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ABSTRACT 

 

This paper attempts to assess the dynamic journey time reliability using the travel time reliability 

index which considers the dynamic journey time distribution. The stochastic cell transmission 

model (SCTM) is applied to propagate the dynamic stochastic traffic flows to generated 

cumulative in-/outflow distributions of each link which compose the route to be tested. The 

inputs into the SCTM are the stochastic fundamental diagrams and the stochastic demand profile 

along the path. Based on the dynamic cumulative flow distributions of each link, the Probability 

Mass Functions (PMF) of dynamic link exit (travel) time distribution is calculated using the 

First-In-First-Out (FIFO) principle and the ‘sampling’ technique, the journey time distribution is 

propagated through the weighted summation method. The model and the algorithm are tested 

against an empirical dataset of a freeway segment in California (PeMS database). 

 

Keywords: Dynamic link exit (travel) time estimation, dynamic journey travel time distribution, 

the stochastic cell transmission model, the probability mass function, Buffer Time Index.  

 

INTRODUCTION  

 

Path (journey) travel time reliability, which describes the degree of stability of travel time, plays 

an important role in travelers’ route choice and departure time choice behavior. The variation of 

journey time is caused by both of link demand uncertainties and random physical properties of 

the links that compose the route. The concept of travel time or journey time reliability has been 

analyzed mainly under the static modeling framework (see e.g. Asakura and Kashiwadani 1991; 
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and Walting 2008). However, the congestion or travel time variability in one time period may 

have impacts upon the network in other subsequent periods. Therefore, there is a strong need for 

the dynamic model with the stochastic elements to better evaluate the dynamic nature of transport 

network uncertainties. 

 

To capture the randomness in both demand and supply sides, Sumalee et al. (2009) proposed the 

Stochastic Cell Transmission Model (SCTM) which extends the modified cell transmission 

model (MCTM) (Lebacque, 1996) to allow stochastic parameters of the fundamental 

flow-density diagram as well as the stochastic inflow travel demand. The supply uncertainties in 

SCTM are governed by the random parameters of the piecewise flow-density diagram, i.e., 

free-flow speed, jam-density, and backward wave speed. The demand uncertainties are modeled 

as stochastic exogenous inputs to the SCTM. Sumalee et al. (2009) illustrated the applicability 

and performance of the proposed SCTM with the empirical dataset of a highway segment in 

California from the PeMS database. However, they did not propose a method to derive the travel 

time distribution from the SCTM.  

 

For the deterministic CTM, the travel time for traffic entering a highway segment at each time 

period can be deduced to be the time that the cumulative outflow is equal to the cumulative 

inflow at the entering time following the First-In-First-Out (FIFO) principle. However, this 

approach cannot be directly applied to the SCTM since both of the cumulative in-flow and 

out-flow are stochastic (represented by statistical distributions). This paper, thus, proposes a 

method which extends the deterministic FIFO concept for calculating the travel time distribution 

based on the stochastic cumulative inflow and outflow curves. Each interval of potential exit time 

of vehicles entering the freeway section at time t will be evaluated the Probability Mass Function 
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(PMF) (Miller and Mahmassani, 2000) of its likelihood to be the exit time of the vehicles. Given 

the PMFs of all potential exit time intervals of vehicles entering the segment at time t, the 

distribution fitting technique can be used to calibrate the statistical distribution of the travel time. 

The distribution of travel time for traffic entering the link at each time period can then be used to 

analyze the travel time reliability of that highway segment. Several indicators were proposed for 

evaluating travel time reliability but in this paper we will adopt the buffer time index (which is 

similar to the concept of travel time budget).  

 

The remainder of this paper is structured as follows. The next section introduces some 

preliminary concept of the SCTM and the index of travel time reliability used in this paper. Then, 

the third section describes the proposed method for calculating the statistical distribution of travel 

time based on the outputs from the SCTM. The fourth section presents the numerical test of the 

proposed method and SCTM with an empirical case study of a highway segment in California. 

The final section concludes the paper. 

