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Abstract

This paper examines governments’ optimal facility investments and ports’ optimal pric-

ing under service differentiation and uncertainty settings. We construct a two-period

sequential game, in which governments 1 and 2 determine their facility investments at

the beginning of the first and the second periods respectively and ports choose their

service prices at the end of each period. It is found that government 1 may not have the

first-mover advantage. Governments’ optimal facility investments are positively corre-

lated with their expected market demand and competing ports’ marginal costs, but are

not affected by variances of stochastic demand (or cost). Differences of governments’

facility investments between uncertainty and no uncertainty are also investigated. Fi-

nally, we analyze how ports’ equilibrium prices are affected by their facility levels,

marginal costs, service substitution degrees, as well as uncertainty conditions.
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1. Introduction

International trades not only contribute to a country’s economic development,

but also affect our daily lives in multi-dimensional ways. Ports and shipping services

influence trading mechanisms in the context of supply chain and maritime logistics

directly (see Song and Lee (2009)). Moreover, many container ports in Asia have

been drastically developed because of their central governments’ policies, causing fierce

competition to capture transshipment and gateway cargoes generated in the common

hinterlands. Therefore, understanding more thoroughly about interactions among gov-

ernments, port authorities, and shipping liners, as well as their decision-making behav-

iors becomes a necessary and important issue. Game theory, which characterizes the

interactions among multiple agents seeking their maximum payoffs, can certainly help

to achieve this goal. Researchers in the field of maritime economics have noticed this

and begun applying it to port and shipping fields.

Chen et al. (2010) refer many studies applying the game theory to shipping and

port fields. For readers’ convenience, we only recite recent works here. In De Borger

et al.’s (2008) significant paper, they study optimal prices of two ports having down-

stream congestible transport networks to a common hinterland. Their paper allows

governments to decide their optimal facility investments, and finds that ports will in-

ternalize the hinterland congestion cost and charge their customers accordingly, and

ports’ capacities are negatively correlated with their pricing. Following De Borger et

al., Zhang (2009) analyzes how hinterland access conditions affect ports’ competition.

However, Zhang focuses on un-congestible ports and allows them to compete in terms

of both price and quantity. He discovers that in quantity competition, expanding in-

land road capacity may not increase port’s service and profit. Oppositely, under price

competition, enlarging a region’s corridor capacity will raise its port’s service price and

reduce the competitor’s. Yuen et al. (2008) analyze how gateway congestion pricing

affects optimal road pricing and social welfare of the hinterland. They discover that
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gateway charges will rise when congestion pricing is considered. And the increasing

gateway charge will result in lower road tolls and social welfare of the hinterland. On

the other hand, using Cournot and Stackelberg games, Gkonis and Paraftis (2009) ex-

amine optimal transportation capacities of two liquefied natural gas companies. They

discuss possible collusions among the shipping companies too. Permitting a landlord

port to lease terminals to its competing operators, Saeed and Larson (2009) explore

influences of various contracts between the port authority and terminal operators on

port’s pricing in Pakistan. This work adopts a Bertrand game to characterize competi-

tion between two terminal operators, and the simulation outcomes show that optimal

contracts offered by the port authority have high unit fee and low annual rent. Ander-

son et al. (2008b) employ a simple game to study whether two competing ports will

invest in new facilities. They find that the investment decisions would depend on costs

of the new facilities. Also, Anderson et al. (2008a) analyze how investment decisions

of individual ports affect the market as well as the actions of all other competiting

ports. Gkonis et al. (2009) use game theory to tackle the security problem in mer-

chant shipping. Under cooperative-game frameworks, Saeed and Larsen (2010) study

the coalition behaviors of three terminals in Karachi port of Pakistan, while Park et

al. (2009) investigate the delay-cost problem between charter and ship owners.

Observing container port developments over the last four decades in Asia, we find

that governments often involve heavily in constructing port-related infrastructures and

facilities to satisfy countries’ trading needs or to attract port users (see Lee and Flynn

(2010)). Although the game models mentioned above examine ports’ pricing from

various perspectives, few study governments’ optimal facility investments under rapidly

changing and uncertain environments of the global economy. Moreover, little research

discusses ports’ pricing under uncertainty. On the other hand, despite that ports’

services should be regarded as differential products due to their dissimilar locations and

hinterlands (see Zhang (2009)), few works inspect how ports’ differential services affect

their pricing. Thus, this paper tries to fill the research gaps by analyzing governments’

2



optimal facility investments and ports’ optimal pricing under uncertainty and services

differentiation. We construct a two-period sequential game to characterize ports’ non-

synchronous developments. In the first period, government 1 selects a facility level, and

then ports regulated by different governments compete in service prices. In the second

period, government 2 decides a facility level, and then the ports decide their service

prices again. This paper will contribute to maritime economics by shedding lights

on how governments and ports behave under service differentiation and unpredictable

economic surroundings, and on whether governments’ sequential moves matter.

We discover in this paper that government 1 may not own the first-mover advan-

tage against government 2. That is, government 2 may own higher expected social

welfare than government 1 does. Governments’ optimal facility investments will in-

crease with their rising expected market demand and competing pots’ marginal costs,

but will not alter with changing variances of stochastic demand. Nevertheless, im-

pacts of other model parameters, such as own ports’ marginal costs and the service

substitution degree, on governments’ optimal facility investments are indefinite. The

differences of government 2’s optimal facility levels between uncertainty and no un-

certainty are determined entirely by the conditional mean of stochastic demand, while

these differences for government 1 would depend on whether ports implement short-

sighted or far-sighted development polices. Moreover, ports will raise their service

prices when governments’ facility investments decrease, ports’ marginal costs increase,

or market demands become stronger. However, ports may raise or lower their service

prices with rising service substitution degrees. All of these outcomes stay true as the

cost-side uncertainty and the dependence of demand and supply of ports’ services are

considered.

Before this research, Ishii et al. (2009) explore the impact of stochastic demand

on ports’ equilibrium pricing. However, governments’ facility investments are fixed,

instead of endogenous, in their model. On the other hand, De Borger et al. (2008)
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discuss governments’ facility investments in ports, but they do not deal with any un-

certain shocks. Compared to them, we examine uncertainty effects but ignore the part

of congestible transport networks to hinterland. Chen et al. (2010) performs simi-

lar analyses assuming that governments move simultaneously, and it considers both

additive and multiplicative uncertainties.

The rest of this paper is organized as follows. The model is presented in Section 2.

Sections 3 and 4 contain optimal behaviors of government 2 and ports in period 2 and

those of government 1 and ports in period 1, respectively. Section 5 illustrates some

implications of the obtained equilibria. The robustness of our findings is examined in

Section 6. Finally, the conclusions are drawn in Section 7.

2. The Model

We consider a game-theoretic model consisting of ports 1 and 2. The services

offered by the two ports are perceived as differentiated products by ports users given

their different geographic characteristics and sizes of hinterlands. The inverse market

demand functions faced by ports 1 and 2 are

p1 = 1 + θ − q1 − bq2 and (1)

p2 = 1 + θ − q2 − bq1, respectively, (2)

where pi is the price of unit cargo (e.g., TEU) charged by port i, and qi is the amount

of cargo handled by port i, i = 1, 2. Parameter b ∈ (0, 1) represents the service

substitution degree of the two ports. The larger b is, the higher the service substitution

degree is. Let θ be a random variable characterizing demand uncertainty with value

range of (−1, 1), mean θ̄, variance σ2, and probability density function (pdf) f(θ).

Larger realized values of θ mean higher market demands. By rearranging (1)-(2), the
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market demand functions for ports 1 and 2 become

q1 =
1 + θ

1 + b
−

p1

1 − b2
+

bp2

1 − b2
and (3)

q2 =
1 + θ

1 + b
+

bp1

1 − b2
−

p2

1 − b2
, respectively. (4)

Governments provide basic facilities to promote ports’ developments. The facilities

include, among others, maritime access infrastructure (e.g., breakwater, channels, and

navigated aids), and land access infrastructure (e.g., road, railway and inland water

ways). When the facilities are enough, ports’ service provision costs will decrease with

increasing facilities. In contrast, when the facilities are insufficient, ports’ provision

costs cannot be reduced. Thus, it is plausible to assume that port i’s service provision

cost, given cargo amount qi and facility level Ki, is

Ci(qi, Ki) =







ciqi if Ki < 1,

ci

Ki
qi if Ki ≥ 1,

(5)

where ci ∈ (0, 1) is port i’s marginal (provision) cost when zero or less-than-one-

unit facility is provided by its government, i = 1, 2. Note that the threshold value of

one-unit facility can be replaced by any other positive numbers without changing the

results. And the qualitative results stay true if ciqi

Ki
is replaced with ciqi

h(Ki)
, where h(·)

is an increasing and strictly concave function of Ki. To have meaningful analyses, we

focus on the facility level greater than one unit throughout this paper. Accordingly,

by (3)-(5), we can get port i’s profit function

πi(pi, pj) = (pi −
ci

Ki

)

[

1 + θ

1 + b
−

pi

1 − b2
+

bpj

1 − b2

]

, i, j ∈ {1, 2 | i 6= j}. (6)

To highlight the real-world situation of ports’ non-synchronous developments in

various countries, we construct the ensuing two-period sequential game. In the first

period, government 1 selects a facility level maximizing her expected social welfare.

