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Abstract

This paper investigates governments’ optimal facility investments and ports’ optimal

pricing under service differentiation and uncertainty settings, considering both addi-

tive and multiplicative uncertainty types. It also examines how ports’ equilibrium

prices are induced by their facilities, marginal costs, service substitution degree, as

well as uncertainty conditions. By introducing two-stage game-theoretic models, we

show that, in additive uncertainty, the difference of optimal facilities under uncertainty

and no uncertainty is completely determined by the mean stochastic demand. How-

ever, this difference under multiplicative uncertainty also depends on factors such as

ports’ marginal costs, service substitution degree, and the variance of stochastic de-

mand. Moreover, we discover that variances of uncertainty cannot affect governments’

optimal facility investments under additive uncertainty, but the opposite could be true

under multiplicative uncertainty.
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1. Introduction

With increasing globalization, trade amounts across borderlines grow rapidly. Con-

tainer hub port development has been considered not only as the point of convergence

between intermodal transportation and both gateway and transshipment cargoes, but

also as an important integrated logistics system in the context of hub-and-spoke sys-

tem. Therefore, understanding more thoroughly about interactions among govern-

ments, ports, and shipping lines, as well as their decision-making behaviors becomes

necessary and conspicuous. Game theory as a tool can certainly help to achieve this

goal because it is a mathematical framework characterizing interactions among multiple

agents seeking their maximum payoffs. Researchers in the field of maritime economics

have noticed this and begun applying it. The earlier works include Jankowski (1989),

Yang (1999), Song and Panayides (2002), Imai et al. (2006), and so on.

Recently, in De Borger et al.’s (2008) significant paper, they study optimal prices of

two ports having downstream congestible transport networks to a common hinterland.

This paper allows governments to decide their optimal facility investments, and finds

that ports will internalize the hinterland congestion cost and charge their customers

accordingly, and ports’ capacities are negatively correlated with their pricing. Following

De Borger et al., Zhang (2009) analyzes how hinterland access conditions affect ports’

competition. However, Zhang focuses on un-congestible ports and allows them to

compete in terms of both price and quantity. He discovers that in quantity competition,

expanding inland road capacity may not increase port’s service and profit. Oppositely,

under price competition, enlarging a region’s corridor capacity will raise its port’s

service price and reduce the competitor’s. Using Cournot and Stackelberg games,

Gkonis and Paraftis (2009) examine optimal transportation capacities of two liquefied

natural gas companies. Permitting a landlord port to lease terminals to its competing

operators, Saeed and Larson (2009) explore influences of various contracts between

the port authority and terminal operators on Bertrand-competition port’s pricing in
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Pakistan. Their simulation outcomes show that optimal contracts offered by the port

authority have high unit fee and low annual rent. Anderson et al. (2008b) employ a

simple game to study whether two competing ports will invest in new facilities. They

find that the investment decisions would depend on costs of the new facilities. Also,

Anderson et al. (2008a) analyze how investment decisions of individual ports affect

the market as well as the actions of all other competiting ports. On the other hand,

Gkonis et al. (2009) use game theory to tackle the security problem in merchant

shipping. Under cooperative-game frameworks, Saeed and Larsen (2010) study the

coalition behaviors of three terminals in Karachi port of Pakistan, while Park et al.

(2009) investigate the delay-cost problem between charter and ship owners.

In the real world, especially Asia, we observe that more and more emerging mar-

kets’ governments rush into building port-related infrastructures and facilities to satisfy

countries’ trading needs or to attract port users. Lee and Flynn (2010) argue that the

Asian port developments have been driven by multi-dimensional roles of the central

governments, i.e., a port designer, developer, operator, port pricing maker, mediator,

and investor. Thus, the function of Asian ports is closely related to governments’

economic development plans. Although previous game-theoretic models mentioned

above inspect ports’ pricing from various perspectives, few investigate governments’

optimal facility investments under rapid-changing and uncertain environments of the

world economy. Also, little research focuses on port’s pricing under uncertainty. On

the other hand, as pointed out by Zhang (2009), ports’ services should be regarded as

differential products due to their dissimilar locations and hinterlands. And few works

scrutinize how ports’ differential services affect their pricing. Thus, this study tries to

analyze governments’ optimal facility investments and ports’ optimal pricing under un-

certainty and service differentiation. We will consider both additive and multiplicative

uncertainty types. For each uncertainty type we construct a two-stage game, in which

governments choose facility investments first, then ports select their service prices.
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Our results show that uncertainty types are crucial in determining governments’

and ports’ behaviors. Variances of stochastic demands have no impact on optimal

facility levels under additive uncertainty, but the opposite could be true under mul-

tiplicative uncertainty. Nevertheless, impacts of other parameters, such as the mean

stochastic demand, ports’ marginal costs, and the service substitution degree, on op-

timal facility levels are indefinite whichever the uncertainty type is. Moreover, the

difference between optimal facility levels under additive uncertainty and no uncer-

tainty depends completely on the mean stochastic demand. In contrast, this difference

under multiplicative uncertainty would depend on the variance of stochastic demand,

ports’ marginal costs, and the service substitution degree. Finally, in additive un-

certainty, ports will lower the service prices when facility investments increase, their

marginal costs decrease, or the economy deteriorates. However, ports could increase

or decrease their prices when the substitution degree of their services increases. Same

conclusions can be drawn under multiplicative uncertainty except that the impacts

of governments’ capital facilities and services differentiation degree on ports’ prices

become unsure. Our outcomes would remain true when the cost uncertainty or the

dependence of the demand and supply of ports’ services is considered.

Although Ishii et al.’s (2009) work is the first to explore the impact of stochastic

demands on ports’ equilibrium prices, their ports’ facility levels are fixed, instead of

endogenous. Moreover, they consider additive uncertainty only. Moreover, De Borger

et al. (2008) do not deal with uncertain shocks in addressing ports’ facility investments.

Compared to them, we examine uncertainty effects but ignore the part of congestible

transport networks to hinterland. Thus, this paper will contribute to maritime eco-

nomics by shedding lights on how both governments and ports behave under service

differentiation and unpredictable economic surroundings, as well as under distinct un-

certainty treatments.

The rest of this paper is organized as follows. The additive uncertainty model
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and its outcomes are presented in Section 2, while those concerning multiplicative

uncertainty model are illustrated in Section 3. The two models are extended in Section

4, and our conclusions are drawn in Section 5.

2. Additive Demand Uncertainty

We have ports 1 and 2 in the model. Due to different geographic characteristics

and sizes of hinterlands, port users regard services of the two ports as differentiated

products. The inverse market demand functions faced by ports 1 and 2 are

p1 = 1 + θ − q1 − bq2 and (1)

p2 = 1 + θ − q2 − bq1, respectively, (2)

where pi is the price of unit cargo (e.g., TEU) charged by port i, and qi is the amount

of cargo handled by port i, i = 1, 2. Parameter b ∈ (0, 1) represents the service

substitution degree of the two ports. The larger b is, the higher the service substitution

degree is. Let θ be a random variable characterizing demand uncertainty with value

range of (−1, 1), mean θ̄, variance σ2
θ > 0, and probability density function (pdf) f(θ).

Actually, uncertainty could also come from the cost side. In Section 4.1, we show that

the results obtained here remain true under cost-side uncertainty. By rearranging (1)

and (2), the market demand functions for ports 1 and 2 become

q1 =
1 + θ

1 + b
−

p1

1 − b2
+

bp2

1 − b2
and (3)

q2 =
1 + θ

1 + b
+

bp1

1 − b2
−

p2

1 − b2
, respectively. (4)

Ports 1 and 2 can compete in price or quantity. And the outcomes for price competition

are presented only, because quantity competition results are the same and available

upon request.

Governments provide basic facilities to promote ports’ developments. The facilities

include, among others, maritime access infrastructure (e.g., breakwater, channels, and
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navigated aids), and land access infrastructure (e.g., road, railway and inland water

ways). When the facilities are enough, ports’ service provision costs will decrease

with increasing facilities. In contrast, when the facilities are insufficient, ports’ service

provision costs cannot be reduced. Thus, it is plausible to assume that port i’s service

provision cost, given cargo amount qi and facility level Ki, is

Ci(qi, Ki) =







ciqi if Ki < 1,

ci

Ki
qi if Ki ≥ 1,

(5)

where ci ∈ (0, 1) is port i’s marginal (provision) cost when zero or less-than-one-

unit facility is provided by its government, i = 1, 2. Note that the threshold value of

one-unit facility can be replaced by any other positive numbers without changing the

results. And the results stay true qualitatively if ciqi

Ki
is replaced with ciqi

h(Ki)
, where h(·)

is an increasing and strictly concave function of Ki. To have meaningful analyses, we

focus on the facilities levels greater than one unit throughout this paper. Accordingly,

by (3)-(5), we can get port i’s profit function

πi(pi, pj) = (pi −
ci

Ki

)[
1 + θ

1 + b
−

pi

1 − b2
+

bpj

1 − b2
], (6)

for i, j ∈ {1, 2 | i 6= j}.

