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ABSTRACT 

The study of the dynamics of activity patterns across different time horizons is high on the 
research agenda in activity-based analysis. Mostly qualitative research has indicated that life 
course events such as moving house or a new job may trigger or force individuals and 
households to reconsider their activity-travel behaviour, leading sometimes to changes. 
Attempts of modelling this process in transportation research are still scarce however. Of one 
the few exceptions is Beige (2008), who has estimated a hazard model to that effect. In our 
previous research, we have explored the feasibility of developing Bayesian networks to 
capture the direct and indirect effects of life trajectory events on the dynamics of activity-
travel patterns in general and transport mode choice in particular (Verhoeven et al., 2005, 
2006, 2007). The present paper will further develop this line of work and discuss the results 
of some validation tests. In particular, we will examine the ability of a Bayesian belief 
network, learned from retrospective survey data, to successfully simulate (i) the occurrence 
of life course events; (ii) the interval times between events, (iii) the sequence of one-
dimensional and multi-dimensional careers embedded in life trajectories and (iv) observed 
transport mode choice.  
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INTRODUCTION 

The majority of studies in travel behaviour research are cross-sectional in nature. Choice 
probabilities are analyzed and modelled as a function of socio-demographics and the 
attributes of the choice options, using single observations for the sample at one point in time. 
Although such research is of interest, it does not provide any understanding of the dynamics 
that made people decide to change their behaviour. Recently, therefore, the dynamics of 
activity-travel patterns has received increasing attention. Studies have been concerned with 
multiple time horizons, ranging from long-term perspectives to short-run adaptation in the 
implementation of planned activity-travel agendas. 

To contribute to the literature on long-term dynamics, in our previous research, we have 
explored the feasibility of developing Bayesian networks to capture the direct and indirect 
effects of life trajectory events on the dynamics of activity-travel patterns in general and 
transport mode choice in particular (Verhoeven et al., 2005, 2006, 2007). The work is based 
on the contention that life course events such as change of jobs, change of residential 
location, changes in household composition etc. may lead individuals to reconsider their 
current travel behaviour and change their behaviour if they feel that the change induced by 
such life course events will increase too much the pressure in coping with the changed 
circumstances. These life course events are represented as the nodes in a Bayesian belief 
network. Using relevant nodes, the structure of the network which represents and specifies 
the direct and indirect relationships between the life course events and aspects of activity-
travel behaviour can then be learned the data.  

In previous publications, we have presented this approach. The present paper will further 
develop this line of work and discuss the results of some validation tests. In particular, we will 
examine the ability of a Bayesian belief network, learned from retrospective survey data, to 
successfully simulate (i) the occurrence of life course events; (ii) the interval times between 
events, (iii) the sequence of one-dimensional and multi-dimensional careers embedded in life 
trajectories and (iv) observed transport mode choice.  

The remainder of the paper is organized as follows. First, we will briefly describe the 
Bayesian beliefs networks that were learned from the data. This will be followed by the 
discussion of a series of validation tests. The paper is completed with conclusions. 

THE NETWORKS 

The Bayesian belief networks were learned, using the Hugin-PC algorithm (Andersen et 
al. 1989) and data of a retrospective survey held in 2004 involving 700 respondents. 
These respondents were asked to indicate the occurance and timing of a pre-defined 
set of life course events. In total, the life trajectories resulted in 7649 cases, where the 
unit of observation is a year and a person. In the survey, only the current transport 
mode choice was measured. Two networks were derived: one for the lifcycle events 
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only and a second one, also included transport mode choice as an aspect of activity-
travel behavior.  

Two types of variables are included in the life trajectory network: (1) Personal 
Characteristics, such as Gender and Age, and (2) variables related to Structural Life 
course Events. The variable of interest is Occurrence Event. A year is chosen as unit 
for these models. This refers to one year of a persons life trajectory. In addition, 
external variables were included. The life course events are defined with respect to a 
certain moment in time, t, a certain person and type of event (using some classification 
of events) for which the model intends to predict whether or not a change occurred as a 
particular instance of an event of that type. The node Occurrence Event defines 
whether there was a change at time t for that certain event and what kind of change it 
was. The existing state before time t, e.g., residential situation in case of a housing 
event, is represented by the node labelled State. Time Ago (A) and Time Ago (B) define 
the time elapsed since the last occurrence of certain types of changes A and B, 
respectively before t, such as for a example a decrease (A) or increase (B) of the 
number of family members in a household. Constraints were included in the structure 
learning task to prevent that directions of links are back-in-time. Furthermore, the 
following constraints are defined on the basis of a distinction between external 
variables (those that are observed when a prediction is to be generated) and target 
variables (those that are to be predicted). In this case, the target variables are the 
Occurrence event nodes and the other nodes are the external variables. All external 
variables can only have a link with target variables Occurrence event within an Event or 
across an Event. Links between the external variables are not allowed. The external 
variables age and gender can only have outgoing links to the target variables. This is 
done to prevent the creation of large underlying conditional probability tables, while the 
direction of links has no implications for predictions. Links that represent logical 
relationships are enforced.  

