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ABSTRACT 

In this paper we focus on the multimodal network design problem that consists in designing 

jointly road and transit systems, assuming elastic demand at least at the mode choice level. 

We refer to regional contexts where a planner may have financial resources to be invested 

for improving the mobility of a wide area and have to decide how these resources should be 

allocated between transit and road systems. We propose an optimisation model for solving 

the problem, whereby we introduce an objective function that takes into account different 

objectives of the problem (reduction in user costs, reduction in external costs, etc.) and all 

constraints to be considered (budget constraints, capacity constraints, assignment 

constraints, etc.). We then propose a meta-heuristic solution algorithm for solving the 

problem and test it on a trial and a real-scale network. 

 

Keywords: Multimodal network design, Elastic demand, Transportation, Scatter search 

1. INTRODUCTION 

The sound investment of public money in transportation systems is a major objective in 

transport policy since local administrations or central governments generally have limited 

financial resources at their disposal. Such limited resources need to be optimised to improve 

the global mobility of the area, taking account not only of user requirements but also of 

benefits for the whole society. 

With regard to ground transportation, road networks and transit services are the main 

investment sectors and the politician has to choose where and how to invest public money. 
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In this paper we formulate a Multimodal Network Design Problem (MNDP) where the 

objective is to optimise investments in road networks and transit services, allowing for both 

user and society benefits. This problem may be seen as a Supply Design Problem (SDP) 

(see also Cascetta, 2009) under the assumption of elastic demand (at least at the mode 

choice level). 

The (monomodal) Network Design Problem (NDP) has been widely studied. Both the Transit 

Network Design Problem (TNDP) and the Road Network Design Problem (RNDP) have 

attracted considerable attention in the literature. 

Some recent literature reviews on TNDPs can be found in Guihaire and Hao (2008), 

Desaulniers and Hickman (2007); a less recent review was reported in Chua (1984). In this 

context, recent contributions on transit elastic demand have been made by Lee and Vuchic 

(2005), Cipriani et al. (2006), Fan and Machemehl (2006) and Gallo et al. (2009). As regards 

the Road Network Design Problem, more recent models and methods proposed for road 

networks include Herrmann et al. (1996), Solanki et al. (1998), Cho and Lo (1999), Cruz et. 

al. (1999), Meng et al. (2001), Meng and Yang (2002), Drezner and Wesolowsky (2003), 

Chiou (2005), Gao et al. (2005), Poorzahedy and Abulghasemi (2005), Cantarella et al. 

(2006), Cantarella and Vitetta (2006), Ukkusuri et al. (2007), Poorzahedy and Rouhani 

(2007) and Gallo et al. (2010). 

This paper is structured as follows: Section 2 focuses on the model formulation; the solution 

algorithm is proposed in Section 3; numerical results on a real-scale network are reported in 

Section 4; Section 5 draws the main conclusions. 

2. OPTIMISATION MODEL 

A Multimodal Network Design Problem (MNDP) can be generally formulated by the following 

constrained optimisation model: 

 

[x^, y^] = Arg x,y min w(x, y, fm*) (1) 

 

subject to: 

 

x ∈ X (2) 

y ∈ Y (3) 

fm* = ΛΛΛΛ(x, y, fm*, dm(x, y, fm*)) (4) 

 

where: 

x is the vector of road decision variables; 

y is the vector of transit decision variables; 

x^ is the optimal solution for x; 

y^ is the optimal solution for y; 

w(⋅) is the objective function; 

fm* is the multimodal equilibrium flow vector; 

ΛΛΛΛ(.) represents the multimodal assignment function; 

dm is the multimodal demand vector; 

X represents the feasible set for x; 
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Y represents the feasible set for y. 

 

Eqns (2) and (3) summarise all constraints on decision variables. Eqn (4) represents the 

demand-supply consistency constraint that is in this case a multimodal assignment 

constraint; this constraint links the descriptive variables, fm*, to the decisional ones, x and y, 

simulating user behaviour jointly as regards mode choice and path choice on the multimodal 

network. 

The multimodal demand vector, dm(.), arranges the transportation demand vectors for each 

transportation system; it depends on the decisional variables, x and y, and on the multimodal 

equilibrium flows, fm*. Vector fm* can be estimated by adopting the multimodal equilibrium 

assignment model proposed by D’Acierno et al. (2002). 

Given a transportation supply layout (i.e. given vectors x and y), under some assumptions on 

cost functions and demand models, it may be proved that the multimodal equilibrium flow 

vector fm* exists and is unique (Cantarella, 1997; D’Acierno et al., 2002; Cascetta, 2009). 