Then, a realized value of the random demand variable is observed. Next, ports choose

service prices simultaneously to maximize their profits. In the second period, given
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government 1’s choice, government 2 decides a facility level maximizing her expected

social welfare. A realized value of the random demand variable is then observed.

Finally, both ports choose their service prices again. In this game, ports are assumed

to compete in pricing. Actually, the results will not alter if ports compete in quantity,

and they are available upon request. Moreover, we presume here that governments and

ports have asymmetric information about demand shocks, because port authorities can

access the market more easily and directly. The subgame perfect equilibrium (hereafter

SPE) of this game are derived by backward induction as follows.

3. Optimal Behaviors of Government 2 and Ports in Period 2

Given both governments’ facility levels (K1, K2) and realized market demands

in two periods (θ1, θ2), ports will choose optimal service prices (p∗

1, p∗2) to solve the

ensuing problem.

max
pi>0

πi(pi, pj) = (pi −
ci

Ki

)

[

1 + θ2

1 + b
−

pi

1 − b2
+

bpj

1 − b2

]

for i, j ∈ {1, 2 | i 6= j}. The first-order conditions for interior (p∗

1, p∗2) are

∂π1

∂p1

=
1 + θ2

1 + b
+

c1

(1 − b2)K1

−
2p∗1

(1 − b2)
+

bp∗2
(1 − b2)

= 0 and (7)

∂π2

∂p2
=

1 + θ2

1 + b
+

c2

(1 − b2)K2
−

2p∗2
(1 − b2)

+
bp∗1

(1 − b2)
= 0. (8)

The second-order and stability conditions for (p∗

1, p∗2) hold because ∂2πi

∂p2

i

= −2
(1−b2)

<

0, ∂2πi

∂pj∂pi
= b

(1−b2)
> 0, and ∂2πi

∂p2

i

∂2πj

∂p2

j

− ( ∂2πi

∂pj∂pi
)2 = 4−b2

(1−b2)2
> 0 for i, j ∈ {1, 2 | i 6= j}.

Solving (7)-(8) yields

p∗1 =
(1 − b)(1 + θ2)

(2 − b)
+

1

(4 − b2)

[

c2b

K2
+

2c1

K1

]

and (9)

p∗2 =
(1 − b)(1 + θ2)

(2 − b)
+

1

(4 − b2)

[

c1b

K1

+
2c2

K2

]

. (10)

Equations (9)-(10) imply that these optimal prices are affected by ports’ facility levels,

marginal costs, and service differentiation degree, as well as realized values of demand

uncertainty. The relations are summarized below.
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Lemma 1. For i, j ∈ {1, 2 | i 6= j}, we have

(i)
∂p∗i
∂Ki

= −2ci

(4−b2)K2

i

< 0,

(ii)
∂p∗i
∂Kj

=
−cjb

(4−b2)K2

j

< 0,

(iii)
∂p∗i
∂ci

= 2
(4−b2)Ki

> 0,

(iv)
∂p∗i
∂cj

= b
(4−b2)Kj

> 0,

(v)
∂p∗i
∂θ2

= (1−b)
(2−b)

> 0, and

(vi)
∂p∗i
∂b

≥ (≤) 0 iff θ2 ≤ (≥) θ∗i ,

where θ∗i =
(4+b2)cj

(2+b)2Kj
+ 4bci

(2+b)2Ki
− 1 ∈ (−1, 0).

Proof. The proofs are straightforward, thus omitted.

When government i provides more facilities, port i’s marginal costs and charging

prices would decrease. Port j behaves the same because ports’ service prices are strate-

gic complements under the Bertrand competition. Theses are what Lemma 1(i)-(ii) say.

On the other hand, as port i’s marginal costs rise, it will charge its customers higher

prices. Again, port j would do the same. These are the contents of Lemma 1(iii)-(iv).

As market demands become larger, ports will raise their service prices as indicated by

Lemma 1(v). Finally, part (vi) shows that the impacts of service substitution degree

on ports’ equilibrium prices are uncertain. When market demands are large enough

(θ2 ≥ θ∗i ), port i will lower prices to attract more customers as competition with the

other port becomes severer (i.e., b increases). In contrast, when market demands are

not large enough (θ2 < θ∗i ), port i will raise prices to compensate for its losses from

the rising competition.

Substituting p∗1 and p∗2 into ports’ profit functions in (6) generates their equilibrium

profits, which are functions of facility levels and realized values of demand uncertainty

as shown below.

π∗

1(K1, K2, θ2) = Aθ2
+ Bθ2

( c1
K1

) + Dθ2
( c2

K2

) + Fc1c2
K1K2

+ G( c1
K1

)2 + H( c2
K2

)2 and (11)

π∗

2(K1, K2, θ2) = Aθ2
+ Bθ2

( c2
K2

) + Dθ2
( c1

K1

) + Fc1c2
K1K2

+ G( c2
K2

)2 + H( c1
K1

)2, (12)
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where

Aθ2
=

(1 − b)(1 + θ2)
2

(1 + b)(2 − b)2
> 0, (13)

Bθ2
=

2(1 + θ2)(b
2 − 2)

(1 + b)(2 + b)(2 − b)2
< 0, (14)

Dθ2
=

2b(1 + θ2)

(1 + b)(2 + b)(2 − b)2
> 0, (15)

F =
2b(b2 − 2)

(1 − b2)(4 − b2)2
< 0, (16)

G =
(b2 − 2)2

(1 − b2)(4 − b2)2
> 0, and (17)

H =
b2

(1 − b2)(4 − b2)2
> 0. (18)

In particular, by letting θ2 = 0 in (11)-(12), we acquire ports’ equilibrium profits under

no uncertainty.

π∗

1(K1, K2, 0) = A + B(
c1

K1
) + D(

c2

K2
) +

Fc1c2

K1K2
+ G(

c1

K1
)2 + H(

c2

K2
)2 and (19)

π∗

2(K1, K2, 0) = A + B(
c2

K2
) + D(

c1

K1
) +

Fc1c2

K1K2
+ G(

c2

K2
)2 + H(

c1

K1
)2, (20)

where

A =
(1 − b)

(1 + b)(2 − b)2
> 0, (21)

B =
2(b2 − 2)

(1 + b)(2 + b)(2 − b)2
< 0, and (22)

D =
2b

(1 + b)(2 + b)(2 − b)2
> 0. (23)

Next, given ports’ second-period equilibrium prices (p∗

1, p∗2), government 1’s facility

level K1, and period 1’s realized market demand θ1, government 2 will choose K∗

2 to

maximize the ensuing expected social welfare.

MaxK2>1 SW2(K1, K2, θ1) ≡

∫ 1

−1

π∗

2(K1, K2, θ2)f(θ2 | K1, θ1)dθ2 − γ2K2, (24)

where γ2 > 0 is unit investment cost faced by government 2 and f(θ2 | K1, θ1) is the

conditional pdf of θ2 given K1 and θ1. For simplicity, government 2’s social welfare
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equals her port’s profit subtracting facility investment cost without considering the

surpluses of shipping lines and consumers located in the port’s hinterlands. That

is because the benefit of the former accrues to foreign firms and the consumers’ is

ignored due to our neglect of congestible transport networks to hinterlands. The same

presumption is applied to government 1.

To facilitate subsequent analyses, denote

µ(K1, θ1) =

∫ 1

−1

θ2f(θ2 | K1, θ1)dθ2 and

σ2(K1, θ1) =

∫ 1

−1

θ2
2f(θ2 | K1, θ1)dθ2 − [µ(K1, θ1)]

2

the conditional mean and variance of θ2 given K1 and θ1, respectively. In general,

relative sizes of µ(K1, θ1) and θ̄ (i.e., the unconditional mean of θ2) are indefinite.