The learned Bayesian belief network included all seven structural life course events: 
change in residential location (in short, housing), change in household composition 
(household), change in work location (work), change in study location (study), change 
in car possession and availability (availability), change in availability of public transport 
pass (PT pass), and change in household income (household income). Figure 1 
portrays the network for the lifcycle events, which includes 42 nodes and 75 links (42 of 
which were predefined).  

The 33 learned links were distributed across these five categories: 15 links were 
learned within an event, 5 links across events, 8 links between the event nodes, 4 links 
with the variable age, and 1 link was learned between the personal characteristics.  

Figure 2 portrays the second network, which examines if and how life trajectory events 
impact transport mode choice. Transport mode choice was defined as the most 
frequently used mode across the activities of the person. The network has 43 nodes 
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and 79 learned links: 75 links were already learned in the first network and 4 extra links 
were learned with the node mode choice.  
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Figure 1 – Learned life trajectory network 

Occurrence 
event nodes 

State nodes 

Time 
Ago  
nodes 



Stimulating the effects of life trajectory decisions on transport mode choice: validation results 
VERHOEVEN, Marloes; ARENTZE, Theo; TIMMERMANS, Harry; VAN DER WAERDEN, Peter 

 
 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
5 

Housing History

Household History

Study History

Work History

Car Availability History

Household Income History

Independent Housing

Decrease Household Members

Same Household Members

Parental Housing

Student Housing

Increase Household Members

Studying

Not studying

Employment

Unemployment

Decrease Car Availability

Same Car Availability

Increase Car Availability

Increase Household Income

Stop with PT pass

Change PT pass

Start with PT pass

Decrease Household Income

Same Household Income

Housing State

Household State

Study State

Work State

Car Availability State

PT Pass State

Houshold Income State

Housing Event

Study Event

Work Event

Car Availability Event

Household Income Event

PT PassEvent

Household Event

age

gender

PT Pass History

Mode Choice
Car
ST
PT

48.0
38.2
13.8

 

Figure 2 – Learned mode choice network 

VALIDATION OF THE LIFE TRAJECTORY NETWORK 

The learned networks provide a general representation of the data. The graphs 
however provide little information about the extent to which the predictions of the 
network are consistent with the observed life trajectories and current mode choice. To 
examine the validity of the networks, the following comparisons between predicted and 
observed life trajectories were made: (i) number of occurrences (in short ‘count’), (ii) 
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interval times between occurrences of events (in short ‘interval time’), (iii) simultaneous 
occurrences of events (in short ‘synchronic events), and (iv) sequence of occurrences 
of events (in short ‘sequence’).  

The occurrence of an event in year t depends on the predicted probabilities for that 
event given all variables/nodes in the network. Monte Carlo simulation is used to 
sample a specific state for the occurrence event node. Only one state of an event can 
be chosen in one year. A year is chosen to represent time interval; within a year there 
is no order between occurrences. 

Because the process is probabilistic, different simulation runs lead to different results. 
For validation purposes, five simulations were run. The input for every simulation run is 
the same: a set of 700 cases. Each case corresponds with one respondent in the 
sample. All life trajectories are simulated until the year 2004.  

Goodness-of-fit 

To assess the goodness-of-fit of the learned network model regarding the prediction of 
events, the log-likelihood is calculated for each event type separately, based on a 
prediction sequence. The sequence in which event types are predicted is predefined 
based on their mutual influences as revealed by the network structure. The sequence 
starts with an event with no incoming links from other event nodes and continues with 
events which only have links from the event nodes which precede in the sequence. The 
observed outcome of an event is taken as given in the prediction of the next event. Log 
likelihood values were calculated for three models: null-model, overall model and 
prediction model. In the null-model uniform distributions were chosen, implying that 
every option has the same chance. In the overall model the probabilities were 
distributed according to the overall probability distribution in the data set. The 
probabilities in the prediction model were based on the prediction based on the 
network. The log likelihood was calculated for every event and for every model. The 
calculated log likelihoods are listed in Table 1 

 

Table 1 –Log likelihood values mode choice network 
 Event Null-model Overall Prediction First  Second  

7 Housing -10602.40 -3193.79 -1819.90 0.8284 0.4302 

6 Household -10602.40 -3767.82 -1883.04 0.6843 0.5002 

5 Work -8402.19 -3422.19 -2652.44 0.9674 0.2249 

3 Study -8402.19 -417.56 -273.94 0.8224 0.3440 

2 Car Availability -10602.40 -2714.49 -2162.44 0.7960 0.2034 

1 PT pass -10602.40 -1645.47 -1183.69 0.8884 0.2806 

4 Household Income -10602.40 -3184.56 -1749.95 0.8349 0.4505 
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Two Rho-Squares were calculated, the first one is the ratio between the log likelihood 
of the prediction and null-model, and the second one is the ratio between the log 
likelihood of the prediction and overall model. The values of the first Rho-Squares in 
Table 1 are relatively high, all above 0.68. This indicates that the Bayesian network 
model is a strong improvement of the null-model. The values of the second Rho-Square 
are lower, but all values are above 0.20. This indicates, according to generally 
accepted norms, that the models perform well. 