 

JOURNEY TIME ESTIMATION AND RELIABILITY INDEX 

 

Evaluation of deterministic journey time 

 

In a macroscopic deterministic dynamic traffic flow model, the flow propagation equation for a 

link 
m
l  can be expressed as follows:   
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                          (1) 

where ( )tt  is the exit time from link 
m
l for a vehicle that enters the link at time t . ( )ml

in
C t  and 

[ ( )]ml

out
C tt  are the cumulative inflow volumes at time t and the cumulative outflow volumes at 

time ( )tt , respectively. (1) is referred to as a time-flow consistency equation on the condition 

that FIFO holds. The link travel time ( )
ml
th  is then defined as   

 ( ) = ( ) .
ml
t t th t -                                 (2) 

Journey time of path p is affected by the travel time ( )r( ), , P , 1, 2,
m

s
l m l
t l p p m Nh Î Î =   of 

all the links that compose the route p which connects the OD pair rs. In the deterministic case, the 

journey time can be defined as:  

      
1

( ) = ( ( ( ))) .
Nl mp l l l

t t th t t t -                         (3) 

Since the freeway is exposed to demand and supply uncertainties, the cumulative flows of a link 

are stochastic in nature which in turn yield stochastic travel time. To evaluate the stochastic travel 

time ( )
ml
th , we need to revise (1)-(3) to allow the stochasticity. 

 

The Stochastic Cell Transmission Model 

 

Preliminaries of the model 

 

The stochastic cell transmission model (SCTM) was proposed by Sumalee et al. (2009). The 

SCTM is a stochastic macroscopic dynamic traffic flow model which is developed basing on the 

CTM (Daganzo, 1994), the MCTM (Lebacque, 1996) and the switching mode model (SMM) 

( ) = [ ( )],m ml l

in out
C t C tt
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(Munoz et al., 2003).  

 

For a certain route p, it can be divided into several segments according to the location of the 

detectors and the on-/off ramps (Fig. 2), while the SCTMs, which are developed for each specific 

segment will load in the dynamic demand profiles and stochastic physical parameters based on 

both of the historical and real-time data provided by the detectors on the boundaries of the link 

(Fig. 1), and propagate the dynamic traffic state distributions which can be used for evaluating 

the link time distribution and journey time distribution. 

, ( )u jq k

,( ), Pr ( )j s jk k

, ( )d jq k

( )jf k

( )jr k

( )j k

, ( )u j k , ( )d j k

 

Figure 1.Schematic diagram of SCTM for segment j 

, ( )u jq k

,( ), Pr ( )j s jk k
( )jf k ( )jr k

, ( )d jq k
,1( )uq k

1 ,1( ), Pr ( )sk k
1( )f k

1( )r k

,1( )dq k , ( )Nu sq k

,( ), Pr ( )Ns s Nsk k
( )Nsf k ( )Nsr k

, ( )Nd sq k

1( )k ( )j k ( )Ns k

 

Figure 2.The schematic diagram of SCTM for route p 
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As depicted in Fig.4, a freeway segment with one on-ramp and one off-ramp is divided into p 

cells. Based on the triangular fundamental diagram (Fig. 3) and the “at most-one-wave front” 

assumption, where the wave front is the location that the congestion and free flow traffic states 

encounter, we categorize the freeway state into five modes: two steady state modes FF and CC, 

and three transient modes (CF, FC1, and FC2). FF denotes that all of the current cell densities are 

lower than their corresponding critical density
c
r , while CC denotes that the densities are greater 

than their
c
r . The three transient modes assumes that the one and only one wave front is located 

on the boundary between cells 1l -  and l , the difference of FC1 and FC2 lies on the wave 

front’s moving direction. Since the traffic states are stochastic, it is obvious that there must be 

some traffic states beyond the assumption of five modes mentioned above, so the introduction of 

a new mode, which could represent the exceptional states, is rather necessary.  

  

 

Figure 3.Triangular fundamental diagram of a cell 
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a). Free-flow-Free-flow (FF) mode 

uq

br ef

dq

u d

 
b). Congestion to Congestion (CC) mode 

uq

br ef

dq

u d
1l l

 
c). Congestion to Free-flow (CF) mode. 

uq

br ef

dq

u d
1l l

 
d). Free-flow to Congestion (FC 1) mode 

uq

br ef

dq

u d
1l l

 
e). Free-flow to Congestion (FC 2) mode 
Figure4. Freeway segment with p cells 

 

The flow chart of the dynamic stochastic traffic state propagation based on SCTM is depicted in 

Fig.5, where
,
( )

s l
P k  { , , , 1, 2, }, 2 , ,s FF CC CF FC FC I l pÎ =   denotes the probability of each 

mode , 
,
( )

s l
kr represents the density vector of mode s with wave front between 1l -  and l  (if 

necessary) at time step k. ( )
j
kr  is the joint density of segment j, which has been updated as the 
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finite mixture distribution of the five modes on the previous time step. 