Interactions between governments and ports are characterized by the ensuing two-

stage game. In the first stage, both governments select facility levels maximizing their

expected social welfares independently and simultaneously. Then, a value of random

variable θ is realized and observed by the ports. In the second stage, both ports decide

service prices maximizing their profits independently and simultaneously. We presume

here that the governments and the ports have asymmetric information about demand

shocks, because port authorities can access the market more easily and directly. By

backward induction, we can derive the subgame perfect equilibrium (hereafter SPE) of

the sequential game as follows.

First, given governments’ facility levels (K1, K2) and a realized value of demand
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uncertainty variable θ, ports choose optimal prices (p∗

1, p∗2) to solve the following prob-

lem.

max
pi>0

πi(pi, pj) = (pi −
ci

Ki

)[
1 + θ

1 + b
−

pi

1 − b2
+

bpj

1 − b2
]

for i, j ∈ {1, 2 | i 6= j}. The first-order conditions for interior solutions are

∂π1

∂p1
=

1 + θ

1 + b
+

c1

(1 − b2)K1
−

2p1

(1 − b2)
+

bp2

(1 − b2)
= 0 and (7)

∂π2

∂p2
=

1 + θ

1 + b
+

c2

(1 − b2)K2
−

2p2

(1 − b2)
+

bp1

(1 − b2)
= 0. (8)

The second-order and stability conditions for (p∗

1, p∗2) hold because ∂2πi

∂p2

i

= −2
(1−b2)

<

0, ∂2πi

∂pj∂pi
= b

(1−b2)
> 0, and ∂2πi

∂p2

i

∂2πj

∂p2

j

− ( ∂2πi

∂pj∂pi
)2 = 4−b2

(1−b2)2
> 0 for i, j ∈ {1, 2 | i 6= j}.

Thus, the first-order conditions are also sufficient for equilibrium prices. By solving

(7)-(8), we can obtain

p∗1 =
(1 − b)(1 + θ)

(2 − b)
+

1

(4 − b2)

[

c2b

K2
+

2c1

K1

]

and (9)

p∗2 =
(1 − b)(1 + θ)

(2 − b)
+

1

(4 − b2)

[

c1b

K1
+

2c2

K2

]

. (10)

Equations (9)-(10) imply that these optimal prices are affected by ports’ facility lev-

els, marginal costs, and service differentiation degree, as well as the realized value of

demand uncertainty. The relations are summarized below.

Lemma 1. For i, j ∈ {1, 2 | i 6= j}, we have

(i)
∂p∗i
∂Ki

= −2ci

(4−b2)K2

i

< 0,

(ii)
∂p∗i
∂Kj

=
−cjb

(4−b2)K2

j

< 0,

(iii)
∂p∗i
∂ci

= 2
(4−b2)Ki

> 0,

(iv)
∂p∗i
∂cj

= b
(4−b2)Kj

> 0,

(v)
∂p∗i
∂θ

= (1−b)
(2−b)

> 0, and

(vi)
∂p∗i
∂b

≥ (≤) 0 iff θ ≤ (≥) θ∗i ,

where θ∗i =
(4+b2)cj

(2+b)2Kj
+ 4bci

(2+b)2Ki
− 1 ∈ (−1, 0).

Proof. The proofs are straightforward, thus omitted.
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When government i provides more facilties, port i’s marginal costs and charging

prices would decrease. Port j behaves the same because ports’ service prices are strate-

gic complements under the Bertrand competition. These are what Lemma 1(i)-(ii) say.

On the other hand, as port i’s marginal costs rise, it will charge its customers higher

prices. Again, port j would do the same. These are the contents of Lemma 1(iii)-(iv).

As market demands become larger, ports will raise their service prices as indicated by

Lemma 1(v). Finally, part (vi) shows that impacts of the service substitution degree

on ports’ equilibrium prices are uncertain. When market demands are large enough

(θ ≥ θ∗i ), port i will lower prices to attract more customers as competition with the

other port becomes severer, i.e., b increases. In contrast, when market demands are

not large enough (θ < θ∗i ), port i will raise prices to compensate for its losses from the

rising competition.

Substituting equilibrium prices (p∗1, p∗2) into ports’ profit functions in (6) yields

their equilibrium profits, which are functions of facility levels and realized values of

demand uncertainty as shown below.

π∗

1(K1, K2, θ) = Aθ + Bθ(
c1

K1

) + Dθ(
c2

K2

) +
Fc1c2

K1K2

+ G(
c1

K1

)2 + H(
c2

K2

)2 and(11)

π∗

2(K1, K2, θ) = Aθ + Bθ(
c2

K2

) + Dθ(
c1

K1

) +
Fc1c2

K1K2

+ G(
c2

K2

)2 + H(
c1

K1

)2, (12)

with

Aθ =
(1 − b)(1 + θ)2

(1 + b)(2 − b)2
> 0, (13)

Bθ =
2(1 + θ)(b2 − 2)

(1 + b)(2 + b)(2 − b)2
< 0, (14)

Dθ =
2b(1 + θ)

(1 + b)(2 + b)(2 − b)2
> 0, (15)

F =
2b(b2 − 2)

(1 − b2)(4 − b2)2
< 0, (16)

G =
(b2 − 2)2

(1 − b2)(4 − b2)2
> 0, and (17)

H =
b2

(1 − b2)(4 − b2)2
> 0. (18)
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In particular, by letting θ = 0 in (11)-(12), we acquire ports’ equilibrium profits under

no uncertainty,

π∗

1(K1, K2, 0) = A + B(
c1

K1
) + D(

c2

K2
) +

Fc1c2

K1K2
+ G(

c1

K1
)2 + H(

c2

K2
)2, and (19)

π∗

2(K1, K2, 0) = A + D(
c1

K1
) + B(

c2

K2
) +

Fc1c2

K1K2
+ G(

c2

K2
)2 + H(

c1

K1
)2, (20)

with

A =
(1 − b)

(1 + b)(2 − b)2
> 0, (21)

B =
2(b2 − 2)

(1 + b)(2 + b)(2 − b)2
< 0, and (22)

D =
2b

(1 + b)(2 + b)(2 − b)2
> 0. (23)

Next, given ports’ equilibrium price (p∗

1, p∗2), government i will select facility level

K∗

i to maximize her expected social welfare,

SWi(Ki, Kj) ≡ Eπ∗

i (Ki, Kj) − γiKi, (24)

where Eπ∗

i (Ki, Kj) =
∫ 1

−1
π∗

i (Ki, Kj, θ)f(θ)dθ is government i’s expected profit

earned by port i under facility level (Ki, Kj), and γi > 0 is unit investment cost faced

by government i, i = 1, 2. For simplicity, each government’s social welfare equals her

corresponding port’s profit subtracting facility investment cost without considering the

surpluses of shipping lines and consumers located in ports’ hinterlands. That is because

the benefit of shipping lines belongs to foreign firms and the consumers’ is ignored due

to our neglect of congestible transport networks to hinterlands.

Taking the expectation of (11) and (12) with respect to θ produces

Eπ∗

i (Ki, Kj) = π∗

i (Ki, Kj, 0) +
ciθ̄B

Ki

+
cj θ̄D

Kj

+ A(2θ̄ + θ̄2 + σ2
θ) (25)

for i, j ∈ {1, 2| i 6= j}. By (24)-(25), we can get

SWi(Ki, Kj) ≡ SW NU
i (Ki, Kj) +

ciθ̄B

Ki

+
cj θ̄D

Kj

+ A(2θ̄ + θ̄2 + σ2
θ), (26)
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where SW NU
i (Ki, Kj) ≡ π∗

i (Ki, Kj, 0)−γiKi represents government i’s social welfare

function under no demand uncertainty. Denote KNU = (KNU
1 , KNU

2 ) governments’

optimal facility investments under no uncertainty. That is, KNU must meet the con-

ditions of

∂SW NU
i (KNU)

∂Ki

= 0, i = 1, 2. (27)

Differentiating (26) with respect to Ki generates

∂SWi(Ki, Kj)

∂Ki

=
∂SW NU

i (Ki, Kj)

∂Ki

−
ciθ̄B

K2
i

, i = 1, 2. (28)

Accordingly, K∗ = (K∗

1 , K∗

2 ) must satisfy

∂SWi(K
∗)

∂Ki

=
∂SW NU

i (K∗)

∂Ki

−
ciθ̄B

(K∗

i )
2

= 0, i = 1, 2. (29)

To make (29) sufficient conditions for K∗ as well, the following assumption is needed.

Assumption 1: The Hessian matrix, H, associated with social welfare functions SW1

and SW2 is negative definitive for all K, where

H =





∂2SW1(K)
∂K2

1

∂2SW1(K)
∂K2∂K1

∂2SW2(K)
∂K1∂K2

∂2SW2(K)

∂K2

2



 .

Analyzing (27)-(29), we can obtain the relation between K∗

i and KNU
i as follows.