Counts 

The first validation test is whether the total number of years with an occurrence is 
successfully reproduced by the network. The life trajectories of the 700 individuals in 
the sample produce 7648 years (i.e. person-years) in total. In every year an occurrence 
could happen or not. The frequency is the sum of all person-years when an occurrence 
happened across the (sub)events. The observed frequencies are compared with the 
frequencies of the simulations. Two classification levels are distinguished for the 
frequencies:  

1. No occurrences/occurrences on the level of subevents  

2. No occurrences/occurrences on the level of main events  

All years are taken into account in both levels, including the person-years where no 
occurrence happened. At the first level all available information is taken into account. 
That is, the level of detail of the subevent is also included. Chi-Square was calculated 
to test whether the model is capable of reproducing the observations. Table 2 provides 
the results for the first level: no occurrences/occurrences (subevent level). The first 
column lists the event with all states (no occurrence and all subevents). The second 
column shows the total number of counts in the observed life trajectories and the third 
column presents the percentage of the total count within each event. The total counts 
for the predicted life trajectory is shown in the fourth column and the percentage of the 
total count within an event is listed in the fifth column. The Chi-Square and its p-value 
are listed in the last two columns.  

A p-value < 0.05 (if alpha is 5% is applied) means that the null-hypothesis is rejected, 
and hence that the observed and simulation frequencies differ significantly. The number 
of person-years with a decrease and increase in the number of household members is 
underestimated in the simulation. For all other events the simulation produces the same 
percentage of person-years with and without an occurrence. The occurrence is defined 
here as subevents, this means that the number of person-years with a specific 
subevent is predicted. 
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Table 2 –Results count level 1 (subevent level) 
Housing observed % predicted % Chi Square p-value 

no occurrence 6708 0.877 33731 0.882   

independent housing 850 0.111 3980 0.104   

student housing 71 0.009 420 0.011   

parental housing 19 0.002 109 0.003   

Total 7648 1.000 38240 1.000 52.263 0.156 

Household observed % predicted % Chi Square p-value 

no occurrence 6654 0.87 33691 0.881   

Decrease 310 0.041 1334 0.035   

Increase 627 0.082 2920 0.076   

Same 57 0.007 295 0.008   

Total 7648 1.000 38240 1.000 92.178 0.027 

Work observed % predicted % Chi Square p-value 

no occurrence 6520 0.853 32501 0.85   

employed 1072 0.14 5445 0.142   

unemployed 56 0.007 294 0.008   

Total 7648 1.000 38240 1.000 0.384 0.944 

Study observed % predicted % Chi Square p-value 

no occurrence 7583 0.992 37931 0.992   

studying 24 0.003 115 0.003   

not studying 41 0.005 194 0.005   

Total 7648 1.000 38240 1.000 0.1401 0.987 

Car availability observed % predicted % Chi Square p-value 

no occurrence 7057 0.923 35181 0.92   

Decrease 150 0.02 701 0.018   

Increase 259 0.034 1377 0.036   

Same 182 0.024 981 0.026   

Total 7648 1.000 38240 1.000 23.044 0.512 

PT pass observed % predicted % Chi Square p-value 

no occurrence 7336 0.959 36458 0.953   

Stop 100 0.013 602 0.016   

Start 116 0.015 626 0.016   

Change 96 0.013 554 0.014   

Total 7648 1.000 38240 1.000 54.444 0.142 

Household Income observed % predicted % Chi Square p-value 

no occurrence 6847 0.895 34215 0.895   

Decrease 43 0.006 235 0.006   

Increase 215 0.028 1028 0.027   

Same 543 0.071 2762 0.072   

Total 7648 1.000 38240 1.000 0.7788 0.8545 
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Fout! Verwijzingsbron niet gevonden.Table 3 reports the results for the second level: 
no occurrences/ occurrences on the main event level. On this level, 2 of the events, 
namely household and PT pass, have a p-value below 0.05. In case of the household 
event, the person-years with occurrences are underpredicted in the simulation and for 
the PT pass event the person-years with occurrences are overpredicted. In general, the 
life trajectory model reproduced the number of person-years with and without 
occurrences in the life trajectories quite well. 

