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ABSTRACT 

The potential growth of the railway traffic is expected to be substantial worldwide; hence 

railway companies and agencies are looking for better tools to allocate their capital 

investments on capacity planning in the best possible way.  In this research we develop a 

Multi-period Investment Selection Model (MISM) by using robust optimization and multi-

commodity flow techniques, and using Bender’s Decomposition to solve the problem.  Based 

on the estimated future demand, available budget and expansion options, MISM can 

determine the multi-period optimal investment plan regarding which portions of the network 

need to be upgraded with what kind of capacity improvements at each defined period in the 

decision horizon.  Using this decision support tool will help railway companies or agencies 

maximize their return from capacity expansion projects and thus be better able to provide 

reliable service to their customers, and return on shareholders’ investment. 

 

Keywords: Railway Transportation, Capacity Planning, Decision Support 

INTRODUCTION 

The demand for railway transportation is expected to be significantly increased in the near 

future (AASHTO, 2007; MOTC, 2009).   Therefore, the network capacity must be increased 

to meet the inevitable trend.  Generally, network capacity can be improved through 
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operational changes or engineering upgrades.  Changes in operational strategies should be 

considered first because they are usually less expensive and more quickly implemented than 

building new infrastructure.  However, the projected increase in future demand is unlikely to 

be satisfied by solely changing the operating strategies, therefore railway capacity must be 

increased by upgrading the infrastructure (Lai & Barkan, 2008).  Consequently, how to 

upgrade the infrastructure to accommodate the future demand becomes the main task in a 

long-term strategic capacity planning.   

Lai and Barkan (2008) proposed a new capacity planning process to optimize the long-term 

capacity planning for the North American Freight Railroads (Figure 1).  This process includes 

two modules: (1) the Alternatives Generator (AG), and (2) the Investment Selection Model 

(ISM).  The former (AG) generates possible expansion alternatives on the basis of CN 

parametric model (Krueger, 1999) for each section of the network with their cost and capacity 

(Table 1) (Lai & Barkan, 2009).  The latter (ISM) determines which portions of the network 

need to be upgraded with what kind of alternatives based on the estimated future demands, 

budget, and the available alternatives (i.e. the optimal investment plan).  The original ISM 

was developed to determine the optimal investment plan for a particular timeframe; however, 

it did not take into account the sequence of the capital investments and the variation in 

demand throughout the horizon.   

 

Figure 1 - Flowchart of the long-term capacity planning process 

Table 1 - An example of Alternatives Table 

 

The decision horizon of a strategic railway capacity planning usually ranges from ten to 

twenty years; therefore, it is desired to obtain an optimal sequence for the capacity 

expansion projects with consideration of possible periodical budget constraint and 

Section Alternatives Sidings Signals /
spacing

Capacity
(trains/day)

Cost (USD)

1.2 1 +0 +0 +0 $0
1.2 2 +0 +1 +3 $1,000,000
1.2 3 +0 +2 +4 $2,000,000
1.2 4 +1 +1 +6 $6,570,000
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uncertainly in future demand.  Consequently, in this paper, we focus on the development of a 

multi-period investment selection model (MISM) to determine how to allocate the capital 

investment for capacity expansion in the best possible way.  Based on information of the 

current network and traffic, the available investment options, and stochastic future demands, 

the MISM can successfully determine the optimal solution regarding which subdivisions need 

to be upgraded and what kind of engineering options should be conducted at each defined 

period in the decision horizon.  

THE MULTI-PERIOD CAPACITY EXPANSION PROBLEM 

The multi-period capacity expansion problem is a task to determine which portions of the 

network need to be upgraded with what kind of expansion options at each defined period in 

the planning horizon according to the future demand (i.e. the optimal multi-period investment 

plan).  An “optimal multi-period investment plan” is different from an “optimal investment plan” 

by introducing additional information regarding the sequence of expansion projects with 

consideration of the periodical budget constraint and demand increase rate.  Figure 2 shows 

the input and output of a MISM model.  The optimal multi-period investment plan is the one 

fulfils the estimated demand with minimum cost throughout the decision horizon.  Compared 

to the single-period capacity expansion problem, solving this multi-period problem must take 

into account the periodical budget constraint and the demand fluctuation.  Furthermore, the 

unfulfilled demand should also be taken into account since the infrastructure upgrade may 

not always be able to keep up with the demand at every period in the planning horizon.   