Proposition 1. Under Assumption 1, we have

(i) If θ̄ > 0, then K∗

i > KNU
i for i = 1, 2;

(ii) If θ̄ = 0, then K∗

i = KNU
i for i = 1, 2; and

(iii) If θ̄ < 0, then K∗

i < KNU
i for i = 1, 2.

Proof. See the Appendix.

Proposition 1 shows that relative sizes of equilibrium facilities under uncertainty

and no uncertainty completely depend on governments’ expectations about future mar-

ket demands. If average market demands are anticipated to rise (θ̄ > 0), governments

9



will invest more facilities under uncertainty than under no uncertainty. In contrast, if

average market demands are expected to fall (θ̄ < 0), governments will invest fewer

facilities under unsure situations. Nevertheless, if stable market demands are expected,

governments’ facility investments under both uncertainty and no uncertainty will be

the same.

Moreover, equation (29) implies that optimal facility investments are affected by

the mean stochastic demand, ports’ marginal costs, and the service differentiation

degree, but unaffected by the variance of stochastic demand. These relations are sum-

marized below.

Proposition 2. Under Assumption 1, we have

(i)
∂K∗

i

∂σ2

θ

= 0,

(ii)
∂K∗

i

∂θ̄
≥ (≤) 0 iff

ciBHjj

(K∗

i
)2

≥ (≤)
cjBHij

(K∗

j
)2

,

(iii)
∂K∗

i

∂ci
≥ (≤) 0 iff Hjj[(1 + θ̄)B +

cjF

K∗

j

+ 4ciG
K∗

i

] ≥ (≤)
cic

2

jF 2

K∗

i (K∗

j )4
,

(iv)
∂K∗

i

∂cj
≥ (≤) 0 iff Hjj ≤ (≥)

cj

(K∗

j )3
[(1 + θ̄)B + ciF

K∗

i
+

4cjG

K∗

j
], and

(v)
∂K∗

i

∂b
≥ (≤) 0 iff ΦiHjj ≥ (≤) ΦjHij,

where Hii ≡
∂2SWi

∂K2

i

= 2ciB
(K∗

i )3
+

2cicjF

(K∗

i )3K∗

j
+

6c2i G

(K∗

i )4
< 0, Hij = Hji ≡

∂2SWi

∂Kj∂Ki
=

cicjF

(K∗

i K∗

j )2
< 0,

and Φi = ci

(K∗

i )2
[(1 + θ̄)∂B

∂b
+

cj

K∗

j

∂F
∂b

+ 2ci

K∗

i

∂G
∂b

] for i, j ∈ {1, 2 | i 6= j}.

Proof. See the Appendix.

Although the variance of stochastic demand (σ2
θ) has no effect on optimal facility

levels, it is worthy mentioning that governments’ equilibrium expected social welfares

are positively correlated with σ2
θ . Equations (11)-(12) suggest that ports’ equilibrium

profits are convex functions of realized values of stochastic demand by 0 < b < 1. This

indicates that governments are risk-lovers when facing demand uncertainty. Thus, the

larger the variance is, the higher benefits governments would obtain as stated in (26)

by A > 0. In contrast, impact of the mean stochastic demand on optimal facility

levels is unsure. When government i expects average market demands to rise (i.e.,

a higher θ̄), her marginal expected social welfare of facilities ( ∂SWi

∂Ki
) will increase as
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stated in (29) by B < 0 and she will invest more. This is the direct effect of θ̄ on

government i’s optimal facility level (K∗

i ), which is represented by the positive term

of
ciBHjj

(K∗

i )2
. Nevertheless, government j will also invest more as θ̄ increases. And larger

K∗

j will lower government i’s marginal expected social welfare of facilities because

Hji = ∂2SWi

∂Kj∂Ki
< 0, hence government i will invest fewer. This is the indirect effect of θ̄

on K∗

i , which is reflected by the negative term of
−cjBHij

(K∗

j )2
. If the direct effect dominates,

government i will invest more facilities as θ̄ increases. In contrast, government i will

provide fewer facilities when the indirect effect dominates. And θ̄ will have no impact

on K∗

i when both effects cancel each other out. This is the content of Proposition 2(ii).

Next, Proposition 2(iii) claims that the increase of port i’s marginal cost (ci) may

raise or lower government i’s optimal facility level (K∗

i ). The impact of ci on K∗

i consists

of a direct and an indirect effects. When ci rises, government i’s marginal expected

social welfare of facilities could increase or decrease. Although ports will raise their

service prices due to higher ci by Lemma 1(iii)-(iv); the equilibrium cargo amount,

q∗i =
1 + θ

(1 + b)(2 − b)
+

b

(1 − b2)(4 − b2)
(

cj

Kj

) +
(b2 − 2)

(1 − b2)(4 − b2)
(

ci

Ki

),

derived by plugging (9)-(10) into (3)-(4), will fall because
∂q∗i
∂ci

= (b2−2)
(1−b2)(4−b2)Ki

< 0. Thus,

rising ci may cause port i’s equilibrium profit as well as government i’s expected social

welfare to increase or decrease. This is the direct effect of ci on K∗

i , reflected by the

term of Hjj[(1+θ̄)B+
cjF

K∗

j
+ 4ciG

K∗

i
]. On the other hand, government j’s marginal expected

social welfare of facilities will increase with rising ci because
∂π∗

j

∂ci∂Kj
= −

Fcj

K∗

i (K∗

j )2
> 0 by

F < 0. Thus, government j’s optimal facility level (K∗

j ) will rise. And higher K∗

j will

in turn decrease government i’s marginal expected social welfare of facilities due to

Hji < 0, hence government i will provide fewer facilities. This is the indirect effect of

ci on K∗

i , which is represented by the positive term of
cicjF 2

K∗

i (K∗

j )4
. A large positive direct

effect could dominate the indirect effect, then government i will invest more facilities

as port i’s marginal costs increase. In contrast, if the direct effect is negative or a small

positive one, then government i’s optimal facility investments will decrease with port
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i’s increasing marginal costs. By similar arguments, we can explain Proposition 2(iv).

Finally, Proposition 2(v) shows that impact of the service substitution degree (b)

on optimal facilities is unsure as well. Changing b has a direct and an indirect effects

on K∗

i . Lemma 1(vi) displays that ports’ equilibrium prices and cargo amounts could

rise or fall as b increases. Accordingly, impacts of b on ports’ equilibrium profits are

uncertain, so are impacts of b on governments’ marginal expected social welfares of

facilities. This means that the direct and indirect influences of b on K∗

i have no clear

directions, which are reflected by the terms of ΦiHjj and ΦjHij, respectively. Again,

the sign of
∂K∗

i

∂b
would depend on relative sizes of the direct and indirect effects.

3. Multiplicative Demand Uncertainty

Settings of this section are the same as those in Section 2 except that demand

uncertainty now owns a multiplicative form. Suppose that the inverse market demand

functions faced by ports 1 and 2 are

p1 = 1 + ε · g(K1) − q1 − bq2 and (30)

p2 = 1 + ε · g(K2) − q2 − bq1, respectively, (31)

where ε is a random variable representing demand uncertainty with value range of

(−1, 1), mean ε̄, and variance σ2
ε . Unlike the additive shock, the impact strength

of demand uncertainty on service prices would depend on ports’ facility levels. The

strength factor is characterized by function g : [1, ∞) → (0, ḡ) for some positive

upper bound ḡ, which is assumed concave with a positive or negative first derivative.

If g′(K) > 0, the port with larger facilities will meet more cargo growths than that

with smaller facilities when the economy booms (i.e., a higher ε). In contrast, the port

with larger facilities will suffer more from cargo drops than that with smaller facilities

when the economy declines (i.e., a lower ε). However, if g ′(K) < 0, opposite situations

occur. Both g′(·) > 0 and g′(·) < 0 are possible in the real world. We will show later

12



that the sign of g′(·) plays an important role in determining ports’ equilibrium prices

and governments’ optimal facility investments.

By rearranging (30) and (31), the market demand functions of ports 1 and 2 become

q1 =
1 + εg(K1)

1 + b
−

p1

1 − b2
+

bp2

1 − b2
and

q2 =
1 + εg(K2)

1 + b
+

bp1

1 − b2
−

p2

1 − b2
, respectively.

Port i’s cost function is still presumed to be (5). Accordingly, port i’s profit function

is

πi(pi, pj) = (pi −
ci

Ki

)

{

[1 + εg(Ki)]

1 + b
−

pi

1 − b2
+

bpj

1 − b2

}

, i, j = 1, 2. (32)

Timing of the sequential game here is the same as that in Section 2. Thus, the SPEs

are solved by backward induction as follows.

First, given (K1, K2) and ε, ports 1 and 2 choose optimal price (p̂1, p̂2), which is

the solution of the following problem.

max
pi>0

πi(pi, pj) = (pi −
ci

Ki

)

{

[1 + εg(Ki)]

1 + b
−

pi

1 − b2
+

bpj

1 − b2

}

, i, j = 1, 2.