 

Table 3 –Results count level 2 (main event level) 
Housing observed % predicted % Chi Square p-value 

no occurrence 6708 0.877 33731 0.882   

occurrence 940 0.123 4509 0.118   

Total 7648 1.000 38240 1.000 15.194 0.218 

Household observed % predicted % Chi Square p-value 

no occurrence 6654 0.87 33691 0.881   

occurrence 994 0.13 4549 0.119   

Total 7648 1.000 38240 1.000 72.738 0.007 

Work observed % predicted % Chi Square p-value 

no occurrence 6520 0.853 32501 0.85   

occurrence 1128 0.147 5739 0.15   

Total 7648 1.000 38240 1.000 0.3357 0.562 

Study observed % predicted % Chi Square p-value 

no occurrence 7583 0.992 37931 0.992   

occurrence 65 0.008 309 0.008   

Total 7648 1.000 38240 1.000 0.138 0.710 

Car availability observed % predicted % Chi Square p-value 

no occurrence 7057 0.923 35181 0.92   

occurrence 591 0.077 3059 0.08   

Total 7648 1.000 38240 1.000 0.6439 0.422 

PT pass observed % predicted % Chi Square p-value 

no occurrence 7336 0.959 36458 0.953   

occurrence 312 0.041 1782 0.047   

Total 7648 1.000 38240 1.000 49.322 0.026 

Household Income observed % predicted % Chi Square p-value 

no occurrence 6847 0.895 34215 0.895   

occurrence 801 0.105 4025 0.105   

Total 7648 1.000 38240 1.000 0.0185 0.892 
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Interval times 

This second validation test analyses the interval times between occurrences within one 
event and between occurrences of two different events. The timing of occurrences is 
analysed given two interval types. Mean values are calculated for every interval type. 
An independent-samples t-test is used to test whether the means of the two 
independent random samples (observed and predicted sample) are statistically 
different. It is important to note that, in this analysis, there is no distinction between the 
occurrences on the level of subevents, implying that all subevents as mentioned before 
are listed as occurrences without further qualification.  

Three intervals are distinguished here: start interval, sequence interval and end 
interval. While only one interval (i.e. sequence interval) was used in the analysis 
between the observed and predicted life trajectories. The interval from the start to the 
first occurrence is named start interval. In case there was an occurrence in the first year 
of the life trajectory there is no start interval. The same holds for the end interval, which 
is the interval between the last and most recent occurrence and the end. These two 
intervals are not taken into account in this analysis. The start and end moment of the 
life trajectory are completely random. Both are determined in the survey, the start 
interval can be defined by the occurrence of another (related) event, by routing of the 
survey, the end interval is established by the moment of the data collection. The first 
occurrence in the life trajectory is not predicted given the previous occurrence, because 
this occurrence is not known. For these reasons, the start and end interval are not 
taken into account here.  

The interval between two occurrences of the same event is called sequence interval. If 
there are no occurrences in a person’s life trajectory no sequence intervals are 
registered. 

Only the mean sequence intervals and the mean interval between two events are 
analysed. Table 4 lists mean and number of the intervals of the observed life 
trajectories and Table 5 lists this information for the predicted life trajectories. The 
sequence intervals are in the diagonal of the table and the intervals between any two 
different types of events are in the other cells of the table. The upper part of the tables 
contains the mean values and the lower part lists the total number of intervals. The 
totals of Table 5 represent a sum across five simulations. 

The null hypothesis (H0) is that the model predicted the observed means of intervals 
well (µ1 = µ2). The independent sample t-test tests whether the predicted and observed 
means are equal. Table 6 lists the results of the t-test.  
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Table 4 –Interval times (observed data) 
 Means  Housing HH Work Study Car PT Income 

Housing 4.5 4.4 3.4 3.2 5.4 3.5 3.8 

HH 5.2 4.5 4.3 3.8 5.7 4.2 5.1 

Work 5.0 5.4 3.9 2.8 6.2 4.1 5.2 

Study 1.6 2.1 1.7 2.3 1.7 1.9 1.9 

Car  5.6 5.9 4.8 3.3 5.2 4.0 5.6 

PT pass 5.5 4.8 4.1 3.5 6.7 3.8 5.1 

Income 4.6 5.2 4.3 3.0 5.6 3.8 4.8 

 intervals Housing HH Work Study Car PT Income 

Housing 531 466 549 45 337 158 453 

HH 615 629 621 29 445 178 524 

Work 684 596 740 44 424 188 539 

Study 20 14 12 7 14 10 14 

Car  329 309 350 27 279 126 322 

PT pass 177 149 185 31 112 120 165 

Income 435 400 434 34 311 148 457 

 

Table 5 –Interval times (predicted data) 
 Means  Housing HH Work Study Car PT Income 

Housing 4.7 4.5 3.7 2.4 5.7 4.7 4.6 

HH 5.4 4.7 4.5 2.8 6.6 5.7 5.4 

Work 5.4 5.2 4.4 2.2 6.4 5.1 5.3 

Study 2.2 2.1 2.2 2.2 2.8 2.4 2.4 

Car  5.9 5.6 5.0 1.9 5.5 5.6 5.9 

PT 5.6 5.3 4.3 2.2 6.3 4.4 5.3 

Income 5.0 4.9 4.4 2.6 6.1 4.9 4.9 

intervals Housing HH Work Study Car PT Income 

Housing 2510 2117 2801 105 1816 727 2192 

HH 2728 2817 3043 72 2068 833 2477 

Work 3206 2949 3792 70 2363 1077 2889 

Study 104 73 111 28 69 42 88 

Car  1569 1513 1710 37 1381 558 1399 

PT 1011 889 1143 53 715 827 929 

Income 1958 1824 2083 69 1488 597 2175 
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Table 6 –Results t-test for all interval times 
 Housing HH Work Study Car PT Income 