 

Figure 2 - Inputs and outputs of multi-period investment plan 

For a long term capacity planning process, the expected traffic demand for each defined 
period may not be a fixed number.  Therefore, instead of using a fixed pattern for future 
demand, we adopt a scheme assuming that the demand for a following period would be 
more than the previous period by a predefined range (e.g. 2%~ 4%).  This range can also be 
different for different time period since we usually have a better idea regarding what’s going 
to happen in five years compared to in ten years.  This information is usually provided by the 
marketing department through demand forecasting process.   
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In this study, a series of possible demands of every defined period in planning horizon is 
called a demand pattern.  For example, Table 2 lists some of the possible demand patterns 
for a planning task with five periods in the decision horizon.  Two types of decisions should 
be made in the planning process: (1) the optimal investment plan determines which portions 
of the network need to be upgraded with what kind of capacity improvements at each period; 
and, (2) the routing of trains at each period (Figure 2).  There is a trade-off between 
infrastructure investment and flow cost.  The investment cost is from the expansion project, 
and the flow cost is associated with running trains, which is the summation of transportation 
cost and maintenance of way (MOW) cost.  More capacity on a crucial link can reduce the 
flow cost but would also result in a higher infrastructure investment cost.   Therefore, the 
developed MISM should consider both components in order to determine the most cost-
effective investment plan. 

Table 2 – Example of demand pattern 

 

MULTI-PERIOD INVESTMENT SELECTION MODEL 

Railway capacity planning can be categorized as a resource allocation problem; and, it is 

usually formulated as a mixed integer network design model (Magnanti & Wong, 1984; 

Minous, 1989; Ahuja et al., 1993).  This type of formulation can determine the optimal 

solution for a one-time investment decision; however, it is not able to take into account the 

uncertainty in future demand.  In order to deal with multi-period decision process with 

stochastic demand, we need to introduce a different optimization framework to formulate this 

problem.  Robust optimization was chosen in this study to help capacity planner make robust 

investment decision at different epoch according to possible demand patterns (Mulvey et al., 

1995).  In addition, during the period of upgrading the infrastructure, it is possible to have 

unfulfilled demand (i.e. deficit) due to insufficient budget and construction schedule; therefore, 

it is essential to incorporate this possibility (supply < demand) in the model framework.  In 

this section, we first introduce a deterministic model framework to address the problem with 

unfulfilled demand followed by the robust optimization model accommodating demand 

fluctuation.   

The following notation is used in MISM: i and j are the indexes referring to node as stations, 

and (i, j) represents the arc from node i to j; δ+(j) represents the station j serving as the 

Period 1 Period 2 Period 3 Period 4 Period 5

1 2% 2% 2% 2% 2%

2 2% 3% 3% 3% 2%

3 2% 4% 3% 4% 3%

4 3% 2% 2% 2% 4%

5 3% 3% 4% 2% 3%

Demand pattern

(w)

Demand increase rate

.

.

.

.

.

.

.

.

.

.

.

.



A MULTI-PERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY 
CAPACITY PLANNING 

Lai, Yung-Cheng; Shih, Mei-Cheng  
 

5 

departure station, and δ-(j) represents the station j serving as arriving station.  Both p and t 

are the indexes for predefined period in the decision horizon.  k corresponds to the origin-

destination (OD) pairs of nodes (o1, e1), (o2, e2), …, (ok, ek) in which ok and ek denote the 

origin and destination of the kth OD pair;  q represents the capacity expansion options;  Bp is 

the budget available at period p; d 
pk is the demand of kth origin-destination pair at period p; cij 

stands for the cost of a unit train passing arc (i, j); hij
q indicates the cost of each arc (i, j) 

associated with option q and Uij represents the original capacity of arc (i, j) based on the 

infrastructure properties and uij
q represents for the capacity increasing amount of option q at 

arc (i ,j).  α and β are the weights related to the planning horizon.   τ is the penalty of 

unfulfilled demand which is also the penalty weight to infeasibility.   

There are three sets of decision variables in the MISM.  The first variable is denoted by pk
ijx  

which is the number of trains running on section (i, j) from the kth OD pair at period p.  The 
second variable is a binary variable which determining the chosen engineering option q in 
section (i, j), denoted by pq

ijy .  The third variable pka  is the supply of kth OD pair at period p. 

