem ( )( )( )ττττττττττττ fc=  where ττττ is a vector whose 

generic element is the pheromone trail l,odτ  (or equivalently l,odw ), of dimensions  

((nPairs ⋅ nLinks) × 1). Moreover, sufficient conditions to verify the ( )[ ]ττττcJac  hypothesis are that 

link cost functions have a symmetric and continuous Jacobian ( )[ ]fcJac  over set Sf, and 

choice map functions, which are expressed by (16), are additive and continuous with the 

continuous first derivative. Since also in this case these sufficient conditions are generally 

satisfied by almost all functions proposed in the literature, convergence of the proposed 

ACO-based algorithm may be postulated. 
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