Accordingly, we have

∫ 1

−1

π∗

2(K1, K2, θ2)f(θ2 | K1, θ1)dθ2

= A + B(
c2

K2
) + D(

c1

K1
) +

Fc1c2

K1K2
+ G(

c2

K2
)2 + H(

c1

K1
)2

+µ(K1, θ1)[
Dc1

K1
+

Bc2

K2
] + A[2µ(K1, θ1) + µ(K1, θ1)

2 + σ2(K1, θ1)]. (25)

Equation (25) is derived in the Appendix. When there exists no uncertainty, govern-

ment 2’s social welfare function

SW NU
2 (K1, K2)

≡ π∗

2(K1, K2, 0) − γ2K2

= A + B(
c2

K2
) + D(

c1

K1
) +

Fc1c2

K1K2
+ G(

c2

K2
)2 + H(

c1

K1
)2 − γ2K2. (26)

Let KNU
2 be government 2’s optimal facility investment under no uncertainty. Then,

KNU
2 must satisfy the condition of

∂SW NU
2 (K1, KNU

2 )

∂K2
= 0 (27)
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for any given K1. By (24)-(26), we can obtain

SW2(K1, K2, θ1) = SW NU
2 (K1, K2) + µ(K1, θ1)[

Dc1

K1

+
Bc2

K2

]

+A[2µ(K1, θ1) + µ(K1, θ1)
2 + σ2(K1, θ1)]. (28)

Differentiating (28) with respect to K2 produces

∂SW2(K1, K2, θ1)

∂K2
=

∂SW NU
2 (K1, K2)

∂K2
−

c2Bµ(K1, θ1)

K2
2

. (29)

Thus, K∗

2 must meet the necessary condition of

∂SW2(K1, K∗

2 , θ1)

∂K2
=

∂SW NU
2 (K1, K∗

2)

∂K2
−

c2Bµ(K1, θ1)

(K∗
2 )2

= 0 (30)

for any given K1. To make (30) the sufficient condition for K∗

2 as well, the following

assumption is needed.

Assumption 1: Given all (K1, θ1), social welfare function SW2(K1, K2, θ1) is strictly

concave in K2.

Proposition 1: Under Assumption 1, the followings hold.

(i) If µ(K1, θ1) > 0, we have K∗

2 > KNU
2 ;

(ii) If µ(K1, θ1) = 0, we have K∗

2 = KNU
2 ; and

(iii) If µ(K1, θ1) < 0, we have K∗

2 < KNU
2 .

Proof. See the Appendix.

Proposition 1 states that relative sizes of government 2’s optimal facility invest-

ments under uncertainty and no uncertainty are determined solely by her conditional

expectation about period 2’s stochastic demand. When µ(K1, θ1) > 0, government 2

would anticipate higher period 2’s market demand after observing government 1’s facil-

ity investment (K1) and realized market demand of period 1 (θ1). Since government 2

is optimistic about period 2’s stochastic market demand, she will provide more facilities

under uncertainty than under no uncertainty. This is what Proposition 1(i) shows. In

contrast, if government 2 is pessimistic about the future market demand after observ-

ing K1 and θ1, i.e., µ(K1, θ1) < 0, she will provide fewer facilities under uncertainty
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than under no uncertainty as indicated by Proposition 1(iii). However, if government

2 keeps her expectation neutral, i.e., µ(K1, θ1) = 0, her facility investments under

uncertainty and no uncertainty are the same. That is the content of Proposition 1(ii).

Moreover, equations (29)-(30) suggest that government 2’s optimal facility invest-

ment (K∗

2) is affected by the conditional mean of stochastic demand, government 1’s

facility investment, ports’ marginal costs, and the service substitution degree. Never-

theless, K∗

2 is not affected by the conditional variance of stochastic demand. These

relations are summarized below.

Proposition 2: Under Assumption 1, the followings hold.

(i)
∂K∗

2

∂µ(K1, θ1)
> 0,

(ii)
∂K∗

2

∂σ2(K1, θ1)
= 0,

(iii)
∂K∗

2

∂c1
> 0,

(iv)
∂K∗

2

∂c2
≥ (≤) 0 iff [1 + µ(K1, θ1)]B + c1F

K1

+ 4c2G
K∗

2

≤ (≥) 0,

(v)
∂K∗

2

∂K1

≥ (≤) 0 iff ∂µ(K1, θ1)
∂K1

≥ (≤) c1F
BK2

1

, and

(vi)
∂K∗

2

∂b
≥ (≤) 0 iff [1 + µ(K1, θ1)]

∂B
∂b

+ c1
K1

∂F
∂b

+ 2c2
K∗

2

∂G
∂b

≤ (≥) 0.

Proof. See the Appendix.

When government 2 expects higher future market demand, she will provide more

facilities as indicated by Proposition 2(i). The conditional variance of stochastic de-

mand does not appear in the first-order condition of (30), thus it will not affect gov-

ernment 2’s optimal facility investment as shown in Proposition 2(ii). On the other

hand, Proposition 2(iii) shows that government 2 will provide more facilities as port

1’s marginal cost (c1) increases. With rising c1, both ports will raise their service prices

by Lemma 1(iii)-(iv). Then, by equation (4), port 2’s cargo handling amount will in-

crease with port 1’s rising prices due to their service substitution relation, but decrease

with its own rising prices. However, the former effect will dominate, and the reason is
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provided as follows. Plugging (9)-(10) into (4) yields port 2’s equilibrium cargo amount

q∗2 =
1 + θ2

(1 + b)(2 − b)
+

b

(1 − b2)(4 − b2)
(

c1

K1
) +

(b2 − 2)

(1 − b2)(4 − b2)
(

c2

K2
). (31)

Equation (31) implies that
∂q∗

2

∂c1
= b

(1−b2)(4−b2)K1

> 0. This means that port 2’s equi-

librium service price and amount will increase with port 1’s rising marginal costs, so

will port 2’s equilibrium profit and government 2’s expected social welfare. Thus,

it is optimal for government 2 to provide more facilities. Nevertheless, as stated by

Proposition 2(iv), the impact of port 2’s marginal costs (c2) on government 2’s op-

timal facility investments is unsure. As shown by Lemma 1(iii)-(iv), rising c2 will

lead to ports’ higher equilibrium prices. And port 2’s cargo handling amount in-

creases with port 1’s rising equilibrium price, but decreases with port 2’s rising price

as indicated by equation (4). However, unlike Proposition 2 (iii), the later effect dom-

inates because of
∂q∗

2

∂c2
= (b2−2)

(1−b2)(4−b2)K2

< 0 implied by (31). It means that ports 2’s

equilibrium cargo amount will fall. Then, port 2’s equilibrium profit and govern-

ment 2’s expected social welfare may rise or fall because port 2’s equilibrium service

price and amount change oppositely. When the price effect dominates, which occurs if

[1 + µ(K1, θ1)]B + c1F
K1

+ 4c2G
K∗

2

< 0, government 2 will provide more facilities since her

expected social welfare will increase with rising c2. In contrast, government 2 will pro-

vide fewer facilities with rising c2 when the quantity effect dominates, which happens if

[1+µ(K1, θ1)]B + c1F
K1

+ 4c2G
K∗

2

> 0. And government 2 will keep her facility investments

unchanged if the two effects are equal.

When government 2 is optimistic or not very pessimistic about the future market

demand after seeing that government 1 provides more facilities, i.e., ∂µ(K1, θ1)
∂K1

> 0 or

∂µ(K1, θ1)
∂K1

< 0 with small |∂µ(K1, θ1)
∂K1

|, she will invest more as well. In contrast, if gov-

ernment 2 is pessimistic enough about the future market demand after observing that

government 1 provides more facilities, i.e., ∂µ(K1, θ1)
∂K1

< 0 with large |∂µ(K1, θ1)
∂K1

|, she will

invest fewer facilities. This is the content of Proposition 2(v). Finally, the impact of

ports’ service substitution degree (b) on government 2’s optimal facility investment is
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unsure. In Lemma 1(vi), impacts of b on ports’ equilibrium service prices are indefinite.

Accordingly, influences of b on ports’ equilibrium cargo handling amounts and on gov-

ernment 2’s expected social welfare are unclear as well. As in Proposition 2 (iv), when

the price effect dominates, which happens at [1 + µ(K1, θ1)]
∂B
∂b

+ c1
K1

∂F
∂b

+ 2c2
K∗

2

∂G
∂b

< 0,

government 2 will provide more facilities with rising b. And she will provide fewer

facilities with rising b when the quantity effect dominates.

