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ABSTRACT 

In this work, and as an alternative to the traditional maximization techniques based upon 
gradients, the Simulated Annealing technique is applied to estimate a mixed logit model for 
transport mode choice. The method is applied to a specific case with real survey data, in 
order to analyze and discuss its advantages and drawbacks. 
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INTRODUCTION 

Discrete choice models based upon the random utility maximization theory are used in 
transport to study the behavior of travelers. Particularly, they are used to predict the choice of 
different modes, and, at a less extent, the choice of travels destination. In current practice, 
the most used models correspond to multinomial logit and nested logit. In the last decade, 
the popularity of the mixed logit has increased between professionals and researchers due to 
its flexibility (Mc-Fadden, 2000) and easy estimation (Hensher, 2003). By applying this model 
it is possible to specify the random heterogeneity in the users’ tastes in a more flexible and 
direct way than with classical probit schemes (Daganzo et al., 1977), which represent the 
available alternative in the current technical literature. 
 
Once a functional form for both the utility and the error is assumed, the estimation of the logit 
model is focused on obtaining the estimators of the parameters that specify such a utility. 
This can be done by a classical approach or with the help of bayesian techniques (Allenby, 
1994). In the classical approach, the mixed logit parameters are usually estimated by 
maximizing the simulated log-likelihood on a sample of choices. 



Simulated Annealing Technique Applied to Mixed Logit Estimation 
 BRÉGAINS, Julio C; PÉREZ LÓPEZ, J. Benito; ORRO, Alfonso 
 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
 2 

In the same way the log-likelihood function of the linear (on the parameters) multinomial logit 
model is globally concave –thus a single maximum being secured (Mc-Fadden, 1973)–, this 
is not held by other discrete choice models. In the case of mixed logit, even with a linear 
specification on its parameters, there is no guarantee of the existence of a unique maximum. 
For this reason, the use of numerical maximization techniques that maintain robustness even 
when dealing with non-concave optimizing functions becomes necessary (Walker, 2001:58). 
Likewise, it becomes necessary to verify that a global maximum has been obtained by 
performing the optimization with different starting points. 
    
The classical maximization processes make use of known numerical techniques, which are 
constituted, mainly, by variations of the gradients method. Such techniques are relatively 
fast. Nevertheless, since they have to perform numerical first derivatives (i.e., gradients), 
and, in some cases, inverse Hessian matrices (which imply first and second numerical partial 
derivatives), in some cases they carry convergence problems, more often than not related 
with Hessian matrices determinants equal, or near, to zero. Another of the difficulties of the 
gradient methods lies on their easiness of stagnating into local extremes, something that 
becomes particularly restrictive in cases where the maximizing function possesses a 
considerable variability. 
  
One or the alternatives proposed to solve the problems of deterministic techniques 
mentioned above is the use of stochastic methods, such as, for example, Monte Carlo 
(Metropolis, 1949), Simulated Annealing (Kirkpatrick, 1983), or Particle Swarm Optimization 
(Kennedy, 2001). All of these methods share the advantage of dealing adequately with the 
difficulties described above, sometimes at the price of being slower than their deterministic 
counterparts. In the field of the discrete choice models, this kind of techniques has been 
applied to a probit model (Liu, 2000), after adding a non-linear programming post-process to 
refine the search for the optimum solution.  
 
Other maximization algorithms, with restrictions and with trust regions, applied specifically to 
mixed logit, such as BTR (Basic trust-region algorithm) and BTRDA (Basic trust-region 
algorithm with dynamic accuracy) (Bastin, 2004), have obtained significant reductions in the 
time computing. The BIOGEME software (see Bierlaire, 2003 and Bierlaire, Bolduc and 
Godbout, 2003) propose other estimation algorithms, including the possibility of setting 
additional restrictions. In order to solve unconstrained nonlinear problems whose second 
derivatives matrices are singular at a local solution, Bierlaire and Thémans (2009) propose 
an iterative procedure which allows identifying a singularity in the objective function and then 
artificially appending curvature to it during the course of the optimization algorithm.  
 