A multi-period, deterministic, integer programming model for MISM is given by:  

      min   ( )q pq pk pk pk
ij ij ij ij

i j p q i j p k p k

h y c x d a                              (1) 

subject to: 

 
       

   

    
( ) ( )

      q tq t
ij ij

i j t t p q t t p

h y B p                                                     (2) 

   1      ( , ),  pq
ij

p q

y i j i j
                                                           

(3) 

 

      
( )

( )         ( , ),  ,  pk pk q tq
ij ji ij ij ij

k t t p q

x x U u y i j i j p
                                           

(4)
  

                     

   

 
    



 
( ) ( )

        

              , ,

  0   

pk
k

pk pk pk
ij ji k

j j j j

a i o

x x a i e i p k

otherwise

                                            (5) 

     ,pk pka d p k                                                                     (6) 

 

and 

 

   & a 0, & a  integer, 0,1  pk pk pk pk pq
ij ij ijx x y                                          (7) 

The objective function, equation (1), aims to minimize the total cost and the unfulfilled 

demand over the decision horizon.  The total cost is the summation of costs associated with 

“construction cost”, and “flow cost”.  As mentioned earlier, the construction cost is from the 

expansion project, and the flow cost the summation of transportation cost and maintenance 
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of way (MOW) cost.  The relative importance of the construction cost (α) and flow costs (β) 

depends on the planning horizon.  The longer the planning horizon, the more the railroads 

would be willing to invest due to larger reductions in flow cost over time.  τ is the penalty 

assigned to avoid unfulfilled demand.  The value of this penalty is set to be the largest 

possible flow cost for a train from its origin to its destination among all OD pairs to ensure 

trains will be dispatched whenever there is available capacity.   

Equation (2) is the budget constraint with the possibility to roll over unused budget from 

previous period to the next.  The constraint can be easily modified if a roll-over scheme is not 

possible.  Equation (3) ensures each arc will select only one capacity expansion option.  

Equation (4) is the link capacity constraint total flow on arc (i, j) is less than or equal to the 

current capacity, plus the increased capacity due to upgraded infrastructure.  Equation (5) is 

the flow conservation constraint guaranteeing that the outflow is always equal to the inflow 

for trans-shipment nodes; otherwise, the difference between them should be equal to the 

supply of the kth OD pair.  Equation (6) is the supply constraint, it guarantees that supply is 

less than or equal to demand.  Combining the equations (5) and (6) enables the possibility to 

handle cases without sufficient ability to fulfil demand.  Finally, equation (7) indicates the type 

of variables. 

As mentioned earlier in this section, the deterministic MISM can tackle problems with 

deterministic demand pattern.  To incorporate the uncertainty in future demand, we therefore 

introduce the concept of Robust Optimization into this deterministic model (Paraskevopoulos 

et al., 1991; Malcolm & Zenios, 1994; Mulvey et al., 1995; Soteriou & Chase, 2000; Yu & Li, 

2000).   This robust optimization framework considers both the quality and robustness of the 

solution simultaneously.  According to the robust optimization framework, we introduce a set 

of demand scenarios w for the uncertain traffic demands { } pkd into the MISM formulation 

and revise it into a robust optimization model.  The stochastic traffic demand is expressed as

pkwd , with the probability of entering demand pattern w as ρw.  The scenario-dependent 

variables are set to be control variables.  They are the flow on each link and the supply of 

each OD pair, which are denoted by pkw
ijx and pkwa .  The deterministic MISM given above is 

then reformulated into the following stochastic MISM: 

          
w

min   ( ) [ ( )]q pq pkw pkw pkw
ij ij w ij ij w

i j p q i j p k w p k

h y c x d a
  

(8)  

subject to:  

(2), (3), and  
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 

      
( )

( )         ( , ),  ,  pkw pkw pq tq
ij ji ij ij ij

k t t p q

x x U u y i j i j p                                           (9) 

   

 
    



 
( ) ( )

        

              , , ,

  0   

pkw
k

pkw pkw pkw
ij ji k

j j j j

a i o

x x a i e i p k w

otherwise

                                       (10) 

     , ,pkw pkwa d p k w

 

                                                                                  (11) 

 

and
 

   & a 0, & a  integer, 0,1  pkw pkw pkw pkw pq
ij ij ijx x y

 
                                              (12) 

The objective function of the Robust Optimization MISM (RO-MISM) formulation has two 

parts.  The first part is the expected total cost of the solution.  It is the summation of the 

values that obtained from multiplying the probability of entering demand pattern w to the 

objective value of that pattern and the objective value of each demand pattern.  The second 

part penalizes the unfulfilled demand, which is regarded as the infeasibility.  Equations (9), 

(10), (11), and (12) are similar to equations (4), (5), (6), and (7).  The only difference between 

them is the presence of w in control variables and parameters with uncertainty.  This 

stochastic MISM is a NP-hard problem; therefore, in the following section we proposed a 

solution process to tackle this problem.   