4. Optimal Behaviors of Government 1 and Ports in Period 1

In this section, we will derive ports’ equilibrium service prices and government 1’s

optimal facility investment in the first period. In our two-period model, there are two

ways to construct ports’ first-period objective functions. First, ports are assumed short-

sighted, i.e., they care period 1’s payoffs only when choosing service prices in period

1. Second, ports are presumed far-sighted, i.e., they consider the sum of first-period’s

payoff and discounted second-period’s payoff when selecting optimal service prices in

period 1. Since government 1 cares the benefit of port 1 only, it is plausible that

government 1 is far-sighted (short-sighted) when port 1 is far-sighted (short-sighted).1

The two cases are discussed in Sections 4.1 and 4.2, respectively.

4.1. Short-Sighted Ports

Here ports choose service prices to maximize their first-period payoffs only. Under

the circumstance, given (K1, θ1), ports 1’s and 2’s profit functions in period 1 are

respectively

π1(p1, p2) = (p1 −
c1

K1

)[
1 + θ1

1 + b
−

p1

1 − b2
+

bp2

1 − b2
] and (32)

π2(p1, p2) = (p2 − c2)[
1 + θ1

1 + b
−

p2

1 − b2
+

bp1

1 − b2
]. (33)

1Actually, the outcomes in the case of short-sighted port 1 and far-sighted government 1 are the

same as those with port 1 and government 1 being both far-sighted, since the first-period behavior of

far-sighted and short-sighted port 1 is the same.

13



Note that port 2’s marginal production cost is c2, instead of c2
K2

, because government

2 does not invest in period 1. Accordingly, port i will select p̂i to solve the following

problem.

p̂i ∈ arg max
pi>0

πi(pi, pj)

for i, j = 1, 2. And we can get

p̂1 =
(1 − b)(1 + θ1)

(2 − b)
+

1

(4 − b2)

[

c2b +
2c1

K1

]

and (34)

p̂2 =
(1 − b)(1 + θ1)

(2 − b)
+

1

(4 − b2)

[

c1b

K1
+ 2c2

]

. (35)

Equations (34)-(35) suggest that p̂1 and p̂2 own the following properties.

Lemma 2. For i, j ∈ {1, 2 | i 6= j}, we have

(i) ∂p̂1

∂K1

= −2c1
(4−b2)K2

1

< 0 and ∂p̂2

∂K2

= 0,

(ii) ∂p̂1

∂K2

= 0 and ∂p̂2

∂K1

= −c1b
(4−b2)K2

1

< 0,

(iii) ∂p̂1

∂c1
= 2

(4−b2)K1

> 0 and ∂p̂2

∂c2
= b

(4−b2)
> 0,

(iv) ∂p̂1

∂c2
= b

4−b2
> 0 and ∂p̂2

∂c1
= b

(4−b2)K1

> 0,

(v) ∂p̂i

∂θ1

= (1−b)
(2−b)

> 0, and

(vi) ∂p̂i

∂b
≥ (≤) 0 iff θ1 ≤ (≥) θ̂i,

where θ̂1 = 4bc1
(2+b)2K1

+ c2(4+b2)
(2+b)2

− 1 and θ̂2 = 4bc2
(2+b)2

+ c1(4+b2)
(2+b)2K1

− 1.

Proof. The proofs are similar to those of Lemma 1.

All the intuitions of Lemma 2 are the same as Lemma 1’s except that government

2’s facility investment has no effect on ports’ equilibrium pricing. That is because

government 2 makes her investment decision in period 2, instead of period 1.

Substituting (p̂1, p̂2) into ports’ profit functions of (32)-(33) yields their first-period

equilibrium profits,

π̂1(K1, θ1) = Aθ1
+ Bθ1

(
c1

K1
) + Dθ1

c2 +
Fc1c2

K1
+ G(

c1

K1
)2 + Hc2

2 and (36)

π̂2(K1, θ1) = Aθ1
+ Bθ1

c2 + Dθ1
(

c1

K1
) +

Fc1c2

K1
+ Gc2

2 + H(
c1

K1
)2, (37)
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where the definitions of Aθ1
, Bθ1

and Dθ1
are the same as (13)-(15) except that θ2 is

replaced with θ1. In particular, by letting θ1 = 0 in (36)-(37), we can get both ports’

first-period equilibrium profits under no uncertainty,

π̂1(K1, 0) = A + B(
c1

K1

) + Dc2 +
Fc1c2

K1

+ G(
c1

K1

)2 + Hc2
2 and (38)

π̂2(K1, 0) = A + Bc2 + D(
c1

K1

) +
Fc1c2

K1

+ Gc2
2 + H(

c1

K1

)2. (39)

Given (p̂1, p̂2), government 1’s optimal facility investment K∗

1 will solve the prob-

lem of

max
K1>1

SW1(K1) ≡

∫ 1

−1

π̂1(K1, θ1)f(θ1)dθ1 − γ1K1,

where γ1 > 0 is the unit investment cost faced by government 1. Employing the method

deriving (25), we can acquire

∫ 1

−1

π̂1(K1, θ1)f(θ1)dθ1 = A + B(
c1

K1

) + Dc2 +
Fc1c2

K1

+ G(
c1

K1

)2 + Hc2
2

+θ̄[
c1B

K1
+ Dc2] + A(2θ̄ + θ̄2 + σ2). (40)

Similarly, denote

SW NU
1 (K1) ≡ π̂(K1, 0) − γ1K1 = A + B(

c1

K1
) + Dc2 +

Fc1c2

K1
+ G(

c1

K1
)2 + Hc2

2 − γ1K1(41)

government 1’s social welfare under no uncertainty, and KNU
1 government 1’s optimal

facility investment under no uncertainty. That is, KNU
1 must satisfy the condition of

∂SW NU
1 (KNU

1 )

∂K1

= 0.

By (40)-(41), we have

SW1(K1) = SW NU
1 (K1) + θ̄

[

c1B

K1

+ Dc2

]

+ A(2θ̄ + θ̄2 + σ2). (42)

Differentiating both sides of (42) with respect to K1 produces the necessary condition

for K∗

1 ,

∂SW1(K
∗

1)

∂K1
=

∂SW NU
1 (K∗

1)

∂K1
−

c1θ̄B

(K∗
1)

2
= 0. (43)
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To make (43) the sufficient condition as well, the following assumption is needed.

Assumption 2: Social welfare function SW1(K1) is strictly concave in K1.

Proposition 3: Under Assumption 2, the followings hold.

(i) If θ̄ > 0, we have K∗

1 > KNU
1 ;

(ii) If θ̄ = 0, we have K∗

1 = KNU
1 ; and

(iii) If θ̄ < 0, we have K∗

1 < KNU
1 .

Proof. The proofs are similar to Proposition 1’s, thus omitted.

Proposition 3 demonstrates that relative sizes of government 1’s optimal facility

investments under uncertainty and no uncertainty depend entirely on the sign of un-

conditional mean θ̄. Because Proposition 3’s intuitions are similar to Proposition 1’s,

they are not explained.

By analyzing (43), we summarize impacts of the mean and variance of stochastic

demand, ports’ marginal costs, and the service substitution degree on short-sighted

government 1’s optimal facility investment below.

Proposition 4: Under Assumption 2, the followings hold.

(i)
∂K∗

1

∂θ̄
> 0,

(ii)
∂K∗

1

∂σ2 = 0,

(iii)
∂K∗

1

∂c2
> 0,

(iv)
∂K∗

1

∂c1
≥ (≤) 0 iff (1 + θ̄)B + c2F + 4c1G

K∗

1

≤ (≥) 0, and

(v)
∂K∗

1

∂b
≥ (≤) 0 iff (1 + θ̄)∂B

∂b
+ c2

∂F
∂b

+ 2c1
K∗

1

∂G
∂b

≤ (≥) 0.

Proof. The proofs are similar to Proposition 2’s.

And Proposition 4’s intuitions are completely the same as Proposition 2’s.

4.2. Far-Sighted Ports

In the far-sighted case, ports choose service prices to maximize their total payoffs,
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which equal the sum of first-period’s payoff and discounted second-period’s equilibrium

profit. Precisely, given (K1, θ1, θ2) and port 2’s optimal facility level K∗

2 = K∗

2(K1, θ1),

ports 1’s and 2’s total payoffs are respectively

Π1(K1, θ1, θ2) = (p1 −
c1

K1
)[

1 + θ1

1 + b
−

p1

1 − b2
+

bp2

1 − b2
] + δπ∗

1(K1, K∗

2 , θ2)and(44)

Π2(K1, θ1, θ2) = (p2 − c2)[
1 + θ1

1 + b
−

p2

1 − b2
+

bp1

1 − b2
] + δπ∗

2(K1, K∗

2 , θ2), (45)

where δ ∈ (0, 1) is the common discounted factor for ports, and π∗

1(K1, K∗

2 , θ2) and

π∗

2(K1, K∗

2 , θ2) are ports’ second-period equilibrium profits evaluated at K∗

2 , whose

definitions are given in (11)-(12). Consequently, port i will pick price p̃i to maximize

its total payoff. That is,

p̃i ∈ argmax
pi>0

Πi(K1, θ1, θ2), i = 1, 2.