Therefore, eqn (4) can be considered an application: to each supply configuration, identified 

by vectors x and y, corresponds one and only one multimodal equilibrium link flow vector fm*. 

The MNDP consists in searching, among all feasible supply configurations (x, y), for the one 

(x^, y^) which corresponds to the optimal value of the objective function, w(⋅). 

In this paper we focus on the problem of optimising regional investments on transportation 

systems. The aim is to design jointly the road infrastructures to improve (on a known road 

network) and the frequencies for a regional metro system (on a known line network), 

optimising total costs and taking demand elasticity into account. 

2.1. Problem definition 

Since our focus is on optimising limited resources to improve mobility at a regional level, we 

consider that a maximum amount of resources is available and can be used to improve the 

road network and/or the transit systems in an extra-urban context. We assume that the road 

network is known and that the improvements consist in enhancing the performance of some 

existing roads in terms of capacity and free-flow speed; in this paper we do not consider 

investments for building new roads. 

We make the further assumption that the topological configuration of the transit network is 

known, in terms of lines and that network improvements consist in increasing the frequencies 

of major transit lines, as well as rail lines and main bus lines. It is evident that in this case we 

need to consider demand as elastic, at least at the mode choice level, and we have to 

simulate car and transit systems jointly in a multimodal context. 

2.2. Decision variables 

The decision variables represent the improving interventions on road infrastructures and on 

transit services. We introduce two vectors of decision variables: 

 

– x is the vector of road decision variables, xi; this vector is composed by as many 

elements as the road infrastructures to be improved. These variables are binary (0/1) 
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and each variable, xi, assumes the value 1 if the improving intervention is adopted on 

the infrastructure, and 0 otherwise; 

– y is the vector of transit decision variables, yj; this vector is composed by as many 

elements as the transit lines to be improved. These variables are discrete (1, 2, …, 

yj
max) and each variable, yj, assumes the value of the hourly frequency adopted on the 

line. 

 

In this paper we refer to a single hour of operation (e.g. peak hour). Extension to several 

operation periods, with different demand and supply features, will be the subject of further 

research. 

2.3. Constraints 

In this problem several constraints can be identified; some constraints refer only to road 

decision variables, some to transit decision variables and others to the whole problem. 

2.3.1. Constraints on road decision variables 

The constraints on road decision variables are the following: 

 

xi = 0/1 ∀ i ∈ I 

 

where xi represents the decision variable for road i and I is the set of roads on which it is 

possible to intervene. This constraint introduces the binary nature of the variables. No other 

constraints that regard only the road decision variables are identified. 

2.3.2. Constraints on transit decision variables 

The constraints on transit decision variables are the following: 

 

yj = integer ∀ j ∈ J 

 

where yj represents the decision variable for transit line j and J is the set of transit lines on 

which it is possible to intervene. This constraint introduces the integer nature of the variables. 

Since these variables represent the hourly frequencies of lines, they should be assumed 

continuous, but for algorithmic reasons we prefer to consider them as discrete. 

 

yj
now ≤ yj ≤ yj

max ∀ j ∈ J 

 

where yj
now is the frequency of line j in the current configuration and yj

max is the maximum 

value of the frequency allowed on line j. 

 

Σj∈JR Ceiling(yj · rtj) ≤ NRmax 
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where rtj is the route time of rail line j, NRmax is the maximum available number of trains and 

JR is the subset of J that includes only the rail lines. This constraint is not considered if the 

possible transit investments also include purchasing new trains. 

 

Σj∈JB Ceiling(yj · rtj) ≤ NBmax 

 

where rtj is the route time of bus line j, NBmax is the maximum available number of buses and 

JB is the subset of J that includes only the bus lines. The function Ceiling(x) gives the 

smallest integer ≥ x: the formula expresses the need to round up to the next integer the 

number of buses or trains for operating the line. This constraint is not considered if the 

possible transit investments also include purchasing new buses. 

 

Σj∈JR yj · Lj ≤ TKRmax 

 

where Lj is the length of line j and TKRmax is the maximum number of train-km that can be 

operated. This constraint is considered only if this limit on train-km exists. 

 

Σj∈JB yj · Lj ≤ TKBmax 

 

where Lj is the length of line j and TKBmax is the maximum number of bus-km that can be 

operated. This constraint is considered only if this limit on bus-km exists. 

 

maxs,j fm s,j ≤ yj · TCapj ∀ j ∈ J 

 

where fm s,j  is the flow on section s of line j and TCapj is the capacity of a vehicle that is 

operated on line j. These constraints should be almost always inactive since the minimum 

value of frequency is the current one. 