BENDER’S DECOMPOSITION 

The RO-MISM cannot be solved by the commercial solver due to its complexity; therefore, 

we applied “Bender’s Decomposition (Bender, 1962)” technique to tackle this problem.  This 

technique partitions the problem into multiple smaller problems (i.e. master and sub 

problems) instead of considering all decision variables and constraints simultaneously.  

Master and sub problems handle different sets of decision variables, respectively.  For our 

RO-MISM formulation, the master problem at each iteration determines the location, 

engineering option, and period to upgrade the infrastructure ( pq
ijy ).  These values are then 

fixed and transferred to the sub problem to determine the he number of trains running on 

section (i, j) from the kth OD pair at period p ( pk
ijx ), and the supply of of kth OD pair at period p 

( pka ).  If the solution of the sub problem is unbounded, the dual variables of the sub problem 

will be used to construct “feasibility cut” constraint in the master problem to eliminate 

infeasible solutions.  If the solution is feasible, an “optimality cut” constraint will be added to 

the master problem to improve the quality of the solution of the master problem.  In the next 
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iteration, the master problem generates a new set of pq
ijy and feeds them into the sub 

problems again.  After several iterations, the process will converge to an optimal solution.  

The followings are the master problem of RO-MISM:  

   min q pq
ij ij w w

i j p q w

h y                                                                   (13) 

subject to (2), (3) and: 

    
 

       
( )

[ ] ( )+      Cw q tq Sw pkw pkw
w pij ij ij ij pk w

i j p t t p q p k p k

U u y d d w      (14) 

  0,1  pq
ijy                                                                                                                    (15) 

The objective (equation (13)) of master problem aims to minimize the investment cost and 

the expected value of sub problems.  w  represents the objective of sub problems in the 

master problem.  Equation (14) is the optimality cut; it is constructed by the value of dual 

variables in the sub problem.   Cw
pij  and Sw

pk  are dual variables which corresponding to 

capacity constraint, and supply constraint , respectively; both of them can be calculated by 

maximizing the dual sub problem. The optimality cut can improve the quality of solution in the 

master problem.  For our problem (RO-MISM), there is no feasibility cut in the master 

problem because the deficit term inside the objective function eliminates the possibilities to 

have infeasible solutions.  

A sub problem model is constructed for each demand pattern:   

     min  ( )pkw pkw pkw
w ij ij w

i j p k p k

c x d a
  

                                               (16) 

subject to (10), (11) and : 


 

      
( )

( )         ( , ),  ,  ,  
tq

pkw pkw q
ijij ji ij ij

k t t p q

x x U u y i j i j p w                                        (17) 

 & a 0, & a  integer pkw pkw pkw pkw
ij ijx x                                                                         (18) 
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The objective (equation (16)) of this sub problem minimizes the total flow cost and deficit for 

each demand pattern.  Equation (17) works as the capacity constraint, but 
tq

ijy  is fixed 

according to the result from the master problem.   

To obtain the dual variables in the sub problem to construct the optimality and feasibility cuts, 

the sub problem must be transformed into dual sub problem (equations (19~22) for each 

demand pattern w.  Besides  Cw
pij  and Sw

pk ,  Bw
pki  was also added as a dual variable 

corresponding to balance constraint, 

   
 

      
( )

max   ( ) ( )
tq

Cw q Sw pkw pkw
ijpij ij ij pk w

i j p t t p q p k p k

U u y d d
 
      (19) 

subject to:   

               ( ),  ,  ,  Cw Bw Bw
piJ pki pkj w ijc i j p k w

                                                      (20) 

 

     
 

                   ,  ,  
k k

Bw Bw Sw
pki pki pk w

i o i e

p k w                                                    

(21)   

 Cw
pij  and  Sw

pki ,   0Bw
pki                                                                                                    (22) 

With this formulation, the master problem determines the multi-period investment plan at 

each iteration, and then the sub problems examine this plan by optimizing dual sub problems.  

The dual variables of the sub problems will then be used to construct optimality cuts in the 

master problem as feedback.  This process will eventually converge to an optimal solution.   

CASE STUDY 

To demonstrate the potential use of the proposed model, we applied it to solve a network 

capacity planning problem in North America.  Figure 3 shows the selected network in which 

the nodes represent stations or yards, and the arcs represent the connecting rail lines.  