In this work, the use of the simulated annealing as an alternative to the traditional methods of 
maximization of the log-likelihood function applied to modal split is proposed. Even this 
proposal does not intend to establish such a method as a general solution to the optimization 
problem, it could be considered to be perfectly adequate in certain cases, as an alternative to 
the other available techniques.  
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In order to study the abovementioned proposal, the work is divided into three parts. 
 
The justifications are presented in the first part (Method), through a brief description of both 
the mixed logit applied to the transport planning –in particular, to modal split–, and the 
estimation of such a model (log-likelihood maximization) by means of the use of several 
deterministic techniques. Next, the simulated annealing method is described in more detail. 
 
In the second part (Examples), the techniques are applied to a particular case, which 
corresponds to a set of data obtained by a real poll made in Santiago de Chile city (Ortúzar, 
1983). This set is particularly adequate for testing and comparing the optimization methods 
described in the first part, since it has been found that, with it, some of the classical 
techniques experience convergence problems. The simulated annealing and the other 
techniques are then applied to this set, being the obtained results conveniently compared 
among themselves. Some of the models specifications (such as the number of utility random 
coefficients –which are considered to be linear in the attributes) are also further modified, in 
order to observe the different results, not only with the various optimization techniques, but 
with the same technique after varying these coefficients.  
 
Finally, the Results are analyzed and the Conclusions are presented. 
 

METHOD 

Mixed Logit 

Within the framework of the theory of maximizing the random utility of the discrete choice 
model, the individual is assumed to know the importance of the available alternatives and to 
always choose the alternative of greatest utility. For the analyst, this utility will have a 
representative component (V) and a random component (). 
 
In the random coefficients approach (see Train, 2003), this decomposition is treated in a 
slightly different, although completely equivalent, way. One assumes that the utility of 
alternative j for individual n can be specified as 
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where the coefficients  represent the individual's tastes, and vary within the population 
according to a distribution established by the analyst, with density function f(|) dependent 
on certain underlying parameters  (e.g., the distribution's mean b and standard deviation ); 
the x’s are attributes of alternative j: characteristics of the trip or socioeconomic 
characteristics of the individual. 
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In the case applied to modal split in transports, the probability Pnj that an individual n chooses 
a transport j among J available options can be represented as: 
 

( )

( )

1 1

( | ) ( | )

T
nj nj

T
ni ni

V x

J J
V x

i i

nj
e e

f d f d
e e

P
 

 
     

 

  
 

 
(2) 

 
The mixing distribution f(|) captures both the variance and the correlation of the non-
observed features. In most applications of mixed logit, for f are used a variety of continuous 
distribution functions such as normal, log-normal, uniform, etcetera, even though discrete 
functions are also considered. 
 
In general, the integral given in equation (2) does not lead to a closed form solution, and 
therefore its value is commonly estimated by numerical simulation. The symbolic solution is 
then replaced by the simulated probability SPnj which is obtained by an adequate 
discretization of (1). If the Vnj function is specified by means of random coefficients, such 
discretization is performed by generating R values of  in f(|), called r, obtained whether 
by using pseudo-random values or by generating them quasi-randomly, as, for example, by 
drawing Halton sequences (Halton, 1960). The simulated probability, which finally depends 
on the  parameters of f, is the average value obtained by the equation: 
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(3) 

 

Log-likelihood Maximization Techniques: Classical Approaches and Simulated 
Annealing. 

The estimation of the  parameters of the utility functions is performed by maximizing the 
simulated log-likelihood SLL (Train, 2003), in which the Pnj values are replaced by their 
corresponding SPnj given in (3), considering all of the J alternatives and the N sample 
individuals: 
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The usual maximization techniques are focused on procedures based upon the computation 
of gradients, generally of second order, making use of first and second numerical derivatives 
(gradients and hessians) of the SLL function. 
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The Newton-Raphson (NR) procedure can be used, but it has two drawbacks; calculation of 
Hessian in each step and lack of guarantee of improvement in every step if the function is not 
globally concave. Variable metric algorithms can be used to achieve function increments. 
Methods of this type are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS), that approximate the Hessian using several points of the likelihood function. 
However, Bernd, Hall, Hall and Haussmann method (BHHH) is used frequently in this field. 
This method utilizes the fact that the SLL function is the sum of observations log-likelihoods. 
The BHHH method uses the average outer product of the scores1 as an approximation of the 
Hessian. All these methods are properly described in Train (2003). 
 