2.3.3. Constraint on the whole problem 

The constraint on the whole problem is the following: 

 

Σi xi cri + Σj (yj − yj
now) Lj ckmj  ≤ B 

 

where cri represents the cost of the improving intervention on road i and ckmj is the cost per 

veh-km of line j. Obviously, since the cost of transit systems refers to an hour, also the term 

cri has to refer to an hour, as a function of the useful life of the facility and of maintenance 

costs. B represents, similarly, the total available budget per hour. 

2.3.4. Demand-supply consistency constraint 

The demand-supply consistency constraint, eqn (4), links descriptive variables (flows on car 

and transit systems) to decision ones. In this problem, where we assume that the demand is 

variable only at the mode choice level and where only two modes are available (for extra-

urban trips the pedestrian mode is unavailable), the constraint can be formulated as follows: 
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[ft*, fc*] = ΛΛΛΛ(x, y, ft*, fc*, dm(x, y, ft*, fc*)) 

 

where, in addition to the terms already defined: 

ft* is the equilibrium flow vector of the transit system; 

fc* is the equilibrium flow vector of the private car system. 

 

A detailed description of the multimodal assignment model and the algorithms for solving it 

are reported in D’Acierno et al. (2002). 

2.4. Objective function 

The choice of the objective function in a multimodal network design problem is a critical point 

mainly if, as in the defined problem, significant economic resources have to be allocated. 

Indeed, several aspects of transport policy have to be considered: user costs, external costs, 

resources, etc. 

The costs that we considered in the objective function are the following: 

 

– private car user costs, Cc; 

– transit user costs, Ct; 

– resources invested, R; 

– external costs, EC. 

 

Private car user costs are the total costs incurred by car users on the road network. Such 

costs depend on road performance, which also depends on (multimodal equilibrium) traffic 

flows: 

 

Cc = Σl cl(x, fcl*(x, y)) ⋅ fcl*(x, y) 

 

where: 

fcl* is the equilibrium flow on road link l, element of the equilibrium vector fc*; 

cl(.) is the cost function on road link l. 

 

In this equation the dependence of equilibrium traffic flows on decision variables, x and y, is 

explicitly indicated. 

Transit user costs are the total costs incurred by transit users on the transit network (both 

bus and rail services). We assume that these costs are not dependent on transit user flows 

(uncongested network) but only on transit decision variables: 

 

Ct = Σm cm(y) ⋅ ftm*(x, y) 

 

where: 

ftm* is the flow on transit link m, element of the equilibrium vector ft*; 

cm(.) is the cost on road link l. 
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The resources invested in the project can be expressed as (see budget constraint): 

 

R = Σi xi cri + Σj (yj − yj
now) Lj ckmj 

 

 

Finally, the external costs can be calculated as: 

 

EC = Reckm ⋅ Σl fcl*(x, y) ⋅ Ll + TReckm ⋅ (Σj∈JR yj ⋅ Lj) + TBeckm ⋅ (Σj∈JB yj ⋅ Lj) 

 

where, in addition to the terms already defined: 

Reckm is the average external cost produced by a car travelling 1 km (€/km); 

Ll is the length of road link l; 

Lj is the length of transit link l; 

TReckm is the average external cost produced by a train travelling 1 km (€/km); 

TBeckm is the average external cost of a bus travelling 1 km (€/km). 

 

All these terms of the objective function may be weighted to allow for the relative importance 

given to each of them. Hence the objective function can be summarised as follows: 

 

w(x, y, ft*, fc*) = β1 ⋅ Cc(x, fcl*(x, y)) + β2 ⋅ Ct(y, ftm*(x, y)) + β3 ⋅ R(x, y) + 

 + β4 ⋅ EC(x, y, fcl*(x, y)) 

 

In this objective function transit ticket revenues are not considered since they represent a 

cost for transit users but a benefit for society, annulling each other. 