The first-order conditions for interior (p̂1, p̂2) are

∂π1

∂p1
=

[1 + εg(K1)]

1 + b
+

c1

(1 − b2)K1
−

2p̂1

(1 − b2)
+

bp̂2

(1 − b2)
= 0 and (33)

∂π2

∂p2

=
[1 + εg(K2)]

1 + b
+

c2

(1 − b2)K2

−
2p̂2

(1 − b2)
+

bp̂1

(1 − b2)
= 0. (34)

As in Section 2, the second-order and stability conditions hold at (p̂1, p̂2). Thus,

conditions (33)-(34) are sufficient for equilibrium prices as well. By solving (33)-(34),

we can get

p̂1 =
(1 − b)

(2 − b)
+

(1 − b)ε

(4 − b2)
[2g(K1) + bg(K2)] +

1

(4 − b2)

[

c2b

K2
+

2c1

K1

]

and (35)

p̂2 =
(1 − b)

(2 − b)
+

(1 − b)ε

(4 − b2)
[bg(K1) + 2g(K2)] +

1

(4 − b2)

[

c1b

K1
+

2c2

K2

]

. (36)

13



Equations (35)-(36) imply that ports’ optimal prices are affected by facility levels,

ports’ marginal costs, the service differentiation degree, and realized values of demand

uncertainty. The relations are summarized below.

Lemma 2. For i, j ∈ {1, 2 | i 6= j}, we have

(i) ∂p̂i

∂Ki
≥ (≤) 0 iff ci

K2

i

≤ (≥) ε(1 − b)g′(Ki);

(ii) ∂p̂i

∂Kj
≥ (≤) 0 iff

cj

K2

j

≤ (≥) ε(1 − b)g′(Kj);

(iii) ∂p̂i

∂ci
= 2

(4−b2)Ki
> 0;

(iv) ∂p̂i

∂cj
= b

(4−b2)Kj
> 0;

(v) ∂p̂i

∂ε
=

(1−b)[2g(Ki)+bg(Kj)]

(4−b2)
> 0; and

(vi) If b > 0.536 or b ≤ 0.536 with Ψi ≤ 0, we have

∂p̂i

∂b
≥ (≤) 0 iff ε ≤ (≥) ε∗i , and

∂p̂i

∂b
≥ (≤) 0 iff ε ≥ (≤) ε∗i

if b ≤ 0.536 with Ψi > 0, where Ψi ≡ 2g(Ki)(−b2 + 2b − 4) + g(Kj)(b
2 − 8b + 4)

and ε∗i ≡
1
Ψi

[(2 + b)2 − 4bci

Ki
−

(4+b2)cj

Kj
].

Proof. See the Appendix.

When the signs of ε and g′(Ki) are opposite or g′(Ki) is positive but small, Lemma

2(i)-(ii) reach the same conclusions as those in Lemma 1(i)-(ii). However, if ε and g ′(Ki)

have the same signs and g′(Ki) is positive and large, Lemma 2(i)-(ii) would obtain

conclusions different from those in Lemma 1(i)-(ii). We will demonstrate this using

positive ε and g′(Ki). As port i’s facilities (Ki) increase, its marginal costs decrease at a

speed of ci

K2

i

, hence port i should lower its service prices. However, under multiplicative

uncertainty, port i’s service demand will increase with expanding facilities at a speed

of g′(Ki), which will induce port i to raise its service prices. Large enough g ′(Ki)

(≥ ci

ε(1−bi)K2

i

> ci

K2

i

) implies that the rising speed of port users outpaces the falling

speed of marginal costs. Thus, it is optimal for port i to raise its service prices. Port

j should also raise prices due to strategic complements of ports’ service prices. This

14



outcome differs from De Borger et al.’s (2008) entirely. Similar intuitions apply when

ε and g′(Ki) are negative and |g′(Ki)| is large.

Intuitions of Lemma 2(iii)-(v) are similar to those of Lemma 1(iii)-(v). Finally,

Lemma 2(vi) shows that impact of the service differentiation degree on equilibrium

prices under multiplicative uncertainty is the same as that under additive uncertainty

except when b ≤ 0.536 and Ψi > 0. The former condition suggests that the service

substitution degree is low enough, and the latter condition implies ε∗i > 0. Thus, when

the economy is good enough (ε ≥ ε∗i ), port i will face extra demands from multiplicative

uncertainty. On the other hand, a low enough substitution degree would prevent ports

from losing customer shares if they attempt to raise service prices. Therefore, it is

optimal for port i to increase prices as the economy is good even competition becomes

severer. In contrast, port i will suffer from extra demand drops when the economy

declines. Thus, it will lower prices to keep its customers under strong competition.

Substituting equilibrium price (p̂1, p̂2) into profit functions in (32) yields ports’

equilibrium profits, which would depend on facility levels and realized values of demand

shock as follows.

π̂1(K1, K2, ε) = A + B
c1

K1
+ D

c2

K2
+ G(

c1

K1
)2 + H(

c2

K2
)2 + Iεg(K1) + Jεg(K2)

+Lεg(K1)
2 + Mεg(K2)

2 + Nεg(K1)
c1

K1

+ Rεg(K2)
c1

K1

+Sεg(K1)
c2

K2

+ Tεg(K2)
c2

K2

+ Uεg(K1)g(K2) + F
c1c2

K1K2

(37)

and

π̂2(K1, K2, ε) = A + B
c2

K2
+ D

c1

K1
+ G(

c2

K2
)2 + H(

c1

K1
)2 + Iεg(K2) + Jεg(K1)

+Lεg(K2)
2 + Mεg(K1)

2 + Nεg(K2)
c2

K2

+ Rεg(K1)
c2

K2

+Sεg(K2)
c1

K1
+ Tεg(K1)

c1

K1
+ Uεg(K1)g(K2) + F

c1c2

K1K2
, (38)
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where

Iε =
4ε(1 − b)

(1 + b)(2 − b)(4 − b2)
, Jε =

2εb(1 − b)

(1 + b)(2 − b)(4 − b2)
, (39)

Lε =
4ε2(1 − b)

(1 + b)(4 − b2)2
> 0, Mε =

ε2b2(1 − b)

(1 + b)(4 − b2)2
> 0, (40)

Nε =
4ε(b2 − 2)

(1 + b)(4 − b2)2
, Rε =

2εb(b2 − 2)

(1 + b)(4 − b2)
, and (41)

Sε =
4εb

(1 + b)(4 − b2)2
, Tε =

2b2ε

(1 + b)(4 − b2)2
, Uε =

4ε2b(1 − b)

(1 + b)(4 − b2)2
> 0. (42)

In particular, by letting ε = 0 in (37)-(38), we obtain ports’ equilibrium profits under no

uncertainty, π̂1(K1, K2, 0) and π̂2(K1, K2, 0). It is no surprise to find ports’ equilibrium

profits under no multiplicative and no additive uncertainty are the same. That is,

π̂i(Ki, Kj, 0) = π∗

i (Ki, Kj, 0),

where π∗

i (Ki, Kj, 0), i = 1, 2, are defined in (19)-(20).

Next, given (p̂1, p̂2), government i will select optimal facility level K̂i to maximize

her expected social welfare,

ˆSW i(Ki, Kj) ≡ Eπ̂i(Ki, Kj) − γiKi,

where Eπ̂i(Ki, Kj) =
∫

π̂i(Ki, Kj, ε)dε is government i’s expected profit obtained by

port i given facilities (Ki, Kj) for i = 1, 2. By simple calculations, we can acquire

Eπ̂i(Ki, Kj) = π∗

i (Ki, Kj, 0) + ∆i(Ki, Kj) for i, j = 1, 2,

with

∆i(Ki, Kj) = ε̄ · [I1g(Ki) + J1g(Kj) +
ciN1g(Ki)

Ki

+
ciR1g(Kj)

Ki

+
cjS1g(Ki)

Kj

+
cjT1g(Kj)

Kj

] + (ε̄2 + σ2
ε )[L1g(Ki)

2 + M1g(Kj)
2 + U1g(Ki)g(Kj)],

where I1, J1, L1, M1, N1, R1, S1, T1 and U1 correspond to the Iε, Jε, Lε, Mε, Nε, Rε,

Sε, Tε and Uε in (39)-(42) evaluated at ε = 1. Accordingly, we have

ˆSW i(Ki, Kj) = SW NU
i (Ki, Kj) + ∆i(Ki, Kj), (43)
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where SW NU
i (Ki, Kj) = π̂i(Ki, Kj, 0)−γiKi, i = 1, 2, is government i’s social welfare

under no uncertainty. Recall that KNU = (KNU
1 , KNU

2 ) represents both governments’

optimal facility levels under no uncertainty.

Differentiating (43) with respect to Ki produces

∂ ˆSW i(Ki, Kj)

∂Ki

=
∂SW NU

i (Ki, Kj)

∂Ki

+
∂∆i(Ki, Kj)

∂Ki

, i, j = 1, 2. (44)

Consequently, K̂ = (K̂1, K̂2) must meet the condition of

∂ ˆSW i(K̂)

∂Ki

=
∂SW NU

i (K̂)

∂Ki

+
∂∆i(K̂)

∂Ki

= 0, i = 1, 2. (45)

To make conditions (45) sufficient as well, the following assumption is needed.