Housing 0.18 0.45 0.11 0.03 0.36 0.00 0.00 

HH 0.46 0.28 0.22 0.08 0.002 0.00 0.32 

Work 0.10 0.28 0.006 0.10 0.47 0.001 0.65 

Study 0.07 0.91 0.21 0.91 0.003 0.29 0.29 

Car  0.45 0.36 0.37 0.006 0.45 0.00 0.33 

PT pass 0.89 0.26 0.53 0.015 0.55 0.11 0.65 

Income 0.17 0.23 0.55 0.28 0.13 0.001 0.83 

 

All significance values below 0.05 are bold in Table 6. In these cases the null 
hypothesis is rejected (alpha of 5% is applied), which means that the difference 
between the observed mean intervals and the predicted mean intervals is significant. 
The difference between the observed mean intervals and the predicted mean intervals 
is significant for 12 out of 49 intervals. In general, three interval times are 
underestimated and the other nine intervals are overestimated.  

In the sequence interval group there is one overestimation. The observed interval for 
the Work event is 3.9 years while the predicted interval is 4.4 years. A total of 11 out of 
42 intervals in the last group (i.e. intervals between two events) are significantly 
different. The following intervals are underestimated: housing and study, car availability 
and PT pass, and PT pass and study. The model overestimates the interval between 
housing and PT pass, housing and household income, household and car availability, 
household and PT pass, study and car availability, car availability and study, and 
household income and PT pass. 

There are more overestimated intervals than underestimated intervals. This indicates 
that the predicted time interval between two events on average is longer than reported 
in the survey. In general, the model predicts more or less the same interval times for 
the other events. The most difficult interval to predict is the interval between an event 
and the PT pass event. The model needs further improvement especially for this event. 

Synchronic events 

A time interval does not exist when two events occur in the same year. The time order 
within one year is no longer traceable due to recoding of the data according to the 
chosen time unit of one year. If occurrences were reported in the same year in the 
Internet-based survey, it is important that the network can reproduce this synchronism. 

Table 7 shows the number of synchronic events. Table 8 lists the number of observed 
occurrences for each event with no event occurrence as well as occurrences with one 
or more other event occurrences. The total sum here is the sum of the previous rows; 
this exceeds the total number of occurrences reported. The last row in the table 
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indicates the number of occurrences reported in the Internet-based survey (see table 
3). The probability of synchronic events depends on the total number of events. For 
example, when a housing event happened, the probability of a household occurrence in 
the same year is the ratio between synchronic events (housing and household) and the 
total number of occurrences (housing). In this example this is 288 / 940 = 0.31. Table 9 
lists all probabilities. In Table 10 – Table 12 the same information is listed for the 
predicted events: synchronic events, the number of synchronic events, probabilities of 
synchronic events.  

 

Table 7 –Synchronic events frequencies (observed data) 
Observed Housing HH Work Study Car PT Income 

Housing  288 271 32 178 87 240 

HH 288  213 12 207 60 276 

Work 271 213  27 160 145 359 

Study 32 12 27  14 25 27 

Car 178 207 160 14  66 186 

PT pass 87 60 145 25 66  112 

Income 240 276 359 27 186 112  

 

Table 8 –Synchronic events more than two in one year (observed data) 
Observed Housing HH Work Study Car PT Income 

no other event 384 426 457 13 196 75 186 

1 event 236 272 361 8 155 92 252 

2 events 168 165 180 20 120 77 206 

3 events 96 81 78 13 74 34 104 

4 events 45 40 41 6 37 24 42 

5 events 10 9 10 4 8 9 10 

6 events 1 1 1 1 1 1 1 

Total 1096 1056 1175 137 811 495 1200 

Occurrences 940 994 1128 65 591 312 801 

 

Table 9 –Synchronic events probabilities (observed data) 
Observed Housing HH Work Study Car PT Income 

Housing 0.00 0.31 0.29 0.03 0.19 0.09 0.26 

HH 0.29 0.00 0.21 0.01 0.21 0.06 0.28 

Work 0.24 0.19 0.00 0.02 0.14 0.13 0.32 

Study 0.49 0.18 0.42 0.00 0.22 0.38 0.42 

Car 0.30 0.35 0.27 0.02 0.00 0.11 0.31 

PT pass 0.28 0.19 0.46 0.08 0.21 0.00 0.36 

Income 0.30 0.34 0.45 0.03 0.23 0.14 0.00 
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Table 10 –Synchronic events frequencies (predicted data) 
Simulations Housing HH Work Study Car PT Income 