 

Specification of the prbability  

 

The probabilities of 
,
( )

s l
P k  can be evaluated by:  

FF mode: ( ) ( ),1 , ,
( ) Pr ( ) < ( ) < ( ) < , 2, 1

FF u c d c p i c i
P k k k k i pr r r r r rÇ Ç = -     

CC mode: ( ) ( ),1 , ,
( ) Pr ( ) ( ) ( ) , 2, 1

CC u c d c p i c i
P k k k k i pr r r r r r³ Ç ³ Ç ³ = -     

CF mode: ( ),1 ,

,
1 , 1 2 , 2

( ) ( ) <
( ) Pr , 1 2, 1; 2 , 1

( ) ( )
u c d c p

CF l
i c i i c i

k k
P k i l i l p

k k

r r r r
r r r r

æ ö³ Ç ÷ç ÷ç = - = -÷ç ÷Ç ³ Ç <ç ÷çè ø

 
     

FC1 mode:

( )
( )

,1 ,

1, 1 , 1 2 , 2

, 1 1 , , ,

( ) ( )

( ) Pr ( ) ( ) , 1 2, 1; 2 , 1

( ) ( )

u c d c p

FC l i c i i c i

f l l c l J l c l

k k

P k k k i l i l p

v k w k

r r r r
r r r r

r r r
- -

æ ö÷< Ç ³ç ÷ç ÷ç ÷ç ÷Ç < Ç ³ = - = -ç ÷ç ÷ç ÷÷çÇ < - ÷çè ø

 
       

FC2 mode:

( )
( )

,1 ,

2, 1 , 1 2 , 2

, 1 1 , , ,

( ) ( )

( ) Pr ( ) ( ) , 1 2, 1; 2 , 1

( ) ( )

u c d c p

FC l i c i i c i

f l l c l J l c l

k k

P k k k i l i l p

v k w k

r r r r
r r r r

r r r
- -

æ ö÷< Ç ³ç ÷ç ÷ç ÷ç ÷Ç < Ç ³ = - = -ç ÷ç ÷ç ÷÷çÇ ³ - ÷çè ø

 
  

and  

, 1, 2,
2 2 2

( ) 1 ( ) ( ) ( ) ( ) ( )
p p p

I FF CC CF l FC l FC l
l l l

P k P k P k P k P k P k
= = =

= - - - - -å å å
 

 

where ( )
u
kr and ( )

d
kr are measured densities of the entry boundary and exit boundary of the 

whole segment, respectively, ( )
i
kr is the traffic density of cell i which is estimated at last time 

step, 
,c i

r is the critical density of cell i in the segment. The case I assumes that the traffic state 
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distribution remains unchanged, which represents the cases beyond the one wave front 

assumption. 

 

The traffic state
,
( 1)

s l
kr + of each mode s can be evaluated by a stochastic bilinear system.  

 

(4) 

 

where ( )u k  are the measured input signals, ( )kr  is the estimated joint traffic density which 

has been evaluated at last time index. ,
( 1)

s l
kr +  is the traffic density vector of mode s to be 

updated at current time index. 
, , , , ,
, , ,

s l s l i s l i
B A B = 0, ,i p are constant matrices with elements 

depending on the sample time 
s
T and the cell length

i
l , 

, , ,
( ), ( )

s l i s l
k kw l are second-order 

mutually uncorrelated real-valued random processes which represent the supply uncertainties.  

 

For example, assume p=4, r=2, e=3, 
1 2 3 4

( ) ( ), ( ), ( ), ( )
T

k k k k kr r r r ré ù= ê úë û
,  

and 
2 3

( ) ( ), ( ), ( ), ( )
T

u d
u k q k r k f k q ké ù= ê úë û

,under the FF mode
, ,
( )

FF i f i
k vw = ,

4 1
( ) 0

FF
kl ´= .  