2.5. Whole model formulation 

The model formulated is a constrained integer optimisation model that can be expressed as: 

 

[x^, y^] = Arg 
x,y 

min  (β1 ⋅ Cc(x, fcl*(x, y)) + β2 ⋅ Ct(y, ftm*(x, y)) + β3 ⋅ R(x, y) + 

                                   + β4 ⋅ EC(x, y, fcl*(x, y))) 

 

subject to: 

 

xi = 0/1 ∀ i ∈ I 

yj = integer ∀ j ∈ J 

yj
now ≤ yj ≤ yj

max ∀ j ∈ J 

Σj∈JR Ceiling(yj ⋅ rtj) ≤ NRmax 

Σj∈JB Ceiling(yj ⋅ rtj) ≤ NBmax 

Σj∈JR yj ⋅ Lj ≤ TKRmax 

Σj∈JB yj ⋅ Lj ≤ TKBmax 

maxs,j fm s,j ≤ yj ⋅ TCapj ∀ s, j 

Σi xi cri + Σj (yj − yj
now) Lj ckmj  ≤ B 

[ft*, fc*] = ΛΛΛΛ(x, y, ft*, fc*, dm(x, y, ft*, fc*)) 
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Some features of this model are: 

 

– some decision variables are binary and others discrete; 

– the objective function is neither linear nor convex (except in particular cases); 

– elastic demand assignment must be performed to evaluate each solution; 

– some constraints are non-linear; 

– the assignment constraint is not expressible in a closed form; 

– the problem is NP-Hard. 

 

These features lead to the need to define efficient heuristic algorithms that should minimise 

the number of solutions to evaluate. 

3. SOLUTION ALGORITHM 

The algorithm proposed for solving the Multimodal Network Design Problem (MNDP) is 

based on the meta-heuristic technique called Scatter Search (see Laguna, 2002, and Glover 

et al., 2003). This allows discrete optimisation models to be solved, overcoming the 

boundaries of local optimisation. The method applies the optimal solution search to regions 

that are not explored by discrete local search algorithms (e.g. neighbourhood search 

techniques). A scatter search method for solving a general network design problem for 

undirected networks is proposed by Alvarez et al. (2005) while an application to Urban 

Network Design Problem was recently proposed by Gallo et al. (2010). 

Scatter Search is described in the following subsections, where the method for the MNDP is 

also specified. Section 3.1 introduces preliminary definitions, section 3.2 briefly describes the 

Neighbourhood Search method, which is an important subroutine of the proposed Scatter 

Search and, finally, section 3.3 illustrates the general framework and the steps of Scatter 

Search. 

3.1. Preliminary definitions 

We indicate as s ∈ S a solution of a discrete optimisation problem, such as the MNDP, 

where S is the set of solutions. To each solution s a set of solutions N(s) ⊂ S is associated, 

called neighbourhood of s. Solution s is called the centre of the neighbourhood N(s). Each 

solution s’ ∈ N(s), called neighbour, is obtained from solution s by an elementary operation 

called a move; a move changes only one value of a variable of solution s, generating the 

next solution s’. Usually it is assumed that the neighbourhoods are symmetrical, that is: if s’ 

∈ N(s) then s ∈ N(s’). 

A solution sloc^ ∈ S is a local optimum if the objective function value w(sloc^) is less [greater] 

than, or equal to, in a minimisation [maximisation] problem, objective function values 

corresponding to all solutions belonging to its neighbourhood: 

 

w(sloc^) ≤ w(s’)     ∀ s’∈ N(s) 

[w(sloc^) ≥ w(s’)     ∀ s’∈ N(s)] 
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The distance of solution s” from solution s’ is the minimum number of moves needed to 

transform solution s” into solution s’; the distance is indicated with D(s”-s’). For symmetrical 

neighbourhoods it will be: 

 

D(s”-s’) = D(s’-s”)      ∀ s’, s”∈ S 

 

Any solution belonging to a neighbourhood has a distance equal to 1 from the centre: 

 

D(s’-s) = 1     ∀ s’∈ N(s) 

 

For the MNDP a solution s is equal to [x, y] where the components of x and y are defined 

previously. Conventionally, we assume as positive a move that converts the value of a 

variable xi from 0 to 1 or that increases the value of a variable yj; the opposite moves are 

assumed negative. 

3.2. Neighbourhood Search 

If sk is a solution, the Neighbourhood Search generates the following solution sk+1 such that: 

 

sk+1 ∈ N(sk) 

 

and sk+1 respects a specified rule. One of the most commonly adopted rules for generating 

the following solution is the steepest descent method; it examines all neighbours, calculating 

their objective function values, and chooses the following solution as the one with the best 

value: 

 

w(sk+1) = Min  {w(s);       ∀ s ∈ N(sk)} 

 

The procedure then generates at each iteration a solution better than the previous one, 

choosing, among all solutions belonging to the neighbourhood, the one with the best 

objective function value. The procedure ends when solution sk is a local optimum, that is 

when: 

 

w(sk) ≤ w(s)       ∀ s ∈ N(sk) 

 

This method is not suitable for our problem if the network has real dimensions. Indeed, in this 

case the variables are very numerous and the neighbourhoods are very wide; evaluating at 

each step the objective function for all neighbours is not compatible with acceptable 

computation times, since each objective function evaluation requires a multimodal 

assignment (4). 