Housing  1021 1134 59 529 252 820 

HH 1021  838 50 615 208 966 

Work 1134 838  53 668 588 1574 

Study 59 50 53  32 85 39 

Car 529 615 668 32  151 805 

PT 252 208 588 85 151  211 

Income 820 966 1574 39 805 211  

 

Table 11 –Synchronic events more than two in one year (predicted data) 
Observed Housing HH Work Study Car PT Income 

no other event 2110 2174 2523 118 1373 758 1303 

1 event 1404 1435 2012 108 923 677 1475 

2 events 649 630 847 51 484 244 875 

3 events 276 242 284 22 212 86 302 

4 events 65 63 68 8 62 13 66 

5 events 5 5 5 2 5 4 4 

6 events 0 0 0 0 0 0 0 

Total 4509 4549 5739 309 3059 1782 4025 

Occurrences 3815 3698 4855 318 2800 1495 4415 

 

Table 12 –Synchronic events probabilities (predicted data) 
Observed Housing HH Work Study Car PT Income 

Housing 0.00 0.23 0.25 0.01 0.12 0.06 0.18 

HH 0.22 0.00 0.18 0.01 0.14 0.05 0.21 

Work 0.20 0.15 0.00 0.01 0.12 0.10 0.27 

Study 0.19 0.16 0.17 0.00 0.10 0.28 0.13 

Car 0.17 0.20 0.22 0.01 0.00 0.05 0.26 

PT pass 0.14 0.12 0.33 0.05 0.08 0.00 0.12 

Income 0.20 0.24 0.39 0.01 0.20 0.05 0.00 

 

Table 13 –Results p-values for the binomial test 
Observed Housing HH Work Study Car PT Income 

Housing  0.000 0.000 0.000 0.000 0.000 0.000 

HH 0.000  0.000 0.270 0.000 0.000 0.000 

Work  0.000  0.000 0.000 0.000 0.000 

Study 0.000 0.226 0.000  0.000 0.000 0.000 

Car 0.000 0.000 0.000 0.000  0.000 0.000 

PT pass 0.000 0.000 0.000 0.000 0.000  0.000 

Income 0.000 0.000 0.000 0.000 0.000 0.000  
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Table 13 represents the results of  binomial test. A p-value smaller than 0.05 indicates 
a significant difference between the observed and predicted probability of synchronic 
events. In almost all cases there is a significant difference. The probability of the 
synchronic events Household and Study is an exception. The values 0.270 and 0.226 
indicate that there is no significant difference. This means the model is successful in 
predicting these synchronic events. In general the model is less successful in predicting 
correctly the observed synchronic events. 

Sequence (SAM) 

Occurrences in a life trajectory take place in a certain order or sequence. In order to 
compare the sequence of the observed life trajectory with the life trajectory of the 
simulations, the Sequence Alignment Method (SAM) was used. Three different 
sequences were constructed and analysed. The first sequence option (labelled as 
OccurrenceOnly) is constructed with no reference to a year. This means that only the 
occurrences are listed in the sequence. There is no distinction in subevents in the 
sequence. The next sequence (labelled as SubstatesOnly) is a more detailed 
description of the first sequence in that the subevents are listed. There is still no 
reference to the year of occurrence, just like in the OccurrenceOnly sequence. The last 
sequence (labelled as Life Trajectory) is a multidimensional string where each 
dimension corresponds to an event type and a string indicates yes/no occurrence for 
each year in a row.  

Sequence alignment methods calculate the similarity between two sequences in terms 
of the number of operations that is required to equalize the two sequences. The 
operations involve adding, deleting, and substitution. In principle, different weights can 
be attached to these operations. Sequence alignment methods were originally 
developed for uni-dimensional sequences (Kruskal, 1983; States and Boguski, 1991). 
Joh, Arentze and Timmermans (2001) further expanded these methods to the case of 
multidimensional sequences. The Life Trajectory sequence can be viewed as a 
multidimensional profile. In this case, two different sequence alignment methods were 
applied: UDSAM (the sum of uni-dimensional sequence alignments) and DPSAM 
(Dynamic programming-based multidimensional sequence alignment method (Joh et al., 
2001)). The UDSAM measure calculates the alignment costs of each uni-dimensional 
sequence and the sum of these measures across all dimensions is taken as a measure 
of distance or dissimilarity between two multidimensional patterns. The DPSAM 
measure compares sequences on multiple dimensions simultaneously, taking 
dependencies between the dimensions into account.  

In our analyses, a weight of one was used for additions and deletions, while swapping 
received a weight of two (it can be seen as a combined deletion and addition 
operation). Thus, the SAM measure for each sequence alignment is the weighted total 
number of additions, deletions and substitution operations required to make the two 
sequences identical. A higher number implies that the two sequences are less identical. 
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The value of SAM (costs to align the sequences) will increase when the level of detail 
increases. It is difficult to analyse the SAM value if there is no comparison or range 
from the minimum to maximum SAM value. For this reason, a minimum and maximum 
were calculated for each observation and the mean of all SAM values was compared to 
this range.  