Assumption 2: The Hessian matrix, Ĥ, associated with social welfare functions ˆSW 1

and ˆSW 2 is negative definite for all K, where

Ĥ =





∂2 ˆSW 1(K)

∂K2

1

∂2 ˆSW 1(K)
∂K2∂K1

∂2 ˆSW 2(K)
∂K1∂K2

∂2 ˆSW 2(K)
∂K2

2



 .

Under Assumption 2, K̂ always exists by the implicit function theorem and owns

the following properties.

Proposition 3. Under Assumption 2, we have

(i) If
∂∆1(KNU )

∂K1
> 0 and

∂∆2(KNU )
∂K2

> 0, then K̂i > KNU
i for i = 1, 2;

(ii) If
∂∆1(KNU )

∂K1

> 0 and
∂∆2(KNU )

∂K2

< 0, then K̂1 > KNU
2 and K̂2 < KNU

2 ;

(iii) If
∂∆1(KNU )

∂K1
< 0 and

∂∆2(KNU )
∂K2

> 0, then K̂1 < KNU
2 and K̂2 > KNU

2 ; and

(iv) If
∂∆1(KNU )

∂K1

< 0 and
∂∆2(KNU )

∂K2

< 0, then K̂i < KNU
i for i = 1, 2.

Here
∂∆i(KNU )

∂Ki
= ε̄ · {I1g

′(KNU
i ) +

ciN1g′(KNU
i )

KNU
i

−
ci[N1g(KNU

i )+R1g(KNU
j )]

(KNU
i )2

+
cjS1g′(KNU

i )

KNU
j

} +

(ε̄2 + σ2
ε )[2L1g

′(KNU
i ) + U1g

′(KNU
i )g(KNU

j )] for i, j ∈ {1, 2 | i 6= j}.

Proof. See the Appendix.

Unlike in additive uncertainty, here relative sizes of facility levels under uncertainty

and no uncertainty depend not only on governments’ expected stochastic demands, but
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on factors such as the service substitution degree, ports’ marginal costs, and variances

of the stochastic demands. Under additive uncertainty, when two governments expect

rising (falling) average market demands, ε̄, at the same time, their optimal facility

investments will be higher (lower) than those under no uncertainty. However, under

multiplicative uncertainty, we could have one government’s optimal facilities larger and

the other government’s facilities lower than those under no uncertainty even they have

the same expectation about the future demands, as shown by Proposition 3(ii)-(iii).

Next, we will demonstrate how variances of uncertainty (σ2
ε ) affect relative sizes

of governments’ optimal facilities under both multiplicative uncertainty (K̂i) and no

uncertainty (KNU
i ). Equations (44)-(45) suggest that the difference between K̂i and

KNU
i is determined by the term of ∂∆i

∂Ki
with

∂2∆i

∂σ2
ε ∂Ki

= 2L1g
′(KNU

i ) + U1g
′(KNU

i )g(KNU
j ) for i, j = 1, 2.

Since L1, U1, and g(·) are positive, the sign of ∂2∆i

∂σ2
ε ∂Ki

would depend on the sign of

marginal impact strength of multiplicative uncertainty on price, g ′(·). If g′(·) > 0, we

have ∂2∆i

∂σ2
ε ∂Ki

> 0, i = 1, 2. It implies that differences between K̂i and KNU
i increase with

rising variances of multiplicative uncertainty. In contrast, if g ′(·) < 0, the differences

decrease with rising variances of multiplicative uncertainty.

And by analyzing (45), we could obtain the followings.

Proposition 4. Under Assumption 2, we have

(i) ∂K̂i

∂σ2
ε
≥ (≤) 0 iff Ĥij

∂2∆j

∂σ2
ε ∂Kj

≥ (≤) Ĥjj
∂2∆i

∂σ2
ε ∂Ki

,

(ii) ∂K̂i

∂ε̄
≥ (≤) 0 iff Ĥij

∂2∆j

∂ε̄∂Kj
≥ (≤) Ĥjj

∂2∆i

∂ε̄∂Ki
,

(iii) ∂K̂i

∂ci
≥ (≤) 0 iff Ĥjj[

∂2π∗

i (K∗

i , K∗

j , 0)

∂ci∂Ki
+ ∂2∆i

∂ci∂Ki
] ≥ (≤) Ĥij[

∂2π∗

j (K∗

i , K∗

j , 0)

∂ci∂Kj
+

∂2∆j

∂ci∂Kj
],

(iv) ∂K̂i

∂cj
≥ (≤) 0 iff Ĥjj[

∂2π∗

i (K∗

i , K∗

j , 0)

∂cj∂Ki
+ ∂2∆i

∂cj∂Ki
] ≥ (≤) Ĥij[

∂2π∗

j (K∗

i , K∗

j , 0)

∂cj∂Kj
+

∂2∆j

∂cj∂Kj
], and

(v) ∂K̂i

∂b
≥ (≤) 0 iff Ĥjj[

∂2π∗

i (K∗

i , K∗

i , 0)

∂b∂Ki
+ ∂2∆i

∂b∂Ki
] ≥ (≤) Ĥij[

∂2π∗

j (K∗

i , K∗

j , 0)

∂b∂Kj
+

∂2∆j

∂b∂Kj
],

where Ĥii =
∂2π∗

i (K∗

i , K∗

j , 0)

∂K2

i

+ ∂2∆i(K∗)

∂K2

i

< 0, Ĥij = Ĥji =
cicjF

(K∗

i )2(K∗

j )2
+ ∂2∆i

∂Kj∂Ki
, and

i, j ∈ {1, 2|i 6= j}.
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Proof. See the Appendix.

Unlike in additive uncertainty, variances of multiplicative uncertainty (σ2
ε ) could

affect governments’ optimal facility investments as displayed in Proposition 4(i). How-

ever, the impact of σ2
ε on optimal facility levels is unsure. The reason is given below.

Rising σ2
ε may lead to larger or smaller marginal expected social welfares of govern-

ments because the sign of ∂2∆i

∂σ2
ε ∂Ki

= 2L1g
′(Ki) + U1g

′(Ki)g(Kj) is positive if g′(Ki) > 0

and negative if g′(Ki) < 0. Suppose g′(Ki) > 0 for i = 1, 2. Then governments’

marginal expected social welfares of facilities increase with rising σ2
ε . So, governments

will provide more facilities. This is the direct effect of σ2
ε on K∗

i , which is represented

by the positive term of −Ĥjj
∂2∆i

∂σ2
ε ∂Ki

for i, j = 1, 2. However, unlike in additive un-

certainty, higher government j’s facility levels may increase or decrease government

i’s marginal expected social welfare of facilities because the sign of Ĥij (= ∂2 ˆSW i

∂Kj∂Ki
) is

indefinite. If ∂2∆i

∂Kj∂Ki
< 0 or 0 < ∂2∆i

∂Kj∂Ki
<

−cicjF

(K∗

i )2(K∗

j )2
, we have negative Hij as the case in

additive uncertainty, meaning that government i’s marginal expected social welfare of

facilities decreases with rising facilities of government j. Therefore, we have a negative

indirect effect reflected by the term of Ĥij
∂2∆j

∂σ2
ε ∂Kj

. Then, government i’s optimal facil-

ities will increase when the direct effect dominates, decrease when the indirect effect

dominates, and stay unchanged if the two effects cancel each other out. However, if

∂2∆i

∂Kj∂Ki
>

−cicjF

(K∗

i
)2(K∗

j
)2

, then Hij > 0, suggesting that government i’s marginal expected

social welfare of facilities will increase with government j’s facility levels. Thus, the in-

direct effect is positive. Combined with a positive direct effect, government i will invest

more facilities as σ2
ε rises. Similar arguments can be applied to the case of g ′(Ki) < 0

for i = 1, 2.

Finally, Proposition 4(ii)-(v) state that impacts of other factors, such as the mean

stochastic demand, ports’ marginal costs, and the service differentiation degree, on op-

timal facilities are unsure as well. Since the intuitions are similar to those of Proposition

4(i), explanations are omitted.
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4. Extensions

In this section, we show that the outcomes acquired in Sections 2-3 stay true

qualitatively when uncertainty comes from the cost side or when services demanded

by port users depend on facility levels.

4.1. Cost Uncertainty

In the real world, uncertainty could come from the cost side, such as oil price

shocks, random cargo loading and unloading situations, and wage disputes between

port authorities and labor unions. To save space, we present the outcomes under

additive cost uncertainty merely. Multiplicative uncertainty results are available upon

request.