In this paper, in order to reduce the computation times, we propose to use a random method 

for generating the following solution, that we call the random descent method. This method 

randomly extracts a solution from the neighbourhood and evaluates its objective function; if 

the new solution is better than the current one, it becomes the current solution; otherwise, 



An optimisation model and algorithms for solving the multimodal network design problem in 
regional contexts 

GALLO, Mariano; D’ACIERNO, Luca; MONTELLA, Bruno 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 

10 

another neighbourhood solution is randomly extracted and so on, until a local optimum is 

found. If no neighbourhood solutions improve the objective function, the last solution is a 

local optimum. This method has been already applied in Gallo et al. (2010) for the Urban 

Network Design Problem with significant benefits in terms of computing times. 

For solving our problem, a first random extraction is performed extracting a road variable xi 

and changing the value of this variable, from 0 to 1 or from 1 to 0; if the new solution is better 

than the previous one, the next extraction will regard a transit variable yj. Otherwise another 

random extraction of a road variable will be performed until an improved solution has been 

found. Analogously, when a transit variable is extracted, it will be changed with a positive or 

a negative move (randomly decided); if the new solution is better than the previous one, the 

next extraction will regard a road variable xi. Otherwise another random extraction of a transit 

variable will be performed until an improved solution is found. The algorithms will stop when 

no improvements are possible: each variable modification will worsen the objective function. 

Hence the last solution is a local optimum. 

In this way, for every two improvements of the solution one will regard the road system and 

the other the transit system. Only if no improvements are found for one of the two systems 

will the subsequent move regard only the same system. This alternate method avoids one 

system being examined more than the other if the number of system variables is not 

equilibrated: sometimes, variables xi can be significantly more numerous than variables yj if 

transit lines are few while there are many improvable road links. 

3.3. Scatter Search 

Scatter Search is a metaheuristic technique for solving complex combinatorial optimisation 

problems. It can be adapted in several ways to several kinds of optimisation problems by 

suitably defining the criteria used in the phases of the solution procedure. A phase of Scatter 

Search is a mathematical or algorithmic subroutine that operates on a solution subset 

generating another solution subset. Each phase (or also the sequence of phases) can be 

defined in different ways depending on the specific problem. Below, the phases of the scatter 

search are examined and adapted to the MNDP. 

Phase 1 – Starting set generation 

In this phase a set of solutions is generated which should have a high level of diversity so as 

to cover different parts of the solution set. The subroutine that allows us to obtain the starting 

set is also called the Diversification Generation Method, which can generally differ for each 

specific problem. This routine is applied in our problem as follows: 

 

– we define a mother solution as the initial configuration of the multimodal 

transportation system; in this solution all road variables xi are equal to zero and all 

transit variables yj are equal to yj
now; 

– from this solution, other solutions, at fixed a priori distances from the mother solution, 

are randomly generated; they are called base solutions; 

– infeasible solutions are eliminated and substituted with other solutions (randomly 

generated) at the same distance from the mother one; 
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– the mother solution and the base solutions constitute the starting set. 

 

For generating base solutions, we propose to adopt the following procedure. Let nx be the 

number of road variables xi, ny the number of transit variables yj, ND the number of solution 

subsets that we want to generate at several distances from the mother solution and NS the 

number of solutions in each subset. Obviously, the number of generated base solutions is 

equal to ND ⋅ NS. The decision about adopting ND and NS may influence the quality of the final 

solution and computing times; we assume in this paper ND equal to the integer part of 

(nx + ny)/10 and that NS equal to the integer part of (nx + ny)/25, with a minimum equal to 2. 

For (nx + ny) = 50 the method will generate 10 base solutions, for (nx + ny) = 100 the method 

will generate 40 base solution while for (nx + ny) = 500 the method will generate 1000 base 

solutions. 

The ND subsets are generated by randomly extracting a number z between 1 to 10 and 

changing in the mother solution the values of z ⋅ n variables (with n = 1, 2, …, 10) NS times 

so as to generate on the whole ND ⋅ NS base solutions; the variables to change and the 

corresponding moves are randomly extracted. 

Phase 2 – Improvement in current solutions 

In this phase, from any current solution an improved solution is generated by an algorithmic 

subroutine that is also called the Improvement Method. Several improvement methods can 

be adopted; in this paper we adopt the proposed random descent method introduced in 

subsection 3.2. The improved solutions are local optima. 