Given the three sequences, four analyses were executed. The UDSAM measure is 
used for the OccurrenceOnly sequence and the SubstatesOnly sequence. Both 
sequences are uni-dimensional. The Life Trajectory sequence is analysed two times: 
first as an entity with the DPSAM method (Dynamic programming-based 
multidimensional sequence alignment method) and second for each event separately 
with UDSAM method (uni-dimensional). The Life Trajectory sequence is multi-
dimensional given the seven strings which represent the different time lines in the life 
trajectory. The range of the SAM value is defined as follows. The minimum, obviously, 
is always equal zero. The definition of the maximum depends on the measure 
considered. For the OccurenceOnly and SubstatesOnly, the maximum is defined as: 
length sequence x 2, whereas for the Life Trajectory it is defined as: SAMmax = length 
sequence x 2 x 7. The multiplication with 2 is for substituting a value in the sequence 
and the multiplication with 7 is the number of events. The length of each string in the 
Life Trajectory sequences is the same for the observed and predicted sequences. If a 
person reported a life trajectory of twelve years the predicted life trajectory also 
consists of twelve years. In OccurenceOnly and SubstatesOnly sequences, the length 
of the string is the maximum length of observed and predicted string. The SAM value is 
indicated with a percentage, calculated as: percentage SAM value = (SAM value - SAM 
valuemin) / SAM valuerange 

The lower the percentage the closer the SAM value is to the minimum SAM value, thus 
the better the performance. In total 3495 cases were analysed. In some cases, the 
length of the observed or predicted sequence is zero. This means that no occurrences 
were observed or predicted for that person. These cases, in total 723, were not 
included in the analysis. In total, 2772 cases were analysed. 
 

Table 14 –Results OccurrenceOnly sequence (UDSAM) 
 Minimum Maximum Mean Std. Deviation 
Length sequence 1 31 8.54 5.83 
Minimum SAM 0 28 3.73 3.73 
Maximum SAM 2 62 17.08 11.66 
SAM range 2 60 13.35 10.14 
SAM value 0 31 8.48 5.74 
SAM percentage 0 1 0.35 0.26 
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Table 15 –Results SubstateOnly sequence (UDSAM) 
 Minimum Maximum Mean Std. Deviation 
Length sequence 1 31 8.54 5.83 
Minimum SAM 0 28 3.73 3.73 
Maximum SAM 2 62 17.08 11.66 
SAM range 2 60 13.35 10.14 
SAM value 0 37 9.79 6.69 
SAM percentage 0 1 0.45 0.28 

 

The results of the analysis of the OccurrenceOnly sequence option are listed in Table 
14, while Table 15 shows the results for the SubstatesOnly sequence option. Of course, 
the values for the length of the sequences, the minimum and maximum SAM value and 
the SAM range are the same for the OccurrenceOnly and SubstatesOnly sequence 
option. Those values are listed in the first four rows of the tables. 

The percentage of the analysis of OccurrenceOnly and SubstatesOnly sequence are 
both below 0.5. The mean percentage of the SubstatesOnly sequence option (0.45 in 
Table 15) is higher than the mean percentage of the OccurrenceOnly sequence option 
(0.35 in Table 14). This can be explained by the difference in level of detail between the 
two sequence options. More detail in the sequence means a higher probability of 
differences between the sequences, which leads to a higher SAM (and SAM 
percentage) value. 

SAM values for the Life Trajectory sequence option were calculated for 3495 cases. 
The total length among the 3495 cases varied from 1 year to 40 years. Table 16 report 
the results of the Life Trajectory sequence. 

The mean value of the total SAM value based on the uni-dimensional (UDSAM) method 
is higher (15.91) than the mean value based on the multidimensional method (10.35). In 
general, the MDSAM value is always below the sum of UDSAM or it can exactly match 
the sum. The mean value of the SAM percentage (DPSAM) is close to zero. The last 
column in Fout! Verwijzingsbron niet gevonden.16 lists the number of cases with a 
SAM value of zero. The results indicate that the Study event and the PT pass event 
were simulated most closely by the Bayesian belief network.  

Highest SAM measures were obtained for the work event and the household event, 
suggesting that the Bayesian network was relatively less successful in correctly 
simulating the timing of occurrences and/or sequence of these event types.  