The inverse market demand faced by ports 1 and 2 are

q1 =
1

1 + b
−

p1

1 − b2
+

bp2

1 − b2
and (46)

q2 =
1

1 + b
+

bp1

1 − b2
−

p2

1 − b2
, respectively. (47)

And port i’s service provision cost is

Ci(qi, Ki, δ) =







(ci − δ)qi if Ki < 1,

( ci

Ki
− δ)qi if Ki ≥ 1,

(48)

where δ is the random variable representing uncertainty from the cost side with value

range of (−max{c1, c2}, min{c1, c2}), mean δ̄, variance σ2
δ , and pdf f̃(δ). The larger

δ is, the lower marginal costs port i has. As in Sections 2-3, we focus on the facility

level bigger than one-unit. By (46)-(48), we can get port i’s profit function,

πi(pi, pj) = [pi −
ci

Ki

+ δ][
1

1 + b
−

pi

1 − b2
+

bpj

1 − b2
] (49)
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for i, j ∈ {1, 2 | i 6= j}. Our sequential game is the same as that in Section 2 except

that random variable θ is replaced with δ. Accordingly, we can obtain ports’ equilibrium

prices

p̃1 =
1 − b

2 − b
+

1

(4 − b2)

[

2(
c1

K1
− δ) + b(

c2

K2
− δ)

]

and

p̃2 =
1 − b

2 − b
+

1

(4 − b2)

[

b(
c1

K1

− δ) + 2(
c2

K2

− δ)

]

.

It is easy to check that these equilibrium prices own the same properties as those in

Lemma 1.

Substituting (p̃1, p̃2) into ports’ profit functions in (49) yields ports’ equilibrium

profits,

π̃1(K1, K2, δ) = A + B[
c1

K1
− δ] + D[

c2

K2
− δ] + F [

c1

K1
− δ][

c2

K2
− δ]

+G[
c1

K1
− δ]2 + H[

c2

K2
− δ]2 and (50)

π̃2(K1, K2, δ) = A + D[
c1

K1

− δ] + B[
c2

K2

− δ] + F [
c1

K1

− δ][
c2

K2

− δ]

+G[
c2

K2
− δ]2 + H[

c1

K1
− δ]2, (51)

where A, B, D, F, G and H are defined in (16)-(18) and (21)-(23). By letting δ = 0

in (50)-(51), we can get ports’ equilibrium profits under no uncertainty, which equal

π∗

1(K1, K2, 0) and π∗

2(K1, K2, 0) defined in (19)-(20), respectively.

Given ports’ optimal price (p̃1, p̃2), government i will choose optimal facility level

K̃i to maximize her expected social welfare

˜SW i ≡ Eπ̃i(Ki, Kj) − γiKi, i, j = 1, 2,

where Eπ̃i(Ki, Kj) =
∫

π̃i(Ki, Kj, δ)f̃(δ)dδ is government i’s expected profit obtained

by port i given facilities (Ki, Kj). By simple calculations, we have

Eπ̃i(Ki, Kj) = π∗

i (Ki, Kj, 0) − δ̄[B + D + F (
ci

Ki

+
cj

Kj

) +
2ciG

Ki

+
2cjH

Kj

]

+(δ̄2 + σ2
δ )[F + G + H]
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for i, j ∈ {1, 2 | i 6= j}. Consequently,

˜SW i(Ki, Kj) = SW NU
i (Ki, Kj) − δ̄[B + D + F (

ci

Ki

+
cj

Kj

) +
2ciG

Ki

+
2cjH

Kj

]

+(δ̄2 + σ2
δ )[F + G + H], i, j = 1, 2. (52)

Differentiating (52) with respect to Ki and evaluating at KNU = (KNU
1 , KNU

2 ) pro-

duces

˜SW i(K
NU )

∂Ki

=
SW NU

i (KNU)

∂Ki

+
ciδ̄(F + 2G)

(KNU
i )2

=
ciδ̄(F + 2G)

(KNU
i )2

,

because
∂SW NU

i (KNU )

∂Ki
= 0 for i = 1, 2. Since F + 2G = 2(b2−2)

(4−b2)2(1−b2)
[b2 + b − 2] > 0 by

0 < b < 1, relative sizes of K̃i and KNU
i depend on the sign of the mean stochastic cost

(δ̄). This suggests that Proposition 1 holds under additive cost uncertainty. Moreover,

it is not difficult to see that Proposition 2 still hold qualitatively.

4.2. Dependence of Demand and Supply of Ports’ Services

In Sections 2, the demand and supply of ports’ services are implicitly assumed

independent. However, they may not be. For instance, the port with larger facility

levels could attract more users than its competitor. We will address this issue here.

And we discover that considering the dependence of demand and supply of ports’

services will not alter the results.

The inverse market demand functions faced by ports 1 and 2 are assumed

p1 = 1 + θ + K1 − q1 − bq2 and (53)

p2 = 1 + θ + K2 − q2 − bq1, respectively. (54)

The larger facilities a port has, the more users it can attract. Rearranging (53)-(54)

generates market demands for ports 1 and 2,

q1 =
1 + θ

1 + b
+

K1 − bK2

1 − b2
−

p1

1 − b2
+

bp2

1 − b2
and

q2 =
1 + θ

1 + b
+

K2 − bK1

1 − b2
+

bp1

1 − b2
−

p2

1 − b2
, respectively.
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The cost functions of ports are the same as those in (5). Then port i’s profit function

is

πi(pi, pj) = (pi −
ci

Ki

)[
1 + θ

1 + b
+

Ki − bKj

1 − b2
−

pi

1 − b2
+

bpj

1 − b2
], i, j = 1, 2. (55)

Consequently, we can obtain ports’ equilibrium prices,

p̄1 =
(1 − b)(1 + θ)

(2 − b)
+

1

(4 − b2)

[

c2b

K2
+

2c1

K1

]

+
(2 − b2)K1 − bK2

4 − b2
and

p̄2 =
(1 − b)(1 + θ)

(2 − b)
+

1

(4 − b2)

[

c1b

K1

+
2c2

K2

]

+
(2 − b2)K2 − bK1

4 − b2
.

These equilibrium prices own the same properties as those in Lemma 1 except that the

impact of ports’ own facility levels on their equilibrium prices is unsure.1

Substituting equilibrium price (p̄1, p̄2) into profit functions in (55) yields ports’

equilibrium profit functions,

π̄1(K1, K2, θ) = Aθ + Bθ(
c1
K1

) + Dθ(
c2
K2

) + Fc1c2
K1K2

+ G( c1
K1

)2 + H( c2
K2

)2

+ [(2−b2)K1−bK2]2

(4−b2)2(1−b2)
+ 2(1+θ)[(2−b2)K1−bK2]

(4−b2)(1+b)(2−b)

+ c1
K1

[2(b
2
−2)[(2−b2)K1−bK2]
(4−b2)2(1−b2)

] + c2
K2

[2b[(2−b2)K1−bK2]
(4−b2)2(1−b2)

] (56)

and

π̄2(K1, K2, θ) = Aθ + Bθ(
c2
K2

) + Dθ(
c1
K1

) + Fc1c2
K1K2

+ G( c2
K2

)2 + H( c1
K1

)2

+ [(2−b2)K2−bK1]2

(4−b2)2(1−b2)
+ 2(1+θ)[(2−b2)K2−bK1]

(4−b2)(1+b)(2−b)

+ c2
K2

[2(b
2
−2)[(2−b2)K2−bK1]
(4−b2)2(1−b2)

] + c1
K1

[2b[(2−b2)K2−bK1]
(4−b2)2(1−b2)

], (57)

where the definitions of Aθ, Bθ, Dθ, F, G, and H are in (13)-(18). By letting θ = 0 in

(56)-(57), we can get ports’ equilibrium profits under no uncertainty, π̄1(K1, K2, 0)

and π̄2(K1, K2, 0).

1Contrary to Lemma 1(i), we have ∂p̄i

∂Ki

=
−2ci+(2−b2)K2

i

(4−b2)K2

i

, which implies ∂p̄i

∂Ki

≥ (≤) 0 iff 2ci ≤

(≥) (2 − b2)K2
i .
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Given ports’ optimal price (p̄1, p̄2), government i will select optimal facility level

K̄i to maximize her expected social welfare,

¯SW i(Ki, Kj) ≡ Eπ̄i(Ki, Kj) − γiKi, i = 1, 2,

where

Eπ̄i(Ki, Kj) = π̄i(Ki, Kj, 0) + θ̄{2A + B + D +
2[(2 − b2)Ki − bKj]

(4 − b2)(1 + b)(2 − b)
} + A(θ̄2 + σ2

θ)

is government i’s expected profit earned by port i, and the definitions of A, B, and D

are in (21)-(23). Then, we have

¯SW i(Ki, Kj) = SW NU
i (Ki, Kj) + θ̄{2A + B + D +

2[(2 − b2)Ki − bKj]

(4 − b2)(1 + b)(2 − b)
}

+A(θ̄2 + σ2
θ), (58)

where SW NU
i (Ki, Kj) = π̄i(Ki, Kj, 0) − γiKi for i = 1, 2. Differentiating (58) with

respect to Ki and evaluating at KNU produces

∂ ¯SW i(K
NU)

∂Ki

=
∂SW NU

i (KNU)

∂Ki

+
2(2 − b2)θ̄

(4 − b2)(1 + b)(2 − b)
=

2(2 − b2)θ̄

(4 − b2)(1 + b)(2 − b)

by
∂SW NU

i (KNU )

∂Ki
= 0 for i = 1, 2. Thus, as in Section 2, relative sizes of K̄i and KNU

i

completely depend on the sign of θ̄ because 0 < b < 1. This means that the outcomes

of Proposition 1 remain true qualitatively. We can show that Proposition 2 stays true

qualitatively, and their proofs are available upon request.