There are two types of links in this network, mainline (denoted by solid lines) and secondary 

line (dotted lines).   
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Figure 3 - The railway network in the case study 

The decision horizon for this case study was set to be 10 years with five two-year periods.  

The demand increase at the last period was expected to be ranging from 10 % to 20 % of the 

current traffic volume.  Also, the range of demand increase was predicted as 2% to 4% more 

than the demand of the previous time period at each period.  Table 3 shows the current 

demand (trains/day) of all OD pairs.  To prepare the input data for RO-MISM, we discretized 

the demand growth rate by 1% and create 243 demand patterns (3 possible increase rates 

for each period, i.e. 2%, 3%, and 4%) as the stochastic information provided to the RO-MISM 

model.  The total available budget was set to be 50 million and was allocated as 10 million 

for each period.     

Table 3 - OD Pairs and Current Demand 

 

 

OD-pair
(index)

O-D
(nodes)

Demand
(trains/day)

1 1-9 4
2 3-6 6
3 3-13 9
4 3-15 15
5 4-6 8
6 4-13 5
7 6-3 6
8 6-15 12
9 10-3 2

10 13-3 8
11 15-3 18
12 15-6 6
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The alternatives table (Table 1) listing all possible options to upgrade the infrastructure was 

also supplied to RO-MISM.  It was generated by the alternatives generator developed in Lai 

and Barkan (2008) according to the traffic, plant, and operating parameters in the network.   

The life of railroad infrastructure is usually assumed to be 20 years approximately.  Therefore, 

for a 10-year decision horizon,   was set to be 0.5 considering the residual value of the 

infrastructure.  β was determined based on the number of days in a planning period, which is 

730 for this case study.  The penalty   was set to be the largest possible flow cost for a train 

from its origin to its destination among all OD pairs; this value ensures the model to fulfill the 

demand as much as possible.  

The process was coded in GAMS and Matlab to solve this problem iteratively.    TABLE 4 

shows the optimal investment plans for the robust optimization model.   

Table 4 – Optimal multi-period investment plan of RO-MISM 

 

To show the benefit of using RO-MISM, the problem is also solved by using the deterministic 

MISM (DE-MISM) model according to the average rate of demand increase (=3% per period).  

Table 5 is the comparison between two scenarios.  Although RO-MISM results in higher the 

investment cost and flow cost, the expected penalty cost is considerably lower than the DE-

MISM scenario.   

Table 5 – Comparison between RO-MISM and DE-MISM Scenarios 

  

 

Capacity
increased
(trains/day)

Construction
time

(period)

Sidings
added

Signals
added

3. 5 3 2 2 28
3. 11 3 4 0 8
5. 6 7 3 2 14
6. 9 3 1 0 30
7. 13 3 2 2 44
9. 11 3 2 0 14

11. 12 7 1 1 8
11. 13 4 4 1 22
13 14 4 5 1 11

Total investment cost (million USD) 40.98

Arc (i, j )

Scenario Investment
cost

(USD million)

Expected flow
cost

(USD million)

Expected
penalty cost

(USD million)

Expected
objective value
(USD million)

RO-MISM 40.98 6,566 231 6,817

DE-MISM 39.08 6,558 258 6,836



A MULTI-PERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY 
CAPACITY PLANNING 

Lai, Yung-Cheng; Shih, Mei-Cheng  
 

12 

The real objective value of each demand pattern (sub problems) from both RO-MISM and 

DE-MISM are shown in Figure 6.  In this figure, the greater the index number of the demand 

pattern, the higher the total demand.  DE-MISM scenario performs slightly better than RO-

MISM at lower demand, but RO-MISM significantly outperform DE-MISM for cases with 

medium to large demand increase.  This result shows that RO-MISM can significantly reduce 

the risk in strategic capacity planning subject to uncertainty in demand forecast.  

  
Figure 7 - The comparison between “DE-MISM” and “RO-MISM” scenarios 

CONCLUSION 

Railroads are approaching the limits of practical capacity due to the substantial future 

demand.  Therefore, we developed a “Robust Multi-period Investment Selection Model (RO-

MISM)” in this research to assist their long term strategic capacity planning.  Bender’s 

decomposition technique was also used to solve the complex problem.  Based on the 

estimated future demand, available budget and expansion options, the proposed model can 

determine which portions of the network need to be upgraded with what kind of expansion 

options at each defined period in the planning horizon.  Using this tool can help railway 

agencies maximize their return from capacity expansion projects and able to provide reliable 

service to their customers.  
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