1

2
,0 4 4 ,1 ,2 ,3

2 3

3

4

0 0

0 0
0

0, , , ,0
0

0 0
0

0 0 0 0

s

s

s s
FF FF FF FF

s

s

T

Tl
T Tl

A I A A A
Tl l

Tl

l

´

é ù é ù é ù
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú= = = = -ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

 

, , ,0 , , , , , ,0 , , , , , ,
=1 =1

( 1) = ( ) ( ) ( ) ( ) ( ),
p p

s l s l s l i s l i s l s l i s l i s l s l
i i

k A A k k B B k k B u kr w r w l
æ ö æ ö÷ ÷ç ç÷ ÷+ + + + +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

å å
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1

,4 2

4

4

0

0 0

,0 0
0

0
0

s

s

FF FF

s

s

T

l
T

A B l

T
Tl
l

é ù
ê ú

é ù ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú= =ê ú ê ú
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ê ú ê ú-ê ú ê ú
ê ú ê úë û -ê ú

ê úë û

 

As there is no wavefront in FF, l is not necseeary. The specification of other modes can be 

refered to Sumalee et al.(2009). 

 

The mean and covariance matrix by finite mixture 

 

The mean and auto correlation matrix of traffic density under each mode, that is ( ),
( 1)

s l
E kr +  

and ( ), , ,
( 1) ( 1) ( 1)T

s l s l s l
Q k E k kr r+ = + +  can be calcuated by a series of formulations 

(Sumalee et al. 2009) based on the the assumption that the demand and supply uncertainties are 

neither spatio nor temporal correlated. 

 

The probability density function (PDF) of the joint traffic density ( )( 1) ( 1)f k kr q+ + is 

defined as:   

( ) ( ), ,,
( 1) ( 1) = ( ) ( 1) ( 1) .

s l s ls l
f k k P k f k kr q r q+ + + +å                   (5) 

The expectation of joint density ( )( 1) ( 1)E k kr q+ +  is given by   

( ) ( ), ,,
( 1) | ( 1) = ( ) ( 1) .

s l s ls l
E k k P k E kr q r+ + +å                    (6) 
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Let ( ), ,
( 1) = ( 1)

s l s l
k E km r+ +  and ( )( 1) = ( 1) ( 1)k E k km r q+ + + .  

The covariance matirx of joint density is:   

( ) , ,,
( 1) ( 1) = ( ) ( 1) ( 1) ( 1).T

s l s ls l
Var k k P k Q k k kr q m m+ + + - + +å                   (7) 

The dynamic departure flow rate and arrival flow rate distributions can also be evaluated based 

on the fundamental diagram and finite mixture algorithm. 

, , , , , ,
,

( ( 1) | ( 1)) Pr ( ) ( ( 1) | ( 1))

, , , 1 , 2, ; 2,

j s l j s l j s l j
s l

f k k k f k k

s FF CC CF FC FC I l p

       

 




, ,( ) , ( )u j d jq k q k 

, ,( ), ( )u j d jk k  

, ,Pr ( )s l j k

( )j k

 , , ( 1)s l jE k 
 , , , ,( 1) ( 1)T

s l j s l jE k k  

( ).j k

( )k

?sj N

, ,( ), ( )u j d jk k  

?Nk k

 

Figure 5. The flow chart of the propagation of dynamic stochastic traffic state based on SCTM 
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The dynamic stochastic journey time estimation 

 

Relative frequency and PMF of the link exit (travel) time 

 

Given the distributions of the inflow rate ( )ml

in
q k and outflow rate ( )ml

out
q k , the corresponding 

cumulative inflow and outflow can be evaluated. Assume the cumulative inflow volume 

( )( ) ( ), ( )m m
lm
in

l l

in Cin in C
C k f C k ks@  where ()

Cin
f ⋅  denotes a certain random distribution, ( )ml

in
C k

denotes the mean of ( )ml

in
C k , and ( )lm

inC
ks is the standard deviation. The corresponding cumulative 

arrival volumes ( )( ) ( ), ( )m m
lm
out

l l

out Cout out C
C k f C k ks@ follows a similar notation. 