5. Conclusions and Policy Implications

This paper studies ports’ optimal pricing and governments’ optimal facility in-

vestments under service differentiation and uncertainty settings. Both additive and

multiplicative uncertainty types are considered. Under each type, a two-stage game is

constructed to characterize interactions between ports and governments.

Our first finding is that in additive uncertainty the difference of optimal facilities

under uncertainty and no uncertainty is completely determined by the mean stochastic
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demand. However, in multiplicative uncertainty this difference also depends on factors

such as ports’ marginal costs, service substitution degree, and variances of stochastic

demand. The second finding is that variances of stochastic demand cannot affect gov-

ernments’ optimal facility investments under additive uncertainty, while the opposite

could be true under multiplicative uncertainty. Impacts of model’s other parameters,

such as the mean of uncertainty, ports’ marginal costs and service substitution degree,

on optimal facility levels have no definite directions in both uncertainty types. The

third finding is that the impacts of economic conditions and ports’ marginal costs on

their optimal pricing are similar under the two uncertainty types, while influences of

facility investments and the service substitution degree on ports’ optimal pricing could

be different.

We also show that all the above outcomes remain true qualitatively when the mod-

els are extended to consider the cost-side uncertainty and the dependence of demand

and supply of ports’ services. Since in this paper we do not take congestible transport

networks to ports’ hinterlands into account, how both governments and ports react

when facing uncertainty and congestible transport networks at the same time is a good

topic for future research. Moreover, in real world, we often observe that different coun-

tries develop their ports at distinct times, instead of simultaneously. Thus, it is worth

exploring optimal behaviors of governments and ports when the governments move

sequentially and face uncertainty.

Finally, two policy implications could be drawn based on our results. First, it is

important for governments to identify the uncertainty types before making decisions

because it can cause distinct outcomes. For instance, governments may ignore the

variances of stochastic demand under additive uncertainty, but they should consider

them under multiplicative uncertainty in deciding optimal facility investments. Second,

ports’ pricing behaviors under different uncertainty settings could be dissimilar. Thus,

researchers ought to be careful as conducting empirical tests.
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Appendix

Proof of Proposition 1: Evaluating (28) at KNU = (KNU
1 , KNU

2 ) yields

∂SWi(K
NU )

∂Ki

=
∂SW NU

i (KNU)

∂Ki

−
ciθ̄B

(KNU
i )2

= −
ciθ̄B

(KNU
i )2

by (27) for i = 1, 2. Since B < 0 by (22), we have

∂SWi(K
NU)

∂Ki

≥ (≤) 0 iff θ̄ ≥ (≤) 0.

Under Assumption 1, strictly concavity of SWi and (29) imply that

K∗

i ≥ (≤) KNU
i iff θ̄ ≥ (≤) 0 for i = 1, 2.

2

Proof of Proposition 2: (i) It is trivial.

(ii) Differentiating (29) with respect to θ̄ and evaluating at K∗ = (K∗

1 , K∗

2) produces

H ·





∂K∗

1

∂θ̄

∂K∗

2

∂θ̄



 =





c1B
(K∗

1
)2

c2B
(K∗

2
)2



 .

By Cramer’s rule, we have

∂K∗

1

∂θ̄
=

1

|H|
[
c1BH22

(K∗

1)
2

−
c2BH12

(K∗

2)
2

] and
∂K∗

2

∂θ̄
=

1

|H|
[
c2BH11

(K∗

2 )2
−

c1BH21

(K∗

1 )2
].

Since B < 0, Hii < 0, and Hij < 0, we have
∂K∗

i

∂θ̄
≥ (≤) 0 iff

ciBHjj

(K∗

i )2
≥ (≤)

cjBHij

(K∗

j )2
.

(iii)-(iv) Differentiating (29) with respect to c1 and evaluating at K∗ = (K∗

1 , K∗

2 )

generates

H ·





∂K∗

1

∂c1

∂K∗

2

∂c1



 =





−
∂2π∗

1

∂c1∂K1
+ θ̄B

(K∗

1
)2

−
∂2π∗

2

∂c1∂K2



 .

By Cramer’s rule, we have

∂K∗

1

∂c1
=

1

|H|(K∗

1)
2
{H22[(1 + θ̄)B +

c2F

K∗

2

+
4c1G

K∗

1

] −
c1c

2
2F

2

K∗

1 (K∗

2)
4
}

≥ (≤) 0 iff H22[(1 + θ̄)B +
c2F

K∗

2

+
4c1G

K∗

1

] ≥ (≤)
c1c

2
2F

2

K∗

1 (K∗

2)
4
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and

∂K∗

2

∂c1
=

c2F

|H|K∗

1(K
∗

2 )2
{H11 −

c1

(K∗

1 )3
[(1 + θ̄)B +

c2F

K∗

2

+
4c1G

K∗

1

]}

≥ (≤) 0 iff H11 ≤ (≥)
c1

(K∗

1 )3
[(1 + θ̄)B +

c2F

K∗

2

+
4c1G

K∗

1

].

Similarly, differentiating (29) with respect to c2 and evaluating at K∗ = (K∗

1 , K∗

2 )

yields

H ·





∂K∗

1

∂c2

∂K∗

2

∂c2



 =





−
∂2π∗

1

∂c2∂K1

−
∂2π∗

2

∂c2∂K2
+ θ̄B

(K∗

2
)2



 .

By Cramer’s rule, we have

∂K∗

2

∂c2
=

1

|H|(K∗

2)
2
{H11[(1 + θ̄)B +

c1F

K∗

1

+
4c2G

K∗

2

] −
c2c

2
1F

2

K∗

2 (K∗

1)
4
}

≥ (≤) 0 iff H11[(1 + θ̄)B +
c1F

K∗

1

+
4c2G

K∗

2

] ≥ (≤)
c2c

2
1F

2

K∗

2 (K∗

1)
4

and

∂K∗

1

∂c2

=
c1F

|H|K∗

2(K
∗

1 )2
{H22 −

c2

(K∗

2 )3
[(1 + θ̄)B +

c1F

K∗

1

+
4c2G

K∗

2

]}

≥ (≤) 0 iff H22 ≤ (≥)
c2

(K∗

2 )3
[(1 + θ̄)B +

c1F

K∗

1

+
4c2G

K∗

2

].

(v) Differentiating (29) with respect to b and evaluating at K∗ = (K∗

1 , K∗

2 ) produces

H ·





∂K∗

1

∂b

∂K∗

2

∂b



 =





Φ1

Φ2



 ,

where Φi = −
∂2π∗

i

∂b∂Ki
+ ciθ̄

(K∗

i )2
∂B
∂b

= ci

(K∗

i )2
[(1+ θ̄)∂B

∂b
+

cj

K∗

j

∂F
∂b

+ 2ci

K∗

i

∂G
∂b

], i = 1, 2. By Cramer’s

rule, we can get
∂K∗

i

∂b
≥ (≤) 0 iff ΦiHjj ≥ (≤) ΦjHij. 2

Proof of Lemma 2: Since Lemma 2(iii)-(v) are easily checked from (35)-(36), it remains

to show parts (i), (ii), and (vi). Differentiating (35) and (36) with respect to Ki

generates
∂p̂i

∂Ki

=
2

(4 − b2)
[(1 − b)εg′(Ki) −

ci

K2
i

], i = 1, 2.
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Thus, we have ∂p̂i

∂Ki
≥ (≤) 0 iff ci

K2

i

≤ (≥) ε(1− b)g′(Ki). Similarly, differentiating (35)

and (36) with respect to Kj yields

∂p̂i

∂Kj

=
b

(4 − b2)
[(1 − b)εg′(Kj) −

cj

K2
j

], i = 1, 2.

Thus, we have ∂p̂i

∂Kj
≥ (≤) 0 iff

cj

K2

j

≤ (≥)ε(1 − b)g′(Kj).

Finally, differentiating (35) with respect to b produces

∂p̂1

∂b
=

−1

(2 − b)2
+

(4 + b2)c2

(4 − b2)2K2
+

4bc1

(4 − b2)2K1

+
ε

(4 − b2)2
[2g(K1)(−b2 + 2b − 4) + g(K2)(b

2 − 8b + 4)].

Since 0 < b < 1, we have −b2 + 2b − 4 < 0 and b2 − 8b + 4 ≥ (≤) 0 iff b ≤ (≥) 0.536.

Thus, there are three cases.

Case 1: Suppose b > 0.536. Then Ψ1 ≡ 2g(K1)(−b2 + 2b− 4) + g(K2)(b
2 − 8b + 4) < 0,

hence

∂p̂1

∂b
≥ (≤) 0 iff ε ≤ (≥) ε∗1 (59)

with ε∗1 ≡
1

Ψ1
[(2 + b)2 − 4bc1/K1 − (4 + b2)c2/K2].