Since ports’ equilibrium second-period profits are not affected by p̃1 and p̃2, it is equiv-

alent to having p̃i maximizing first-period’s profit as in Section 4.1. Thus, we have

p̃i = p̂i, i = 1, 2, which are defined in (34)-(35). Therefore, p̃1 and p̃2 own the proper-

ties of Lemma 2. Substituting (36)-(37) into (44)-(45) will generate ports 1’s and 2’s

equilibrium total payoffs,

Π∗

1(K1, θ1, θ2) = π̂1(K1, θ1) + δπ∗

1(K1, K∗

2 , θ2) and (46)

Π∗

2(K1, θ1, θ2) = π̂2(K1, θ1) + δπ∗

2(K1, K∗

2 , θ2), respectively. (47)

In particular, by letting θ1 = θ2 = 0 in (46)-(47), we can acquire ports’ equilibrium

total payoffs under no uncertainty,

Π∗

1(K1, 0, 0) = π̂1(K1, 0) + δπ∗

1(K1, K∗

2 (K1, 0), 0) and (48)

Π∗

2(K1, 0, 0) = π̂2(K1, 0) + δπ∗

2(K1, K∗

2 (K1, 0), 0), (49)

where π̂1(K1, 0) and π̂2(K1, 0) are defined in (38)-(39), and K∗

2(K1, 0) is derived from

(30) assuming θ1 = 0.
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Finally, given (p̃1, p̃2), government 1 will choose K̃1 to maximize her expected

social welfare. That is,

K̃1 ∈ arg max
K1>1

TSW1(K1) ≡ EΠ∗

1(K1) − γ1K1,

where EΠ∗

1(K1) =
∫ 1

−1
[
∫ 1

−1
Π∗

1(K1, θ1, θ2)f(θ2 | K1, θ1)dθ2]f(θ1)dθ1 is government 1’s

expected equilibrium total payoff earned by port 1. By simple calculations, we have

EΠ∗

1(K1)

=

∫ 1

−1

π̂1(K1, θ1)f(θ1)dθ1 + δ

∫ 1

−1

[
∫ 1

−1

π∗

1(K1, K∗

2 , θ2)f(θ2 | K1, θ1)dθ2

]

f(θ1)dθ1

= A + B
c1

K1
+ Dc2 +

Fc1c2

K1
+ G(

c1

K1
)2 + Hc2

2 + θ̄[
Bc1

K1
+ Dc2]

+A(2θ̄ + θ̄2 + σ2) + δEπ∗

1(K1), (50)

where Eπ∗

1(K1) =
∫ 1

−1
[
∫ 1

−1
π∗

1(K1, K∗

2 , θ2)f(θ2 | K1, θ1)dθ2]f(θ1)dθ1 is government 1’s

expected second-period equilibrium profit earned by port 1.

To compare with the optimal facility level under no uncertainty, denote

TSW NU
1 (K1) ≡ Π∗

1(K1, 0, 0) − γ1K1 (51)

government 1’s total social welfare under no uncertainty, which consists of port 1’s

equilibrium total payoff under no uncertainty subtracting the investment cost. Let

KNU
1 be the facility level maximizing TSW NU

1 . Then, KNU
1 must meet the condition

of

∂TSW NU
1 (KNU

1 )

∂K1
= 0.

By (50)-(51), TSW1(K1) can be rewritten as

TSW1(K1) = TSW NU
1 (K1) + θ̄[

c1B

K1
+ Dc2] + A(2θ̄ + θ̄2 + σ2) + δ4(K1), (52)

where 4(K1) = Eπ∗

1(K1) − π∗

1(K1, K∗

2 (K1, 0), 0) represents the difference between

government 1’s expectations about port 1’s second-period equilibrium profits under

18



uncertainty and no uncertainty, given facility level K1. Differentiating both sides of

(52) with respect to K1 yields

∂TSW1(K1)

∂K1

=
∂TSW NU

1 (K1)

∂K1

−
c1θ̄B

K2
1

+ δ
∂4(K1)

∂K1

. (53)

Thus, K̃1 must satisfy the necessary condition of

∂TSW1(K̃1)

∂K1

=
∂TSW NU

1 (K̃1)

∂K1

−
c1θ̄B

(K̃1)2
+ δ

∂4(K̃1)

∂K1

= 0. (54)

To make (54) sufficient condition for K̃1 as well, the following assumption is needed.

Assumption 3: Social welfare function TSW1(K1) is strictly concave in K1.

Proposition 5: Under Assumption 3, we have the followings.

(i) If δ
∂4(KNU

1
)

∂K1

− c1θ̄B

(KNN
1

)2
> 0, then K̃1 > KNU

1 ;

(ii) If δ
∂4(KNU

1
)

∂K1

− c1θ̄B

(KNU
1

)2
= 0, then K̃1 = KNU

1 ; and

(iii) If δ
∂4(KNU

1
)

∂K1

− c1θ̄B

(KNU
1

)2
< 0, then K̃1 < KNU

1 .

Proof. See the Appendix.

Unlike Proposition 3, Proposition 5 shows that the difference between government

1’s optimal facilities under uncertainty and no uncertainty depends not only on the

mean of stochastic demand (θ̄), but on other parameters such as the service substitution

degree (b), the discount factor (δ), and ports’ marginal costs (c1 and c2).

Moreover, impacts of the mean and variance of stochastic demand, ports’ marginal

costs, and the service substitution degree on far-sighted government 1’s optimal facility

levels are summarized below.

Proposition 6: Under Assumption 3, we have the followings.

(i) ∂K̃1

∂θ̄
> 0,

(ii) ∂K̃1

∂σ2 = 0,

(iii) ∂K̃1

∂c2
≥ (≤) 0 iff

∂2Π∗

1
(K̃1, 0, 0)

∂c2∂K1

≥ (≤) − δ
∂2∆(K1)
∂c2∂K1

,

(iv) ∂K̃1

∂c1
≥ (≤) 0 iff

∂2Π∗

1
(K̃1, 0, 0)

∂c1∂K1

≥ (≤) θ̄B

(K̃1)2
− δ

∂2∆(K̃1)
∂c1∂K1

, and
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(v) ∂K̃1

∂b
≥ (≤) 0 iff

∂2Π∗

1
(K̃1, 0, 0)

∂b∂K1

≥ (≤) c1 θ̄

(K̃1)2
∂B
∂b

− δ
∂2∆(K̃1)
∂b∂K1

.

Proof. The proofs are similar to Proposition 4’s.

The intuitions of Proposition 6(i)-(ii), (iv), and (v) are the same as those of Propo-

sition 4, while the finding of Proposition 6(iii) differs from that of Proposition 4(iii) and

its reason is given below. The impact of port 2’s marginal cost (c2) on government 1’s

optimal facility level consists of a direct and an indirect effects. The direct effect refers

to c2 affecting government 1’s optimal first-period facility level, and is positive as dis-

played in Proposition 4(iii). However, government 2’s optimal facility level (K∗

2 ) will

alter with varying K1. Accordingly, government 1’s second-period equilibrium social

welfare will also change with varying K1, which is the indirect effect. Far-sighted gov-

ernment 1 would consider this indirect effect when making decision at period 1. Since

Proposition 2(v) demonstrates that the influence of K1 on K∗

2 is unsure, the impact of

port 2’s marginal costs on government 1’s optimal facility level is also indefinite.

5. Some Implications of Subgame Perfect Equilibria

In sequential games without considering uncertainty and asymmetric information,

first movers usually own some advantages over the followers. Our settings allow uncer-

tainty and asymmetric information. Thus, it is worthy exploring the conditions under

which the first-mover advantage exists.