Phase 3 – Reference set generation or updating 

A reference set is generated by selecting all improved solutions (local optima) generated in 

the previous phase or, if they are too numerous, only part of them; in this second case, the 

selection should take account of objective function values (good solutions) and diversity 

(scattered solutions). Especially for real networks, it is preferable to limit the dimension of the 

reference set by fixing the maximum number of its solutions. In this case a maximum number 

of good solutions and scattered solutions may be fixed; the reference set will consist of good 

solutions with better values of the objective function, and scattered solutions with maximum 

distances from the best solution, until the maximum number of solutions is reached. 

Operating in this way, the reference set will comprise good solutions, as regards the 

objective function value, and scattered solutions that allow the search to be extended to 

regions that cannot otherwise be explored. The subroutine that generates, at the first 

iteration, or updates, in subsequent iterations, the reference set is called the Reference Set 

Update Method. 

Phase 4 – Solution subset generation 

In this phase some solution subsets are generated, consisting of two or more solutions 

belonging to the reference set, which will be combined in the subsequent phase to generate 



An optimisation model and algorithms for solving the multimodal network design problem in 
regional contexts 

GALLO, Mariano; D’ACIERNO, Luca; MONTELLA, Bruno 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 

12 

other solutions. If nref set indicates the number of solutions in the reference set, the following 

subsets can be generated: 

 

(i) all subsets containing 2 solutions; 

(ii) subsets containing 3 solutions obtained by adding to 2-solution subsets the best 

solution among those not contained in them; 

(iii) the subset containing 4 solutions obtained by adding to 3-solution subsets the best 

solution among those not contained in them; 

(iv) and so on until a subset containing nref set solutions is generated. 

 

As for reference set generation, if the reference set solutions are numerous, the maximum 

number of subsets can be fixed a priori and can be randomly generated. 

Phase 5 – Solution combination 

In this phase, the solutions of each subset are combined. The Solution Combination Method 

may differ depending on the kind of problem, and usually leads to generate one solution from 

each subset. The method generally associates a score to each value that can be assumed 

by a variable; this score has to take account of objective function values of solutions of the 

subset and of the times that the specific value is assumed by the variable. The combined 

solution obtained from the subset will be that in which every variable assumes the value with 

the best score. 

In our problem the new solution is generated as follows: 

 

(a) a solution score is associated to each solution of the subset as follows: 

the ratio between the objective function value corresponding to the solution and the 

sum of objective function values of all subset solutions is calculated (objective 

function ratio); since we are dealing with a minimisation problem the solution score is 

calculated as 1 less the objective function ratio; 

(b) a variable value score is associated to each value that can be assumed by a variable 

xi or yj as the sum of the relative values of solutions in which that variable assumes 

that specific value; 

(c) the combined solution is generated such that any variable, xi or yj, assumes the best 

variable value score. 

 

The solutions obtained in phase 5 are improved (phase 2), generating a new reference set. 

The procedure ends when the reference sets in two successive iterations are equal or when 

a fixed a priori number of iterations is reached. All solutions belonging to the last reference 

set are local optima. Among them, the one with the best objective function value can be 

chosen. 

4. Numerical results 

In this section we analyse the proposed algorithm in three cases: 
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– a trial network in order to compare the exhaustive approach with the proposed 

algorithm; 

– a real-scale network in order to compare two kinds of planning strategies: 

optimisation of rail frequencies and joint optimisation of both rail and bus frequencies; 

– a real-scale network in order to test algorithm performances in the case of the 

following planning strategy: joint optimisation of rail frequencies, bus frequencies and 

improvements in road features. 

 

In the first case, the proposed model and algorithm were tested on a trial network (shown in 

Fig. 1), whose features are reported in Table I in order to provide a comparison between an 

exhaustive approach and the proposed algorithm. Indeed, in the case of five frequencies to 

be optimised (2 rail lines and 3 bus lines), whose feasible values are indicated in Table II, 

and five roads that can be improved (shown in Fig. 2), whose features are indicated in Table 

III), the number of feasible solutions is equal to 105 · 25 = 3,200,000. 

Numerical results in terms of algorithm approaches are shown in Tables IV and V. In 

particular, the application of the exhaustive approach required about 9.91 h of calculation 

time using a PC Intel Core 2 Quad 2.40 GHz, while the meta-heuristic approach provided the 

same results by analysing only 65 solutions in about one second. 