Case 2: Suppose b ≤ 0.536 and Ψ1 < 0. Then (59) still holds.

Case 3: Suppose b ≤ 0.536 and Ψ1 > 0. Then we get

∂p̂1

∂b
≥ (≤) 0 iff ε ≥ (≤) ε∗1.

By similar arguments, we can obtain ∂p̂2

∂b
. 2

Proof of Proposition 3: Evaluating (44) at KNU generates

∂ ˆSW i(K
NU)

∂Ki

=
∂SW NU

i (KNU)

∂Ki

+
∂∆i(K

NU)

∂Ki

=
∂∆i(K

NU)

∂Ki

by (27) for i = 1, 2. Thus, relative sizes of K̂i and KNU
i depend on the signs of

∂∆1(KNU )
∂K1

and ∂∆2(KNU )
∂K2

. Recall that ∂ ˆSW i(K̂)
∂Ki

= 0, i = 1, 2. If ∂∆i(K
NU )

∂Ki
> 0 for i = 1, 2,
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then ∂ ˆSW i(KNU )
∂Ki

> 0; hence strict concavity of ˆSW i implies K̂i > KNU
i , i = 1, 2.

If ∂∆1(KNU )
∂K1

> 0 and ∂∆2(KNU )
∂K2

< 0, then ∂ ˆSW 1(KNU )
∂K1

> 0 and ∂ ˆSW 2(KNU )
∂K2

< 0; hence

K̂1 > KNU
1 and K̂2 < KNU

2 . In contrast, if ∂∆1(KNU )
∂K1

< 0 and ∂∆2(KNU )
∂K2

> 0, then

∂ ˆSW 1(KNU )
∂K1

< 0 and ∂ ˆSW 2(KNU )
∂K2

> 0; hence K̂1 < KNU
1 and K̂2 > KNU

2 . Finally, we have

K̂i < KUN
i if ∂∆i(KNU )

∂Ki
< 0 for i = 1, 2. 2

Proof of Proposition 4: Differentiating (45) with respect to σ2
ε and evaluating at K∗ =

(K∗

1 , K∗

2) yields

Ĥ ·





∂K̂1

∂σ2
ε

∂K̂2

∂σ2
ε



 =





− ∂2∆1

∂σ2
ε ∂K1

− ∂2∆2

∂σ2
ε ∂K2



 .

By Cramer’s rule, we have

∂K̂1

∂σ2
ε

=
1

|Ĥ|
[−Ĥ22

∂2∆1

∂σ2
ε ∂K1

+ Ĥ12
∂2∆2

∂σ2
ε ∂K2

] ≥ (≤) 0 iff Ĥ12
∂2∆2

∂σ2
ε ∂K2

≥ (≤) Ĥ22
∂2∆1

∂σ2
ε ∂K1

and

∂K̂2

∂σ2
ε

=
1

|Ĥ|
[−Ĥ11

∂2∆2

∂σ2
ε ∂K2

+ Ĥ21
∂2∆1

∂σ2
ε ∂K1

] ≥ (≤) 0 iff Ĥ21
∂2∆1

∂σ2
ε ∂K1

≥ (≤) Ĥ11
∂2∆2

∂σ2
ε ∂K2

.

(ii) Differentiating (45) with respect to ε̄ and evaluating at K∗ = (K∗

1 , K∗

2) produces

Ĥ ·





∂K̂1

∂ε̄

∂K̂2

∂ε̄



 =





− ∂2∆1

∂ε̄∂K1

− ∂2∆2

∂ε̄∂K2



 .

By Cramer’s rule, we have

∂K̂1

∂σ2
ε

=
1

|Ĥ|
[−Ĥ22

∂2∆1

∂ε̄∂K1
+ Ĥ12

∂2∆2

∂ε̄∂K2
] ≥ (≤) 0 iff Ĥ12

∂2∆2

∂ε̄∂K2
≥ (≤) Ĥ22

∂2∆1

∂ε̄∂K1

and

∂K̂2

∂ε̄
=

1

|Ĥ|
[−Ĥ11

∂2∆2

∂ε̄∂K2

+ Ĥ21
∂2∆1

∂ε̄∂K1

] ≥ (≤) 0 iff Ĥ21
∂2∆1

∂ε̄∂K1

≥ (≤) Ĥ11
∂2∆2

∂ε̄∂K2

.

(iii)-(iv) Differentiating (45) with respect to c1 and evaluating at K∗ = (K∗

1 , K∗

2 )

generates

Ĥ ·





∂K̂1

∂c1

∂K̂2

∂c1



 =





∂2π∗

1
(K∗

1
, K∗

2
, 0)

∂c1∂K1

+ ∂2∆1

∂c1∂K1

∂2π∗

2
(K∗

1
, K∗

2
, 0)

∂c1∂K2
+ ∂2∆2

∂c1∂K2



 .
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By Cramer’s rule, we have

∂K̂1

∂c1
=

1

|Ĥ |
{Ĥ22[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c1∂K1
+

∂2∆1

∂c1∂K1
] − Ĥ12[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c1∂K2
+

∂2∆2

∂c1∂K2
]}

≥ (≤) 0 iff Ĥ22[
∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c1∂K1
+

∂2∆1

∂c1∂K1
] ≥ (≤) Ĥ12[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c1∂K2
+

∂2∆2

∂c1∂K2
]

and

∂K̂2

∂c1
=

1

|Ĥ |
{Ĥ11[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c1∂K2
+

∂2∆2

∂c1∂K2
] − Ĥ21[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c1∂K1
+

∂2∆1

∂c1∂K1
]}

≥ (≤) 0 iff Ĥ11[
∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c1∂K2
+

∂2∆2

∂c1∂K2
] ≥ (≤) Ĥ21[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c1∂K1
+

∂2∆1

∂c1∂K1
].

Differentiating (45) with respect to c2 and evaluating at K∗ = (K∗

1 , K∗

2 ) yields

Ĥ ·





∂K̂1

∂c2

∂K̂2

∂c2



 =





∂2π∗
1
(K∗

1
, K∗

2
, 0)

∂c2∂K1

+ ∂2∆1

∂c2∂K1

∂2π∗
2
(K∗

1
, K∗

2
, 0)

∂c2∂K2

+ ∂2∆2

∂c2∂K2



 .

By Cramer’s rule, we have

∂K̂1

∂c2
=

1

|Ĥ |
{Ĥ22[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c2∂K1
+

∂2∆1

∂c2∂K1
] − Ĥ12[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c2∂K2
+

∂2∆2

∂c2∂K2
]}

≥ (≤) 0 iff Ĥ22[
∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c2∂K1
+

∂2∆1

∂c2∂K1
] ≥ (≤) Ĥ12[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c2∂K2
+

∂2∆2

∂c2∂K2
]

and

∂K̂2

∂c2
=

1

|Ĥ |
{Ĥ11[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c2∂K2
+

∂2∆2

∂c2∂K2
] − Ĥ21[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c2∂K1
+

∂2∆1

∂c2∂K1
]}

≥ (≤) 0 iff Ĥ11[
∂2π∗

2(K∗

1 , K∗

2 , 0)

∂c2∂K2
+

∂2∆2

∂c2∂K2
] ≥ (≤) Ĥ21[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂c2∂K1
+

∂2∆1

∂c2∂K1
].

(v) Differentiating (44) with respect to b and evaluating at K∗ = (K∗

1 , K∗

2 ) produces

Ĥ ·





∂K̂1

∂b

∂K̂2

∂b



 =





∂2π∗

1
(K∗

1
, K∗

2
, 0)

∂b∂K1

+ ∂2∆1

∂b∂K1

∂2π∗

2
(K∗

1
, K∗

2
, 0)

∂b∂K2
+ ∂2∆2

∂b∂K2



 .

By Cramer’s rule, we have

∂K̂1

∂b
=

1

|Ĥ |
{Ĥ22[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂b∂K1
+

∂2∆1

∂b∂K1
] − Ĥ12[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂b∂K2
+

∂2∆2

∂b∂K2
]}

≥ (≤) 0 iff Ĥ22[
∂2π∗

1(K∗

1 , K∗

2 , 0)

∂b∂K1
+

∂2∆1

∂b∂K1
] ≥ (≤) Ĥ12[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂b∂K2
+

∂2∆2

∂b∂K2
]

and

∂K̂2

∂b
=

1

|Ĥ |
{Ĥ11[

∂2π∗

2(K∗

1 , K∗

2 , 0)

∂b∂K2
+

∂2∆2

∂b∂K2
] − Ĥ21[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂b∂K1
+

∂2∆1

∂b∂K1
]}

≥ (≤) 0 iff Ĥ11[
∂2π∗

2(K∗

1 , K∗

2 , 0)

∂b∂K2
+

∂2∆2

∂b∂K2
] ≥ (≤) Ĥ21[

∂2π∗

1(K∗

1 , K∗

2 , 0)

∂b∂K1
+

∂2∆1

∂b∂K1
].
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