 

In traffic engineering, “sampling” in conjunction with the probability mass function (PMF) is 

usually applied to construct the distributions of traffic volume and speed. In Miller-Hooks and 

Mahmassani, (2000) and (1998), the PMF approach is applied to discretize the cumulative 

distribution function (CDF) of the stochastic travel time. Based on these two methods, we 

propose the following definition: 

 

Definition 1 For a vehicle enters the link 
m
l  at time index k ( Entry time index =ETI k ), the 

probability of the link exit time to be k' is defined as

( )|
= ( ) ( ) | =m ml l

k k out in
P Pr C k C k ETI ke e¢
¢ ¢- £ - £ , with a pre-defined Re +Î . Define the 

matching error ( ') ( ) ( )m ml l

k out in
e k C k C k¢= - , which represents the difference between the 

cumulative inflow at time index k and cumulative out flow at time index k'. e  is set to be a 
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small integer.     

 

Since the SCTM is developed for any second-order random processes with wide-sense stationary 

noise sequences (random demands and parameters), we can handle any cumulative flows which 

are described by second-order random processes with the same assumptions of the SCTM. Under 

this definition, we define our “sampling” process as depicted in Fig. 6. 

( ) ( )m
lm
in

l
in C

C k i k

lbk ubk

( ) ( )m
lm
out

l
out C

C k i k

 

Figure 6. An illustration of selection of the “sampling” region 

 

Figure 7.The PMF of the relative frequency and the corresponding CMF respect to exit time index. 

Exit time index

PMF and CMF of the exit time for entry time index k 
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Exit time index
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k
ubk

lb

k
ubk

lb



 

15 
 

Definition 2 The “sampling” time interval [ , ]
lb ub
k k  is defined as:   

 ( ) ( )= min : ( ) ( ) ( ') ( ) ,m m
l lm m
in out

l l

lb in out sC C
k k C k i k C k j ks s e

ì üï ïï ï¢ - - + £í ýï ïï ïî þ
 

 ( ) ( )= min : ( ) ( ) ( ') ( ) ,m m
l lm m
in out

l l

ub in out sC C
k k C k i k C k j ks s e

ì üï ïï ï¢ + - - £í ýï ïï ïî þ
 

Where 
s
e is a small positive number, and i ,j are positive integers which can be adjusted such that 

there is no overlapping between the two curves ( ) ( )m
lm
in

l

in C
C k i ks-  and ( ') ( )m

lm
out

l

out C
C k j ks+

(which in turn implies k'>k ).  

 

By this “sampling” technique described as definition 1 and definition 2, for an entry time k, we 

can obtain a series of 
|k k

P ¢
¢  which describe the likelihood of the exit time index to be equal to 

k'(link travel time index to be equal to k'-k ). Notice that for an entry time k, the summation of the 

probabilities of all possible travel time 
|k kk

P ¢¢
¢å may not be equal to 1, while the following 

definition of relative frequency can solve this problems. 

 

Definition 3 For a vehicle entering link a  at time k, the relative frequency
|k k

P ¢  of the link travel 

time to be k'-k is defined as:   

|

| =

|
=

= , [ , ].k k

k k lb ubk k
ub

k k
k k
lb

P
P k k k

P

¢
¢ ¢

¢
¢

¢
¢" Î

¢å
                   (8) 
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Remark 1 By definitions 1-3, we can construct the PMF of the link travel time for traffic 

entering the link at time k. An illustration of the construction process of the PMF of the link 

travel time is shown in Fig.7. Each bar on the upper plot represents
|k k

P ¢ . The solid line with dots 

on the lower plot denotes the corresponding cumulative mass function (CMF).     

 

Remark 2 By definition 1 the probability of the exit time index to be k'-k can be converted to be 

( )|
= ( ') | =

k k k
P Pr e k ETI ke e¢
¢ - £ £ , where ( ') ( ) ( )m ml l

k out in
e k C k C k¢= - . 

The PDF of ( ')
k
e k is required to solve 

|k k
P ¢
¢ .  