The Simulated Annealing represents one of the alternatives to the classical optimization 
techniques. The name and operation of such an algorithm is based upon an analogy with the 
annealing of metals or the gradual cooling of crystalline structures applied to a material, in 
order to reduce its defects and to increase the size of its crystals (Kirkpatrick, 1983). The 
initial heat produces the disarrangement and the random change of the initial positions of the 
atoms (which corresponds to a given global internal energy of the material), by means of the 
generation of states of higher energies (excitation levels). The slow cooling the material is 
exposed to allows obtaining a configuration whose global energy is lower than the initial one. 
 
To explain the operation of such a technique, it is useful to sketch a flux diagram, considering 
the special case in which a Boltzmann distribution is applied, and specified for the case of 
perturbing the r|coefficients, which would lead to the maximization of the SLL, see Fig. 1. 
 
Let us consider that the measured utilities Vnj consist of the sum of K terms, composed of Q 
fixed coefficients bq, and D random coefficients of mean value bd and standard deviation d. 
Under these assumptions, the following conditions apply: 
 

 
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where Q and D correspond to the indexes of the variables with fixed and random 
coefficients, respectively, whereas  represents the empty set. 
 
In this way, the variables  established in equations (1) to (4) are specified by a vector that 
contains the set of values bq, bd and d. 
 
Let us call C the value of the vector  that corresponds to some iteration of the SA algorithm, 
and P the value of the same vector on a previous iteration. 
 

                                                            
1 The score of an observation is the derivative of that observation’s log‐likelihood with respect to the 

parameters evaluated at step’s . 
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The first step of the algorithm, see Fig. 1, consists of initializing conveniently the values of 
the P vector, whether by assigning to it some values randomly chosen, restricted within the 
range I≤P≤F, or making it equal to any other vector the researcher considers to be more 
appropriate2. 
 
The value of the maximum log-likelihood LLB the algorithm is searching for (i.e. best LL) has 
an initial value which is determined by LL(P). Then, an initial temperature TI is assigned to T, 
being the latter a variable, called Temperature, that will decrease in a factor 0<<1 as the 
number of iterations increases, up to achieving a minimum (final) value given by TF. The 
temperature reduction loop (see the dashed gray line on Fig. 1), establishes the log-
likelihood value of the previous iteration LLP=LL(P). From the next step on, the vector P is 
perturbed by a quantity , being this perturbation taken on a random basis3he log-
likelihood is then updated with this new value LLC=LL(C), which is compared with that of the 
previous iteration. If the current LL is better than the previous one (LLCLLP), the solution is 
always accepted, and if, besides, LLC is better than LLB, then this configuration becomes the 
optimum solution at that iteration. The algorithm, nevertheless, allows accepting some cases 
in which the current solution is worse than the previous one (i.e. LLC<LLP), by applying the 
Boltzmann criterion, in which the value ( ) /C PLL LL Te 

is compared with a value generated 
randomly (a value between 0 and 1 of a uniform standard distribution). This condition allows 
the algorithm to alter its searching regions, reducing, in this way, the possibility of stagnation 
in local extremes. As T lowers, nevertheless, this condition becomes more and more difficult 

to meet, because 
( ) /C PLL LL Te  becomes smaller and smaller4. As a consequence of this, as the 

algorithm progresses, the jumps toward regions of lower LL become less frequent, with a 
tendency to allow only solutions that increase its value. For each temperature decreasing 
loop, (TT, i.e., the value of T is updated by setting it equal to T), M perturbations of P 
are performed. The algorithm stops when the final temperature TF is achieved. 
 
An example carried out with the described SA technique is presented below. The 
performance of such a technique is compared with the classical maximization routines given 
in the modal split estimation literature.   