We first compare equilibrium expected social welfares of both governments when

ports are short-sighted. Substituting SPE (K∗

1 , (p̂1, p̂2), K∗

2 , (p
∗

1, p∗2)) into (28) and

(42) generates governments 1’s and 2’s equilibrium expected social welfares,

SW ∗

1 ≡ π̂1(K
∗

1 , 0) − γ1K
∗

1 + θ̄

[

Bc1

K∗
1

+ Dc2

]

+ A[2θ̄ + θ̄2 + σ2] and

SW ∗

2 ≡ π∗

2(K
∗

1 , K∗

2 , 0) − γ2K
∗

2 + µ(K∗

1 , θ1)[
Bc2

K∗
2

+
Dc1

K∗
1

]

+A[2µ(K∗

1 , θ1) + µ(K∗

1 , θ1)
2 + σ2(K∗

1 , θ1)],
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where

π̂1(K
∗

1 , 0) = A +
c1B

K∗
1

+ Dc2 +
c1c2F

K∗
1

+ G(
c1

K∗
1

)2 + Hc2
2 and

π∗

2(K
∗

1 , K∗

2 , 0) = A +
c2B

K∗
2

+
c1D

K∗
1

+
c1c2F

K∗
1K

∗
2

+ G(
c2

K∗
2

)2 + H(
c1

K∗
1

)2.

Let us consider a simple case with c1 = c2 = c, γ1 = γ2 = γ, and θ̄ = 0, meaning that

ports’ marginal costs are symmetric, governments face the same unit investment cost,

and the unconditional mean of stochastic demand is zero. Under the circumstance, we

have K∗

1 = KNU
1 = KNU

2 , K∗

2 > KNU
2 = K∗

1 , and

SW ∗

1 − SW ∗

2 = [π̂1(K
∗

1 , 0) − π∗

2(K
∗

1 , K∗

2 , 0)] − γ(K∗

1 − K∗

2) − cµ(K∗

1 , θ1)[
B

K∗
2

+
D

K∗
1

]

+A(σ2 − σ2(K∗

1 , θ1)) − A[2µ(K∗

1 , θ1) + µ(K∗

1 , θ1)
2]. (55)

The signs of the first, third, fourth, and fifth terms on the RHS of (55) are unsure,

and the second term is positive. In general, relative sizes of the conditional and un-

conditional means (or variances) of stochastic demand could be positive or negative.

By analyzing (55), we can obtain the followings.

Lemma 3: Suppose c1 = c2 = c, γ1 = γ2 = γ, and θ̄ = 0. Then we have SW ∗

2 > SW ∗

1

if µ(K∗

1 , θ1) > 0 and σ2(K∗

1 , θ1) > σ2 + t1. In contrast, we have SW ∗

1 > SW ∗

2 if

µ(K∗

1 , θ1) < 0 and σ2 > σ2(K∗

1 , θ1)+ t2. Here t1 = 1
A
{|π̂1(K

∗

1 , 0)−π∗

2(K
∗

1 , K∗

2 , 0)|+

γ(K∗

2 − K∗

1 ) + cµ(K∗

1 , θ1)|
B
K∗

2

+ D
K∗

1

|} > 0 and t2 = 1
A
{|π̂1(K

∗

1 , 0) − π∗

2(K
∗

1 , K∗

2 , 0)| −

cµ(K∗

1 , θ1)|
B
K∗

2

+ D
K∗

1

|} > 0.

Proof. See the Appendix.

Positive µ(K∗

1 , θ1) implies that government 2 is optimistic about the future market

demand. Thus, she will provide more facilities. On the other hand, the condition of

σ2(K∗

1 , θ1) being bigger enough than σ2 suggests that government 2 will face larger

variations of the future market demand than government 1. Proposition 2(ii) and

Proposition 4(ii) show that the (conditional) variance of stochastic demand will not

affect governments’ optimal facility levels. However, as indicated by (12)-(15) and (36),
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ports’ equilibrium profits are convex functions of realized stochastic demands (θ1 or

θ2). This in turn reflects that governments are risk-lovers in facing demand uncer-

tainty. Thus, the larger the variance of stochastic demand is, the higher equilibrium

social welfares governments will have. Hence, government 2 may own the second-mover

advantage. In contrast, under negative conditional means and large enough uncondi-

tional variances of stochastic demand, government 1 will have the first-mover advantage

because government 2 has little incentive to provide more facilities and risk-loving gov-

ernment 1 faces bigger variations of the future market demand. Outcomes of Lemma 3

state that governments developing their ports later may have larger benefits (or equi-

librium expected social welfare) than those moving earlier especially when the future

market demand has high volatility.

Finally, similar results could be acquired when ports are far-sighted.

6. Extensions

In this section, we show that our findings in Sections 2-5 stay true qualitatively

when uncertainty comes from the cost side, or when customers’ service demands depend

on ports’ facility levels. All the proofs are available upon request.

6.1. Cost Uncertainty

In the real world, uncertainty could arise from the cost side, such as oil price

shocks, random cargo loading and unloading situations, and wage disputes between

port authorities and labor unions. Let us consider the following stochastic cost function

for port i,

Ci(qi, Ki, ε) = [
ci

Ki

− ε]qi, i = 1, 2, (56)

where ε represents the cost-side uncertainty of ports with mean ε̄ and variance σ2
ε .

The larger ε is, the lower marginal costs ports have. On the other hand, the market
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demands faced by ports 1 and 2 are

q1 =
1

1 + b
−

p1

1 − b2
+

bp2

1 − b2
and (57)

q2 =
1

1 + b
+

bp1

1 − b2
−

p2

1 − b2
, respectively. (58)

By (56)-(58), port i’s profit function is

πi(pi, pj) = [pi −
ci

Ki

+ ε][
1

1 + b
−

pi

1 − b2
+

bpj

1 − b2
]

for i, j = 1, 2. Accordingly, the associated first-order conditions for interior equilibrium

prices are

∂π1

∂p1
=

1

1 + b
−

ε

1 − b2
+

c1

(1 − b2)K1
−

2p1

1 − b2
+

bp2

1 − b2
= 0 and (59)

∂π2

∂p2
=

1

1 + b
−

ε

1 − b2
+

c2

(1 − b2)K2
−

2p2

1 − b2
+

bp1

1 − b2
= 0. (60)

Equations (59)-(60) can be reduced to (7)-(8) if θ2 in (7)-(8) is replaced by −ε
(1−b)

. It

suggests that the cost-side uncertainty defined in (56) rescales the demand uncertainty

defined in (1)-(2). Thus, the outcomes in Sections 2-5 would remain true qualitatively.

6.2. Dependence of Demand and Supply of Ports’ Services

In Sections 2-5, the demand and supply of ports’ services are implicitly assumed

independent. However, they may not be. For instance, shipping lines are attracted by

the ports with more facilities to save time. We will address this issue here and show

that considering the dependence of demand and supply of ports’ services will not alter

the results.

Let the inverse demand functions faced by ports 1 and 2 be

p1 = 1 + θ + K1 − q1 − bq2 and (61)

p2 = 1 + θ + K2 − q2 − bq1, respectively. (62)
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The larger facility levels ports have, the more service demands ports face. By rear-

ranging (61)-(62), we can obtain demand functions of ports 1 and 2,

q1 =
1 + θ

1 + b
+

K1 − bK2

1 − b2
−

p1

1 − b2
+

bp2

1 − b2
and

q2 =
1 + θ

1 + b
+

K2 − bK1

1 − b2
+

bp1

1 − b2
−

p2

1 − b2
, respectively.

Ports’ cost functions are assumed the same as those in (5). Then, port i’s profit

function

πi(pi, pj) = (pi −
ci

Ki

)[
1 + θ

1 + b
+

Ki − bKj

1 − b2
−

pi

1 − b2
+

bpj

1 − b2
], i, j = 1, 2. (63)

Consequently, we can acquire ports’ equilibrium prices,

p̌1 =
(1 − b)(1 + θ2)

(2 − b)
+

1

(4 − b2)

[

c2b

K2

+
2c1

K1

]

+
(2 − b2)K1 − bK2

4 − b2
and

p̌2 =
(1 − b)(1 + θ2)

(2 − b)
+

1

(4 − b2)

[

c1b

K1
+

2c2

K2

]

+
(2 − b2)K2 − bK1

4 − b2
.

Here p̌1 and p̌2 own the same properties as those in Lemma 1 except that the sign of

∂p̌i

∂Ki
becomes uncertain.2

Substituting equilibrium price (p̌1, p̌2) into ports’ profit functions in (63) produces

ports’ equilibrium profit functions below.