          

'

1 1
'

1 1 1
'

1 1

( ') ( ) ( )

( ) ( )

( ) ( ( ) ( ))

( ) ( )

m m

m m

m m m

lm

m m

l l

k out in
x k x k

l l

out s in s
x x
x k x k x k

l l l

out s out in s
x k x x

px k
l l

out s i i
x k i

e k C k C k

q x T q x T

q x T q x x T

q x T k lr

= =

= =
= = =

= + = =
=

= + =

¢= -

= -

= - - +

= -

å å

å å å

å å

 

Assume that ( ), 1, 'ml

out
q x x k k= +   and ( ), 1,ml

i m
k i pr =   are independent, where 

m
p is the 

number of the cells involved in the link ml , the mean and variance of the distribution ( ')
k
e k  

can be evaluated by the properties of normal distribution. 

  

Remark 2 avoids the issue in which the variance of ( ')
k
e k  may increase linearly with time, and 

the computing cost becomes smaller since for the flow rates before time k is not required for the 

calculation.    
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Journey time distribution  

 

Assume the whole journey starts from link 
1
l  and ends at 

lN
l (Fig.8), the relative frequency of 

exit time index to be mk  for entry time index 1mk -  on link 
m
l  is defined as 1( | ),

m

m m
l
P k k -

1 1 1

1

, , ,
1, , 0, , 1, ,m m m

m m m
N k lb k lb k ub

m l k k and k k k k- - -

-= > > = +  . 

 

The probability of journey exit time to be Nsk  for the vehicle enters the path at k is calculated as 

the sequence, say link after link : 

1,
,

1,
,

1,
,2

1,
,2

1,

1,
2,

1 1
1

2 2 1, 1,

2 1

2 1, 1,

1

1, 1,

1

( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

x
k ub

x
k lb

m x
k ubm

m x
k lbm

m x
k

m x
k lbNs

k k

x x

k k

k k

m m x m x

m m
k k

k k

Ns Ns Ns x Ns x

p m Ns
k k

P k k P k k

P k k P k k P k k

P k k P k k P k k

P k k P k k P k k

-

-

-

-

-

-
-

=

=

=

- -
-

=

=

- -
-

=

=

=

=

=

å

å




2,ubNs-

å

                              (9) 

Given the PMF of the journey time distribution evaluated by (9), the journey time distribution 

respect to entry time index k is solved. 

 



 

18 
 

1l 2l ml Nsl

1( | )P k k
( | )mlP k k

( | )NsP k k

 

 

Figure 8.  Path p with 
l
N links 

 

Figure 9.The fitted distribution respect to link exit time index 

 

Distribution fitting and dynamic stochastic journey (link) time 

 

After obtaining the PMF of the whole route, various random distribution fitting techniques can be 

applied to obtain the distribution that best fits the PMF. Define the distribution of the dynamic 

link travel time as follows:   

Exit time index

PDF and CDF of the exit time index for entry time index k 

 

 

PMF

PDF

0

1

Exit time index
 

 

CMF

CDF

k
lb

k
lb k

ub

k
ub
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Definition 4 A distribution ( )( )
( ), ,

k
g k bb s a  is the distribution of the dynamic link travel time at 

time k, i.e., ( )( )
( ) ( ), ,
rs k
T k g k bb s a@ , if ( )( )

( ), ,
k

g k bb s a  best fits the PMF and/or the 

corresponding CMF of ( )kb , where a  is the shape parameter which reflects the skewness of 

the distribution (Fig.9). 

 

 The “sampling” process we defined above is similar to the idea used in Miller-Hooks and 

Mahmassani, (2000), Miller-Hooks and Mahmassani, (1998) which discretized the CDF to obtain 

the PMF of dynamic travel time. From the literature, the link travel time under the free-flow 

condition usually follows a normal distribution. On the other hand, under the congested condition 

the link travel time may follow a skewed distribution1 (Lint et al.,2008, Kharoufeh and Gautam 

2004). In this article, we use MATLAB to fit the distribution of the stochastic dynamic link travel 

time by skew normal distribution, see Azzalini and Capitanio (1999). 

 

Index of Travel Time Reliability 

 

Buffer time is one of the most widely used travel time reliability indices, in which the buffer time 

represents the extra time that travelers must add to their average travel time when planning trips 

to ensure his on-time arrival (Lomax et al. 2003). This concept is similar to the safety margin 

measure proposed in Hall (1983) and recently adopted in Lam et al (2008). In this paper, the 

probability of arriving on-time will be set to the 95th percentile which can be translated as“can be 

late to work 1 day a month without getting into too much trouble”, that is 95% of travel time 

                                                       
1 If 0a > , the distribution is positive skewed, 0a < , it’s negative skewed, else it is normal distribution. 
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observations can be found below this criteria. Buffer time index can then be calculated by 

equation (10): 

95
100%

th Pencentile Travel Time Average Travel Time
Buffer Time Index

Average Travel Time

é ù-ê ú= ´ê ú
ê úë û

  (10) 

It is obvious that the journey time distribution is necessary to evaluate the BTI of the whole 

journey. 