                                                            
2 The expression I≤P≤F means that a bounded value between two extremes is assigned to each component of vector P; for 

example -u≤bq≤u, -v≤bd≤v and 0≤d≤w, with u, v ,w>0, dD y qQ (>0 being the set of the real positive numbers). 
3 The components of the vector  are quantities randomly generated under uniform standard distribution, conveniently 
biased and resized by the researcher.  
4 The problems for meeting such a condition depend on how close T is to TI, the latter being arbitrarily small. This condition 
is limited, naturally, by the computing capacities of the numerical tool used to run the algorithm. Such a tool is described 
upon section EXAMPLES, see below.  
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EXAMPLES 

In order to show the scope and limitations of the proposed method, some examples are 
presented below. 

Data description. 

A set of transversal section data are considered, which were obtained by means of a real poll 
corresponding to the Las Condes-Center of Santiago de Chile corridor (Ortúzar, 1983). The 
set is composed of a sample of 622 interviewees, each one having at his/her disposal J=9 
transport alternatives. The logit model applied is specified by considering the Vnj composed 
of a linear combination of K=12 descriptive variables (attributes), 4 of them being available 
for each individual. The 12 descriptive variables are distributed along 8 alternative specific 
constants and 4 additional values corresponding to travel time in vehicle (whether as driver, 
as bus/taxi/subway passenger, or as a combination of any of them), travel costs (costs per 
minute whether as driver, as bus/taxi/subway passenger, or as a combination of any of 
them), walking time (whether as driver or as passenger) and waiting time (as driver or as 
passenger). A more detailed description of the data can be found in the corresponding 
reference (Ortúzar, 1983). This database has been selected mainly because previous classic 
optimization procedures applied to it had demonstrated to have some problems to estimate 
the mixed logit parameters. The main aim of this investigation is to analyze the utility of 
simulated annealing as an alternative method for estimating these problematic cases. 
 
For studying the fitting of mixed logit to the poll variables, it is possible to specify several 
configurations with random or fixed coefficients. This is described on next section. 
 

Techniques and presented cases.   

A broad set of classical optimization techniques based upon gradient methods (or its 
derivations) were exploited. All of them have been obtained from a set of routines developed 
previously by Keneth Train, David Revelt and Paul Ruud from the University of Berkeley, 
California (Mixed Logit Estimation Routine for Cross-Sectional Data, Train, Revelt and Ruud 
1996, 1999), using Gauss, a well known matrix programming language (Aptech Systems, 
2001, 2002). This code (TRR) is available for free on the internet, at the professor Train’s 
webpage (http://elsa.berkeley.edu/~train/software.html). At the beginning of the main code of 
such tool it is indicated that the user can freely develop modified versions of it, but claiming 
these modified versions not being shared, if distributed, as alternative versions, but as new 
programs themselves. In such a case, the authors ask for the programmers to indicate in the 
code that it corresponds to a modified version of the original, the modifications to be itemized 
and the authors of such modifications to be specified as well. For carrying out the current 
research, the original TRR program has been modified by the authors (us) in order to 
incorporate the corresponding simulated annealing code.  
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With the purpose of performing an exhaustive comparison, all the routines available on TRR 
has been used. The nomenclatures used for naming all the routines are listed on Table 1. 
 
The data has been estimated by considering four different coefficient distributions, in all 
cases the random coefficients sharing normal distribution, namely: 
 

12: all of the coefficients are fixed, id est.: Q={1,2,3,4,5,6,7,8,9,10,11,12}. This configuration 
corresponds to a multinomial logit, whose estimation is very easy, but that was included to perform a 
first evaluation of the capability of the SA against the other routines. The results of this first estimation 
were then used as initial values of the remaining methods.  

11+1: Q={1,2,3,4,5,6,7,8,9,10,11}, D = {12}; this refers to a configuration with 11 fixed 
coefficients and a random one, which corresponds to the waiting time attribute. 
 
10+2: Q={1,2,3,4,5,6,7,8,9,10}, D = {11,12}; corresponds to random coefficients for waiting 
time and walking time. 
 
9+3: Q={1,2,3,4,5,6,7,8,9}, D = {10,11,12}; corresponds to random coefficients for travel 
cost, waiting time and walking time. 
 
9+1+2: Q={1,2,3,4,5,6,7,8,9,11,12}, D = {10}; corresponds to one random coefficient for 
travel cost. 
 
8+1+3: Q={1,2,3,4,5,6,7,8,10,11,12}, D = {9}; corresponds to one random coefficient for 
travel time in vehicle. 