π̌1(K1, K2, θ2) = Aθ2
+ Bθ2

(
c1

K1
) + Dθ2

(
c2

K2
) +

Fc1c2

K1K2
+ G(

c1

K1
)2 + H(

c2

K2
)2

+
[(2 − b2)K1 − bK2]

2

(4 − b2)2(1 − b2)
+

2(1 + θ2)[(2 − b2)K1 − bK2]

(4 − b2)(1 + b)(2 − b)

+
c1

K1

[
2(b2 − 2)[(2 − b2)K1 − bK2]

(4 − b2)2(1 − b2)
] +

c2

K2

[
2b[(2 − b2)K1 − bK2]

(4 − b2)2(1 − b2)
]

2Contrary to Lemma 1(i), we have ∂p̌i

∂Ki

=
−2ci+(2−b2)K2

i

(4−b2)K2

i

, hence ∂p̌i

∂Ki

≥ (≤) 0 iff 2ci ≤ (≥)

(2−b2)K2
i , i = 1, 2. As in Lemma 1(i), rising Ki will lead to lower marginal costs of port i, hence port

i will decrease its service price. However, under the settings of (61)-(62), rising Ki will raise cargo

handling demands for port i, so will its service price. Thus, the total effect of Ki on p̌i is indefinite.
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and

π̌2(K1, K2, θ2) = Aθ2
+ Bθ2

(
c2

K2
) + Dθ2

(
c1

K1
) +

Fc1c2

K1K2
+ G(

c2

K2
)2 + H(

c1

K1
)2

+
[(2 − b2)K2 − bK1]

2

(4 − b2)2(1 − b2)
+

2(1 + θ2)[(2 − b2)K2 − bK1]

(4 − b2)(1 + b)(2 − b)

+
c2

K2
[
2(b2 − 2)[(2 − b2)K2 − bK1]

(4 − b2)2(1 − b2)
] +

c1

K1
[
2b[(2 − b2)K2 − bK1]

(4 − b2)2(1 − b2)
],

where the definitions of Aθ2
, Bθ2

, Dθ2
, F, G, and H are given in (13)-(18). By letting

θ2 = 0, we can get ports’ equilibrium second-period profits under no uncertainty as

follows.

π̌1(K1, K2, 0) = A + B(
c1

K1
) + D(

c2

K2
) +

Fc1c2

K1K2
+ G(

c1

K1
)2 + H(

c2

K2
)2

+
[(2 − b2)K1 − bK2]

2

(4 − b2)2(1 − b2)
+

2[(2 − b2)K1 − bK2]

(4 − b2)(1 + b)(2 − b)

+
c1

K1
[
2(b2 − 2)[(2 − b2)K1 − bK2]

(4 − b2)2(1 − b2)
] +

c2

K2
[
2b[(2 − b2)K1 − bK2]

(4 − b2)2(1 − b2)
]

and

π̌2(K1, K2, 0) = A + B(
c2

K2
) + D(

c1

K1
) +

Fc1c2

K1K2
+ G(

c2

K2
)2 + H(

c1

K1
)2

+
[(2 − b2)K2 − bK1]

2

(4 − b2)2(1 − b2)
+

2[(2 − b2)K2 − bK1]

(4 − b2)(1 + b)(2 − b)

+
c2

K2
[
2(b2 − 2)[(2 − b2)K2 − bK1]

(4 − b2)2(1 − b2)
] +

c1

K1
[
2b[(2 − b2)K2 − bK1]

(4 − b2)2(1 − b2)
],

where A, B, and D are defined in (21)-(23). Denote

ˇSW
NU

2 (K1, K2) = π̌2(K1, K2, 0) − γ2K2

government 2’s social welfare and ǨNU
2 government 2’s optimal facility level under no

uncertainty. Then, government 2’s expected social welfare under uncertainty is

ˇSW 2(K2, K1, θ2) = Eπ̌2(K1, K2) − γ2K,

where Eπ̌2(K1, K2) =
∫

π̌2(K1, K2, θ2)f(θ2 | K1, θ1)dθ2. By simple calculations, we

can get

Eπ̌2(K1, K2) = π̌2(K1, K2, 0) + µ(K1, θ1){B + D +
2[(2 − b2)K2 − bK1]

(4 − b2)(1 + b)(2 − b)
}

+A[2µ(K1, θ1) + µ(K1, θ1)
2 + σ2(K1, θ1)].
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Then we have

ˇSW 2(K1, K2) = ˇSW
NU

2 (K1, K2) + µ(K1, θ1){B + D +
2[(2 − b2)K2 − bK1]

(4 − b2)(1 + b)(2 − b)
}

+A[2µ(K1, θ1) + µ(K1, θ1)
2 + σ2(K1, θ1)].

Accordingly, we have

∂ ˇSW 2(K1, K2, θ1)

∂K2

=
∂ ˇSW

NU

2 (K1, K2)

∂K2

+
2(2 − b2)µ(K1, θ1)

(4 − b2)(1 + b)(2 − b)
.

Evaluating the facility level at ǨNU
2 yields

∂ ˇSW 2(K1, ǨNU
2 )

∂K2
=

∂ ˇSW
NU

2 (K1, ǨNU
2 )

∂K2
+

2(2 − b2)µ(K1, θ1)

(4 − b2)(1 + b)(2 − b)

=
2(2 − b2)µ(K1, θ1)

(4 − b2)(1 + b)(2 − b)

since
∂ ˇSW

NU
2

(K1, ǨNU
2

)

∂K2

= 0. Thus, as in Section 2, relative sizes of Ǩ2 and ǨNU
2 depend

on the sign of µ(K1, θ1) because 2(2−b2)
(4−b2)(1+b)(2−b)

> 0. This means that Proposition 1’s

outcomes remain true. And it is easy to check that p̌2 owns all properties of Proposition

2.

Now let us move back to period 1. The equilibrium prices in period 1 for short-

sighted ports are

p̄1 =
(1 − b)(1 + θ1)

(2 − b)
+

1

(4 − b2)

[

c2b +
2c1

K1

]

+
(2 − b2)K1 − bK∗

2

4 − b2
and

p̄2 =
(1 − b)(1 + θ1)

(2 − b)
+

1

(4 − b2)

[

c1b

K1
+ 2c2

]

+
(2 − b2)K∗

2 − bK1

4 − b2
.

And ports’ equilibrium profits in period 1 are

π̌1(K1, θ1) = Aθ1
+ Bθ1

(
c1

K1

) + Dθ1
c2 + F

c1c2

K1

+ G(
c1

K1

)2 + Hc2
2

+
[(2 − b2)K1 − bK2]

2

(4 − b2)2(1 − b2)
+

2(1 + θ1)[(2 − b2)K1 − bK2]

(4 − b2)(1 + b)(2 − b)

+
c1

K1
[
2(b2 − 2)[(2 − b2)K1 − bK2]

(4 − b2)2(1 − b2)
] + c2[

2b[(2 − b2)K1 − bK2]

(4 − b2)2(1 − b2)
]
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and

π̌2(K1, θ1) = Aθ1
+ Bθ1

c2 + Dθ1
(

c1

K1
) +

Fc1c2

K1
+ Gc2

2 + H(
c1

K1
)2

+
[(2 − b2)K2 − bK1]

2

(4 − b2)2(1 − b2)
+

2(1 + θ1)[(2 − b2)K2 − bK1]

(4 − b2)(1 + b)(2 − b)

+c2[
2(b2 − 2)[(2 − b2)K2 − bK1]

(4 − b2)2(1 − b2)
] +

c1

K1
[
2b[(2 − b2)K2 − bK1]

(4 − b2)2(1 − b2)
].

Again, denote ˇSW
NU

1 (K1) = π̌1(K1, 0)− γ1K1 government 1’s social welfare under no

uncertainty, where π̌1(K1, 0) is from π̌1(K1, θ1) evaluated at θ1 = 0. Then, government

1 will choose Ǩ1 to maximize her expected social welfare

ˇSW 1(K1) ≡

∫ 1

−1

π̌1(K1, θ1)f(θ1)dθ1 − γ1K1.

By some calculations, we have

∫ 1

−1

π̌1(K1, θ1)f(θ1)dθ1 = π̌1(K1, 0) + θ̄{B + D +
2[(2 − b2)K1 − bK2]

(4 − b2)(1 + b)(2 − b)
}

+A[2θ̄ + θ̄2 + σ2].

Accordingly,

∂ ˇSW 1(Ǩ1)

∂K1

=
∂ ˇSW

NU

1 (Ǩ1)

∂K1

+
2(2 − b2)θ̄

(4 − b2)(1 + b)(2 − b)
= 0.

Therefore, relative sizes of Ǩ1 and ǨNU
1 depend on the sign of θ̄. Proposition 3 remains

true, and Ǩ1 owns the properties of Proposition 4.

Finally, similar conclusions can be drawn when ports are far-sighted.