 

 
Table I – Trial network features 

8 

Centroids 

9 

Road nodes 

4 

Rail nodes 

2 

Rail lines 

3 

Bus lines 

8 

Connectors 

13 

Road sections 

3 

Rail sections 

4 

Rail stations 

7 

Bus stops 

4 

(Transfer) 

pedestrian 

links 

 

 
Table II – Feasible frequencies 

Feasible 

frequency 

[veh./h] 

1 2 3 4 5 6 8 10 12 15 

Vehicle 

headway 

[min.] 

60 30 20 15 12 10 7.5 6 5 4 

 

 
Table III – Feasible road improvements 

Free-flow speed [km/h] Capacity [veh/h] Road 

number Current Improved Current Improved 

Improvement costs 

[€/km · h] 

1 60 90 2,000 3,000 500 

2 60 90 2,000 3,000 500 

3 60 90 2,000 3,000 500 

4 60 75 2,000 2,500 375 

5 60 75 2,000 2,500 375 
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Table IV – Comparison between algorithm approaches in the case of the trial network 

Algorithm 

approach 

Examined 

solutions 

[ # ] 

Calculation 

times 

[ s ] 

Objective 

function values 

[ €/h ] 

Mass transit 

travel demand 

[ % ] 

Exhaustive 3,200,000 35,668 175,953 21.59% 

Neighbourhood 

Search 
65 1 175,953 21.59% 

 

 

Figure 1 – Transit network 

 

 

Figure 2 – Roads that can be improved  

 

 

Rail line 1 

Rail line 2 

Road links 

Rail links 

Bus lines 

Pedestrian 
links 
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Table V – Optimal solutions 

 Mass-transit frequencies Road improvements 

Algorithm 

approach 
Y1 Y2 Y3 Y4 Y5 X1 X2 X3 X4 X5 

Exhaustive 1 1 15 15 12 0 1 1 0 0 

Neighbourhood 

Search 
1 1 15 15 12 0 1 1 0 0 

 

 

The main result of the test on the trial network was that the proposed meta-heuristic 

approach allows a significant reduction to be obtained in calculation times whilst providing 

the same results. Although the goodness of results cannot be stated a priori in the case of 

the meta-heuristic approach, the great reduction in calculation times suggests the use of this 

class of solution algorithms for analysing real-scale networks in reasonable times. Therefore 

the other two analyses were performed by using only the meta-heuristic approach. 

The second test was performed in the case of a real-scale network (shown in Fig. 3, whose 

features are reported in Table VI) in order to ascertain the applicability of the proposed model 

and algorithm. In this case, we compared results obtained by optimising only rail frequencies 

with optimising both rail and bus frequencies. The results are shown in Tables VII and VIII. 

 

 

Figure 3 – Real-scale network 

 

Road network Bus lines 

Rail network Rail lines 
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Table VI – Real-scale features 

91 

Centroids 

262 

Road nodes 

43 

Rail nodes 

14 

Rail lines 

47 

Bus lines 

161 

Connectors 

382 

Road sections 

49 

Rail sections 

43 

Rail stations 

120 

Bus stops 

104 

(Transfer) 

pedestrian 

links 

 

 
Table VII – Solution comparisons (Part 1) 

Optimised 

variables 
Bus-km/h Train-km/h 

Required 

bus number 

[ # ] 

Required 

train number 

[ # ] 

Mass-transit 

operational costs 

[ €/h ] 

Only rail 

frequencies 
21,215 10,381 611 276 205,879 €/h 

Rail and bus 

frequencies 
50,802 5,840 1,333 153 225,046 €/h 

 

 
Table VIII – Solution comparisons (Part 2) 

Optimised 

variables 

Mass transit 

travel demand 

[ % ] 

Objective 

function value 

[ €/h ] 

Variable 

number 

[ # ] 

Examined 

solutions 

[ # ] 

Calculation 

times 

[min.] 

Only rail 

frequencies 
43.76% 13,693,938 14 158 349 

Rail and bus 

frequencies 
46.72% 12,878,226 61 1,290 2,969 

 

 

In the first case, the number of design variables is equal to 14 and the number of feasible 

solutions is equal to 1014, while in the second case the number of design variables is 61 and 

there are 1061 related feasible solutions. In the first case, the algorithm analysed 158 

solutions in about 5.82 hours while in the second case the analysis of 1,290 solutions 

required 49.48 hours. It is worth noting that, since in the first case the algorithm analysed one 

solution every 2.21 minutes, application of an exhaustive approach would require about 420 

million years as calculation times. 