Results and discussion. 

Table 2 shows the SLL values obtained for every configuration (Q,D), and specified for 
each of the different maximization techniques. The reported values refer to program 
executions with 400 repetitions (R = 400), and using Halton sequences; the limit in the 
number of iterations of any of the classical maximizations is taken to be 100. Further 
analyses have been performed with different values of R, diverse starting points, and up to a 
maximum of 500 iterations. In Table 2, below the SLL are written, within brackets, the 
computing times, stated in seconds5. The third row indicates the cause of sudden haltering of 
the classical algorithms. Case A indicates normal convergence. Case B denotes the 
algorithm haltered with no returned results as a consequence of reaching a singular 
numerical Hessian. Symbol C means the algorithm reached the (fixed) maximum number of 
iterations without converging; in this particular case it was verified that the algorithm was 
whether not able to achieve any improvements (the last value of the function is specified in 

                                                            
5 The computations have been performed with Gauss software tool, running in a laptop having two processors 
working at 2.4GHz, with an available RAM of 2GB under a 32-bit operating system.  
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the table) or not capable of returning reasonable solutions after discarding (numerically) too 
many observations (the last value of the function is not specified in this case).  
 
The DFP (ML) technique has turned out to be inadequate due to numerical errors, and, for 
that reason, it was not included in the table. The SD(ML) and PRCG(ML) techniques have 
not reached convergence points (even after having been tested with 500 iterations as a limit). 
 
From analyzing the data, it can be stated that the SA has performed function values close to 
the convergence point that the other algorithms reached almost homogeneously. It has been 
verified that the obtained parameter values were, likewise, very similar. In the 9+3 case, with 
which other algorithms were not able to converge, it has been found that the SA reached a 
function value that is above that of the halting point of the other methods. 
 
From the behavior analysis point of view, it was found, by using customary tests, that there is 
no significant randomness in cases 11+1 (waiting time) and 8+1+3 (travel cost). For 10+2, it is 
verified in the same manner that the standard deviation for the walking time is significant, but 
not for the waiting time, which is in accordance with the above results. It is equally significant 
the improvement and the deviation coefficient value in case 9+1+2 (in-vehicle time). 
 
The behavior of the SA routine appears to be the most robust of them all, with incremental 
SLL values which seem to be related directly with the number and significance of the random 
coefficients, becoming a very feasible alternative for replacing, or complementing, the 
classical algorithms applied to log-likelihood maximization. 
 
In contrast, nevertheless, it is necessary to comment that the algorithm reveals 
disadvantages that, even though are not severe, allows arguing that it deserves some further 
investigation in order to find some improvements to be presented in future works.  
 
One of the disadvantages of the algorithm is its slowness (when compared to the 
deterministic techniques presented here) for finding a solution. It can be seen that the 
computing time ranges, for the given examples, from 2244.12 to 13601.76 seconds (37.4 
minutes to 4.96 hours, respectively). This, however, does not constitute a real limitation: the 
algorithm largely compensates this slowness with a definite robustness, allowing the 
researcher to sacrifice time for the sake of guaranteed good results. 
 
Another disadvantage points towards the necessity of adjusting of some initial parameters, 
i.e.: TI, TF, Pi and  range (see Fig. 1). Such adjustment influences not only on the 
algorithm results, but on its computing time. Unfortunately, there is not any systematic 
method for assigning such values, being the user compelled to a trial and error procedure 
until acquiring some experience that allows him estimating, with more or less success, the 
required values to reach the calibration that leads to optimum results. In most cases it is 
necessary to re-run the algorithm several times, due to the fact that the final result depends 
on the initial value of the variables P. In the cases presented on Table 2, the final values 
were obtained after carrying out the routine twice or three times, taking the final P of 
previous executions as initial values, and modifying, at the same time, the remaining initial 
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parameters (TI, TF and  range). The computing times given in Table 2 take into account 
those re-executions, being the total time obtained as the sum of the partial times. 
 