 

 

EMPIRICAL EXPERIMENT  

 

Test site description and data preparation 

 

The case study is a section of Interstate 210 West, approximately two miles in length, shown in 

Fig. 10. This section, located in Los Angeles, stretches from S Myrtle Ave (A) through W. 

Huntington Dr(B) to N Santa Anita Ave(C), and contains 2 on-ramps and 2 off-ramps. The 

section is instrumented with single-loop inductance detectors, which are embedded in the 

pavement along the mainline, HOV lane, on-ramps, and off-ramps. In this empirical study, we 

divide the route into 4 cells as shown in the schematic diagram, composing a SCTM with 4 cells 

in one segment, and choose cell 1 and cell 2 as the first link, cell 3 and cell 4 as the second link . 

During the dynamic stochastic traffic states’ propagating progress, we assume the detector 

between cell 2 and cell 3 doesn’t provide the real time traffic state, aiming at comparing the 

estimated dynamic distributions with the actual ones. 
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Figure 10. Map and Section of I210-W divided into 2 cells and its detector configuration 

 

The traffic flow data of 8 hours (4:00 am-12:00 am) collected on Tuesday, Wednesday and 

Thursday of April, 2008 and 2009 from the Performance Measurement System (PeMS) is used in 

this test. Each loop detector provides the data on traffic volume (veh/time-step) and occupancy 

measurements of the corresponding lane for every 30 seconds. The densities can be computed for 

each lane using the occupancy divided by the g-factor, where the g-factor is the effective vehicle 

length (in miles), provided by the system. The time step should be less than 30 seconds to satisfy 

the requirement of the SCTM. Thus a thzero -order interpolation is applied to the PeMS data to 

yield the data with = 5
s
T  sec interval in order to ensure that 

,f i s i
v T l⋅ £  for almost all the 

time. The calibration of the stochastic triangular fundamental diagram is conducted for the four 
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cells using the historical data over two months period. The results are shown in Table 1 and 

Fig.11. The notations with the hat symbol denote the mean values of the parameters.  

 

Figure 11. Fundamental diagram of the 4 cells 

Table1. Calibration results of the 4 cells 
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Cell 1 63.56 8.88 19.34 5.85 133.74 573.29 146.48 8500 1188 

Cell 2 62.40 6.53 20.86 6.83 136.21 543.79 149.42 8500 889.61 

Cell 3 62.40 6.53 20.86 6.83 136.21 543.79 149.42 8500 889.61 

Cell 4 63.12 6.73 19.55 6.00 126.74 535.87 138.17 8000 852.65 
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Overall description of the test results 

 

Fig. 12 depicts the mean values of the simulated densities and its 68 percent confidence interval 

[ , ]r rr s r s- + , generated by the SCTM against the measured traffic densities. As we have 

mentioned, the density and flow rate of the boundary between cell 2 and cell 3 are assumed to be 

unknown during the SCTM simulation. Compared with the estimated density of the two cells 

with the measured one, the results reflect that the traffic state distribution can be estimated 

accurately.  

 

Fig.13 depicts the probability distributions of the five modes over time. During 4:00AM - 

5:30AM, the FF mode dominates the stochastic traffic states. Then, the transient modes become 

active between 5:30 – 6:30. During 6:30-10:00 the CC mode becomes the dominant state. The 

order of the dominant states is then in reverse after the peak period (i.e. after 10:00). The 

probability of the case I is very small, suggesting that the one wavefront assumption is still valid 

for this case since is not very long highway segment.  

 

Fig. 14 show the estimated dynamic link travel time distributions by the proposed method for 

every 5 second against the measured travel time (every 5 minute). Fig. 14 (1) presents the travel 

time on the section composed by the first 2 cells, and Fig.14 (2) presents the result of last 2 cells. 