Comparison between the two planning strategies yielded the following results: 

 

– the design of both rail and bus frequencies allows the system to be better optimised 

since the system is less constrained: the objective function value (which represents 

the sum of all system costs) is reduced by 5.96% and the mass transit travel demand 

is increased by 6.77%; 

– the second strategy requires an increase in bus services in terms of bus-km/h (about 

+139%) and number of buses used (about +118%), while it requires a decrease in rail 

services in terms of train-km/h (about -44%) and number of trains used (about -45%). 

The difference in service costs (2.81 €/bus-km vs. 14.09 €/train-km) means that in the 
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second case we obtain an increase in public transport operating costs of 19,167 €/h 

which corresponds to a percentage increase equal to +9.31%; 

– the increase in public transport costs allows travel times to be reduced such that a 

percentage of users, who in the first case were travelling on the road system, decide 

to change their modal choice and travel by public transport. It is worth noting that, by 

switching, these users lead to reduced road congestion, better performances being 

yielded for both road and bus systems. This means that, although in the second case 

an increase is required in public transport costs, total system costs decrease (as 

shown by the objective function reduction). 

 

The last test was performed on the previous real-scale network and implemented by jointly 

designing rail frequencies, bus frequencies and road system improvements. In particular, 

there were 61 public transport frequencies to be optimised (according to values indicated in 

Table II), and 20 roads to be improved. Road improvements regard main regional roads. For 

all roads, improvement yields an increase in free-flow speed from 70 km/h to 110 km/h and 

an increase in capacity from 4,000 to 4,500 veh/h; improvement costs are assumed equal to 

70 €/km/h. In this case the feasible solutions were 1061 · 220 = 1.05 · 1067. However, 

application of the proposed algorithm required the analysis of 2,293 solutions in about 86.21 

hours. 

Our results, summarised in Tables IX and X, show that the design of all variables (i.e. rail 

and bus frequencies jointly with road improvements) provides an increase in bus services of 

about 56% in terms of bus-km/h and 42% in terms of number of buses required, and a 

decrease in train services of about 40% in terms of train-km/h and 36% in terms of number of 

trains required. Globally, there is a 5.69% decrease in public transport operating costs. The 

results suggest improvements be made on six roads, corresponding to a road improvement 

cost of 48,155 €/h. 

Moreover, the design of all considered variables yielded a 4.33% increase in public transport 

travel demand and a 5.57% decrease in total system costs (i.e. objective function). 

 

 
Table IX – Solution comparisons (Part 1) 

Optimised 

variables 
Bus-km/h Train-km/h 

Required 

bus number 

[ # ] 

Required 

train number 

[ # ] 

Mass-transit 

operational costs 

[ €/h ] 

Initial 

solution 
31,823 11,600 924 292 252,869 

Final 

solution 
49,761 7,001 1,308 186 238,470 
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Table X – Solution comparisons (Part 2) 

Optimised 

variables 

Mass transit 

travel demand 

[ % ] 

Number of 

improved roads 

[ # ] 

Road improvement 

costs 

[ €/h ] 

Objective 

function value 

[ €/h ] 

Initial 

solution 
44.15%   13,617,713 

Final 

solution 
46.06% 6 48,155 12,859,205 

 

 

Finally, by comparing the results of the strategy of design both road and transit systems 

(results are reported in Tables IX and X) with the design of only public transport (results 

reported in Tables VII and VIII), we obtain that a multimodal strategy in the transportation 

system design provides: 

 

– a reduction in bus services of 2.05% in terms of bus-km/h and 1.88% in terms of 

required buses; 

– an increase in rail services of 19.88% in terms of train-km/h and 21.57% in terms of 

required trains; 

– a 5.97% increase in public transport operational costs which (with the costs for 

improving roads) yields a reduction in user travel times such that total system costs 

(i.e. the objective function values) decrease by 19,021 €/h. 

5. Conclusions and research prospects 

This paper proposed a model and an algorithm for solving the multimodal network design 

problem in a regional context where a planner has to evaluate the optimal allocation of 

financial resources between transit and road systems. Numerical results showed that also in 

simple cases an exhaustive approach can be considered prohibitive due to the huge number 

of alternative solutions to be examined and the calculation times involved. Moreover, in the 

case of real-scale networks, solutions may be obtained in reasonable times with the use of 

meta-heuristic algorithms. 

With a view to future research, we suggest application of the proposed methodology to other 

real-scale networks in order to verify if it is possible to generalise considerations proposed in 

the paper. Further analysis could usefully test the proposed methods by varying the number 

of starting set solutions in order to search for the best trade-off between computation times 

and goodness of solution and compare the proposed method with other meta-heuristic 

approaches found elsewhere. 
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