Based on the SAM measures, it is difficult to tell whether mis-predictions are caused by 
(1) predicting the wrong subevent or (2) predicting a wrong timing of the subevent. 
Overall, however, the results of the SAM analyses demonstrate that the learned 
Bayesian belief network predicts the sequence of the occurrences in the life trajectories 
relatively well. 
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Table 16 –Results Life Ttrajectory sequence (UDSAM) 
DPSAM analyses Minimum Maximum Mean Std. Zero SAM 

Length sequence 1 40 10.93 10.37  

Minimum SAM 0 0 0.00 0.00  

Maximum SAM 14 560 152.98 145.12  

DPSAM analyses      

SAM value 0 49 10.35 9.04  

SAM percentage 0 0.14 0.08 0.04  

UDSAM analyses      

SAM value Housing 0 20 2.75 2.83 1179 

SAM value Household 0 18 3.00 3.32 1393 

SAM value Work 0 20 3.24 3.59 1369 

SAM value Study 0 6 0.32 0.83 2984 

SAM value Car 0 26 2.36 2.73 1353 

SAM value PT pass 0 16 1.54 2.33 2033 

SAM value Income 0 20 2.70 3.11 1422 

SAM value total 0 66 15.91 13.68  

 

VALIDATION OF THE MODE-CHOICE NETWORK 

Mode choice was only registered in the year of the retrospective Internet-based survey 
(2004). This means that the observed data for mode choice is limited to one year. In 
this section, we test the validity of the second network for predicting mode choice. First, 
the log likelihood will be discussed for three models: null-model, overall model and 
prediction model. Next, the results of a simulation will be discussed as an illustration. 

Goodness-of-fit 

One way of assessing the validity of the learned network is to use the values for all 
variables/nodes in the network in the year 2004, except mode choice, and predict the 
posterior probabilities of a particular transport mode choice in the year 2004, given this 
hard evidence. In this case, the hard evidence corresponds with the situation in the 
corresponding year.  

The network was used to calculate the posterior probabilities for every case given the 
hard evidence. To test the performance of this mode choice model, the log likelihood 
value for three models (null-model, overall model and prediction model) was calculated. 
Table 17 lists the values for the different models. In the overall model, the probabilities 
were distributed according to the overall probability distribution. Two Rho-Squares were 
calculated, the first one is the ratio between the log likelihood of the prediction model 
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and null model, and the second one is the ratio between the log likelihood of the 
prediction model and overall model. The values of both Rho-Squares are reported in 
Table 17. Both Rho-Square values of the model are above 0.36, which indicate that the 
model performs relatively well. 

Table 17 –Log-likelihood values mode choice network 
 Null model Overall Prediction First  

Rho-Square 
Second  
Rho-Square 

Mode Choice -769.03 -697.57 -439.84 0.4281 0.3695 

Mode choice in 2004 

Monte Carlo sampling is used to select an individual’s mode choice based on the 
predicted posterior probabilities. The predicted modal split can be calculated given the 
individuals’ mode choices. The observed modal split in 2004 is compared with predicted 
modal split to show how the model can be used for simulation. The results are shown in 
Table 18 and 19.  

Only one Monte Carlo simulation was run. In 64 percent of the cases the predicted 
individual’s mode choice corresponds with the observed individual’s mode choice. 
Table 19 reports a relatively small overprediction of public transport at the expense of 
the other two mode choices car and slow transport.  

Table 18 –Mode choice in 2004 (observed and predicted) 

 
observed mode 

Car PT ST Total 

predicted mode 

Car 199 69 23 291 
PT 70 220 37 327 
ST 23 30 29 82 

Total 292 319 89 700 
 

Table 19 –Modal split in 2004 (observed and predicted) 
Mode  observed % predicted % Difference prediction 

Car 292 0.417 291 0.416 -0.001 Under prediction 

PT 319 0.456 327 0.467 0.011 Over prediction 

ST 89 0.127 82 0.117 -0.010 Under prediction 

Total 700 1.000 700 1.000   
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CONCLUSIONS AND DISCUSSION 

To contribute to the literature on modeling the impact of long-run life course events on 
travel decisions, this paper has reported the main results of several validity tests of two 
related Bayesian belief networks that were learned from retrospective data to simulate 
life trajectories and predict these effects. The log likelihood values for the prediction of 
the occurrence of events and mode choice suggest that the learned networks perform 
relatively well. Results indicate that the life trajectory model reproduced the number of 
occurrences in the life trajectories quite well. The model predicted more or less the 
same interval times for the events, except for the PT pass event. The results of the 
validation tests showed that the model was less successful in predicting correctly the 
observed synchronic events, while the results of the Sequence Alignment Method 
demonstrated that the Bayesian belief network more or less reproduced the sequence 
of events as registered in the observed life trajectory.  

For the mode choice network, a further illustration involved examining whether modal 
split was predicted correctly in the simulation. Results of this illustration indicated a 
small overprediction of public transport and underprediction of car and slow transport. 
This suggests that the mode choice network can reproduce more or less observed 
mode choice.  

Overall these findings suggest that a representation of life trajectories in terms of 
Bayesian belief network may be a valuable approach. Our study presented and 
illustrated a methodology, in the form of a set of measures, to test the validity of a 
Bayesian belief network model for predicting life trajectories of individuals. The tests 
reported provide some evidence that the specific model considered here performs 
satisfactory. We emphasize, however, that for a more definite test validation should be 
based on a hold-out set which, given data limitations (sample size), was not performed 
here. 
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