Fig. 15 depicts the overall journey time distribution. Compared with the travel time recorded by 

PeMS, both the link travel time and journey time can capture the travel time trend, and the 

confidence interval is credible.   
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Buffer Time Index of journey time is then illustrated in Fig.16. The index maintains at a low level 

before 6:00, and rise to 30% during 6:00-6:30. The BTI is then at the high level until 11:00. The 

result reflects that after the congestion period even the congestion already dissolved an 30%  

extra time is still required to ensure the on-time arrival with 95% confidence interval. 

 

Figure 12. The estimated density distribution of the 4 cells. 

 

Figure 13. The probability of five modes of the freeway segment. 
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Figure 14(1). Dynamic travel time of the link cell1+cell2 Figure14(2) . Dynamic travel time of the link cell3+cel4 

  

 

Figure 15. Dynamic journey time distribution 
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Figure 16. Buffer time index of journey time distribution 

Discussion of the results 

 

Sensitivity  

 

The corresponding mean absolute percent error (MAPE) of the 2-mile journey by different e  

and flow mapping regions (adjusted by i and j) are given in Table 2. As shown in the table, the 

MAPE is not sensitive to the value of e  nor to the mapping interval. 

Table 2. MAPE with different e and mapping interval respect to the journey time 
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Skewness 

 

It can be observed that the gap between the upper bound of 90% confidence interval with the 

mean value and the gap between the lower bound of the interval are not equivalent, which is not 

consistent with the properties of normal distribution. The difference is caused by the skewness of 

the distribution. It is reported that the travel time are always skewed under congestion conditions 

(Lint et al., 2008):   

    • Free-flow condition: the mean travel times are low and the spread of the distribution is 

small. The distribution of travel times is approximately symmetric.  

    • Congestion onset: the mean travel times are increasing, but the distribution is skewed to 

the left.  

    •Congestion: the mean travel times are high, while the travel time distribution is wide and 

either symmetric or slightly right skewed.  

• Congestion dissolve: the mean travel times are decreasing, and the distribution is skewed 

to the left again.  

 

Similar results can be observed in the distribution of the dynamic travel time presented in this 

paper. During the onset of congestion and congestion dissolve periods (Fig.17), the distribution is 

positive-skewed, in which the distribution is left skewed . During the free flow period and 

congestion period (around 8:20 am) (Fig. 18), the distribution is either normal or slightly right 

skewed. The results are generally consistent with the statistical results reported in Lint et al 

(2008). The comparisons between the PMF and PDF as well as the comparisons between CDFs 

prove that the distribution fitting method is accurate. In addition, this empirical example 

illustrates that the dynamic stochastic travel time can be approximated by the skew normal 



 

28 
 

distribution. 

            

Figure 18.The fitted positive-skewed normally distributed travel time and its CDF 

 

Figure 19. The fitted normally distributed travel time and its CDF.  
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CONCLUSION 

 

This paper proposed a method to derive the statistical distribution of journey (link) time from the 

outputs of the SCTM which is a stochastic dynamic traffic flow model. The proposed method and 

framework allows the analysis of travel time reliability from the static to dynamic paradigm. The 

proposed algorithm extends the FIFO principle (which is only applicable to the deterministic 

cumulative in-flow and out-flow curve) to the case with stochastic cumulative in-flow and 

out-flow. The concept of internal sampling to estimate the likelihood of the exit time for each 

entry time on a highway segment based on the FIFO concept is used. The likelihood of each 

possible travel time can then be used to construct the PMF of the travel time. The paper then 

assessed the journey time reliability based on the dynamic journey time distribution. First, the 

SCTM is certified once again to be able to perform satisfactory in replicating stochastic traffic 

states under demand and supply uncertainties efficiently and accurately. Second, the PMF based 

link travel time estimation method is confirmed to be capable of  describing the distribution of 

travel time instead of providing only mean and variance. The algorithm is not sensitive to 

parameter variations. The skewness of the estimated travel time is also consistent with the 

statistical observation in the other study. A possible extension of this model is to introduce the 

journey time reliability into the dynamic traffic assignment involving route choice and departure 

time choice decisions in a full traffic network. The SCTM and the proposed travel time 

estimation algorithm should also be improved to consider the multi-lane and weaving effect to 

better represent the traffic dynamics.  
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