7. Conclusions and Policy Implications

This paper studies governments’ optimal facility investments and ports’ optimal

pricing in a two-period model considering demand uncertainty and differential prod-

ucts. In our sequential game, government 1 selects a facility level at the beginning
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of the first period, while government 2 chooses hers at the beginning of the second

period. And ports decide their service prices at the end of the two periods. Moreover,

governments and ports have asymmetric information about uncertain market demands.

Several outcomes are uncovered in this paper. First, the differences of government

2’s optimal facility levels between uncertainty and no uncertainty are determined solely

by the conditional mean of stochastic demand, while the difference for government 1

depends on the unconditional mean of stochastic demand only when ports are short-

sighted. If ports implement far-sighted development policy, other model parameters,

such as ports’ marginal costs and service substitution degrees, could also affect the dis-

tinction of government 1’s facility levels between uncertainty and no uncertainty. Sec-

ond, governments’ optimal facility investments will increase with rising (conditional)

means of stochastic demand and their competing ports’ marginal costs. In contrast,

impacts of own ports’ marginal costs and service substitution degrees on governments’

optimal facility investments are unsure. And the (conditional) variance of stochastic

demand has no effect on governments’ optimal facility investments. Moreover, gov-

ernment 2 may provide more or fewer facilities as government 1 invests more. Third,

government 1 may not have the first-mover advantage. That is, government 2 may

enjoy the second-mover advantage. Fourth, ports will raise their service prices when

governments’ facility investments decrease, ports’ marginal costs increase, or market

demands become stronger. However, impact of the service differentiation degree on

ports’ equilibrium prices is uncertain.

All the above results remain true qualitatively when we extend the model by con-

sidering the cost-side uncertainty and the dependence of demand and supply of ports’

services. Since we do not take congestible transport networks to ports’ hinterlands

into account, this research can be further expanded by analyzing how governments

and ports behave when they face uncertainty and congestible transport networks at

the same time.
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Finally, several policy implications can be drawn based on our results. First, un-

der the settings of additive uncertainty and governments’ simultaneous move, Chen et

al. (2010) show that the mean stochastic demand is the only factor in determining

the difference of governments’ optimal facility investments between uncertainty and no

uncertainty. However, under the settings of additive uncertainty and governments’ se-

quential moves here, this difference could also depend on factors such as ports’ marginal

costs, service substitution degrees and discount rates. It implies that timing of gov-

ernments’ facility investments matters. Second, we specify the conditions under which

government 1 or government 2 has a higher expected social welfare. This information is

useful for governments when developing their ports. Third, the outcomes of how ports’

equilibrium prices are affected by governments’ facility investments, ports’ marginal

costs, the service substitution degree, and uncertain market situations actually provide

some empirically testable hypotheses.

Appendix

Derivation of Equation (25): Taking the expectation of (13) with respect to θ2 yields

∫ 1

−1

Aθ2
f(θ2 | K1, θ1)dθ2

=
(1 − b)

(1 + b)(2 − b)2

[
∫ 1

−1

(1 + 2θ2 + θ2
2)f(θ2 | K1, θ1)dθ2

]

= A
[

1 + 2µ(K1, θ1) + µ(K1, θ1)
2 + σ2(K1, θ1)

]

.

Similarly, we can get

∫ 1

−1

Bθ2
f(θ2 | K1, θ1)dθ2 = B[1 + µ(K1, θ1)]

∫ 1

−1

Dθ2
f(θ2 | K1, θ1)dθ2 = D[1 + µ(K1, θ1)]

Note that G, F, and H are independent of θ2. Substituting these three equalities into
∫ 1

−1
π∗

2(K1, K2, θ2)f(θ2 | K1, θ1)dθ2 produces (25). 2
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Proof of Proposition 1: Given (K1, θ1), evaluating (29) at KNU
2 yields

∂SW2(K1, KNU
2 , θ1)

∂K2
=

∂SW NU
2 (K1, KNU

2 )

∂K2
−

c2Bµ(K1, θ1)

(KNU
2 )2

= −
c2Bµ(K1, θ1)

(KNU
2 )2

by (27). Since B < 0, the sign of
∂SW2(K1, KNU

2
, θ1)

∂K2

is determined solely by the sign of

µ(K1, θ1). If µ(K1, θ1) > 0, we have
∂SW2(K1, KNU

2
, θ1)

∂K2

> 0. Strict concavity of SW2 and

(30) imply that K∗

2 > KNU
2 . In contrast, if µ(K1, θ1) < 0, we have

∂SW2(K1, KNU
2

, θ1)

∂K2

< 0,

hence K∗

2 < KNU
2 . Finally, if µ(K1, θ1) = 0, we have

∂SW2(K1, KNU
2

, θ1)

∂K2

= 0, thus

K∗

2 = KNU
2 . 2

Proof of Proposition 2: (i) Differentiating (30) with respect to µ(K1, θ1) generates

∂K∗

2

∂µ(K1, θ1)
=

c2B

(K∗
2 )2

· [
∂2SW2(K

∗

2)

∂K2
2

]−1 > 0

by strict concavity of SW2 and B < 0.

(ii) This is because σ2 does not appear in (29).

(iii) Differentiating (30) with respect to c1 yields

∂K∗

2

∂c1
=

c2F

K1(K∗
2)

2
· [

∂2SW2(K
∗

2 )

∂K2
2

]−1 > 0

by strict concavity of SW2 and F < 0.

(iv) Differentiating (30) with respect to c2 produces

∂K∗

2

∂c2
=

1
(K∗

2
)2
{[1 + µ(K1, θ1)]B + c1F

K1

+ 4c2G
K∗

2

}

∂2SW2

∂K2

2

≥ (≤) 0

iff [1 + µ(K1, θ1)]B +
c1F

K1
+

4c2G

K∗
2

≤ (≥) 0.

(v) Differentiating (30) with respect to K1 generates

∂K∗

2

∂K1
=

c2
K2

1

[B ∂µ(K1, θ1)
∂K1

− c1F
K2

1

]

∂2SW2(K∗

2
)

∂K2

2

≥ (≤) 0

iff
∂µ(K1, θ1)

∂K1

≥ (≤)
c1F

BK2
1

.
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(vi) Differentiating (30) with respect to b yields

∂K∗

2

∂b
=

c2
(K∗

2
)2
{[1 + µ(K1, θ1)]

∂B
∂b

+ c1
K1

∂F
∂b

+ 2c2
K∗

2

∂G
∂b
}

∂2SW2

∂K2

2

≥ (≤) 0

iff [1 + µ(K1, θ1)]
∂B

∂b
+

c1

K1

∂F

∂b
+

2c2

K∗
2

∂G

∂b
≤ (≥) 0.

2

Proof of Proposition 5: Evaluating (53) at KNU
1 produces

∂TSW1(K
NU
1 )

∂K1
=

∂TSW NU
1 (KNU

1 )

∂K1
−

c1θ̄B

(KNU
1 )2

+ δ
∂4(KNU

1 )

∂K1

= −
c1θ̄B

(KNU
1 )2

+ δ
∂4(KNU

1 )

∂K1

by the definition of KNU
1 . Thus, we have

∂TSW1(K
NU
1 )

∂K1
≥ (≤) 0 iff δ

∂4(KNU
1 )

∂K1
−

c1θ̄B

(KNU
1 )2

≥ (≤) 0.

Then, by Assumption 3 and (54), we have

K̃1 ≥ (≤) KNU
1 iff δ

∂4(KNU
1 )

∂K1
−

c1θ̄B

(KNU
1 )2

≥ (≤) 0.

2

Proof of Lemma 3: By (22)-(23), we have |B| > D due to 0 < b < 1. However,

1
K∗

1

> 1
K∗

2

by K∗

2 > K∗

1 . Thus, the sign of ( B
K∗

2

+ D
K∗

1

) is unsure. If µ(K∗

1 , θ1) > 0,

the fifth term on the RHS of (55) is negative. Then, SW ∗

2 > SW ∗

1 if σ2(K∗

1 , θ1) >

σ2 + 1
A
{|π̂1(K

∗

1 , 0) − π∗

2(K
∗

1 , K∗

2 , 0)| + γ(K∗

2 − K∗

1 ) + cµ(K∗

1 , θ1)|
B
K∗

2

+ D
K∗

1

|} > 0.

In contrast, if −1 < µ(K∗

1 , θ1) < 0, the fifth term on the RHS of (55) is positive.

Then, we have SW ∗

1 > SW ∗

2 if σ2 > σ2(K∗

1 , θ1) + 1
A
{|π̂1(K

∗

1 , 0) − π∗

2(K
∗

1 , K∗

2 , 0)| −

cµ(K∗

1 , θ1)|
B
K∗

2

+ D
K∗

1

|} > 0. 2
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