A last disadvantage is the incapability for the final value to be really established as a 
maximum value, since the SA halts just after reaching a minimum temperature TF, giving no 
possibility of knowing if the returned final value of the algorithm corresponds to a stationary 
point. Unfortunately, verifying this is not possible by calculating the numerical gradient, since 
this is the main fallibility reason of the other methods. In such cases it is possible to solve 
partially the problem by re-running the algorithm until no improvements are obtained. Further 
investigations could follow also this line for performing a final post-processing in order to 
guarantee the presence of a maximum and also obtaining error values for the estimators. As 
said before, it is worth noting that the additional efforts derived from these problems are 
compensated by the stability of the algorithm, something that can be observed from the 
results presented in this work, at least for the considered examples. 

CONCLUSIONS 

This work has presented an exploration about the utility of the simulated annealing as a tool 
prepared for estimating mixed logit discrete choice models applied to transport. For this 
purpose, the technique has been adequately tuned, and its effectiveness and feasibility for 
maximizing the simulated log-likelihood function has been shown by presenting some 
examples. At present, a weak point of this technique lies on its comparatively larger 
computing times needed for obtaining a final solution. In an analysis with real data, the 
algorithm has been proven to be robust enough for reaching a function maximum value, 
returning a solution in cases where the classical algorithms fail. In this sense, the proposed 
technique could be considered to be an alternative tool to be exploited in such cases, 
bearing in mind that a slightly deeper participation of the researcher is required. 
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FIGURES AND TABLES 

Figure 1. Simulated Annealing flux diagram prepared for maximizing the log-likelihood (SLL) of the cases 
given in the examples (see text for variables description). 
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Table 1. Nomenclatures for each of the SLL() maximization techniques used in the examples. 

NOMENCLATURE TECHNIQUE DESCRIPTION 

NR(PR) NewtonRaphson 

BHHH(PR) Berndt, Hall, Hall and Hausman 

Routines developed by Paul Ruud 
and used in TRR code. 

SD(ML) SteepestDescent 

BFGS(ML) 
Broyden, Fletcher, Goldfarb and 
Shanno 

DFP(ML) Davidson, Fletcher and Powell 

NR(ML) NewtonRaphson 

BHHH(ML) Berndt, Hall, Hall and Hausman 

PRCG(ML) 
PolakRibieretype Conjugate 
Gradient 

Routines included in the modulus 
for maximum likelihood estimation 
run under Gauss program (Aptech, 
2001) and used in TRR code. 

SA Simulated Annealing 
Technique presented in this work, 
included in a separate version of the 
TRR code. 
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Table 2. Results of the simulated log-likelihood given for each coefficient distribution and obtained with the 
techniques described in this work. An XX indicates a case where the routine did not return any SLL value 
(unexpected halt). Below the SLL values, the algorithm computing times are given in seconds (in parenthesis). 
For each technique, third row gives the cause of the algorithm to halt (see text).  

 Coefficients Specification

Maximization 
Technique 12  11+1  10+2  9+3  9+1+2  8+1+3 

-869.984 XX XX XX -864.951 XX

(0.15) -- -- -- (19.64) --NR(PR) 

A B B B A B

-869.984 -869.983 XX XX XX XX

(0.19) (33.14) -- -- -- --BHHH(PR) 

A A B B B B

-885.573 -869.985 -865.239 -861.825 -866.141 -869.985

(12.08) (154.75) (208.66) (187.29) (156.11) (228.45)SD(ML) 

C C C C C C

-869.985 -869.985 XX XX -864.953 -869.985

(1.27) (22.15) (852.95) (1126.59) (73.93) (60.47)BFGS(ML) 

A A C C A A

-869.985 -869.985 -864.499 XX XX XX

(0.33) (43.73) (86.14) (2999.07) (3866.08) (9365.68)NR(ML) 

A A A C C C

-869.929 XX XX XX -864.953 XX

(0.41) (1093.09) (1320.81) (1488.32) (39.16) (1011.81)BHHH(ML) 

A C C C A C

-885.573 -869.985 -865.239 -861.825 -866.141 -869.985

(12.55) (184.59) (193.87) (188.50) (178.90) (242.22)PRCG(ML) 

C C C C C C

-869.992 -869.987 -864.565 -860.099 -864.876 -870.007
SA 

(2244.12) (6251.36) (6349.79) (17854.96) (16499.88) (13489.36)
 


