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André de Palma
ENS Cachan

61 avenue du Président Wilson
92230 Cachan cedex, France
Phone: +33 6 63 64 43 20
Fax: +33 1 47 40 24 60

Email: andre.depalma@ens-cachan.fr

Moez Kilani
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Abstract

This paper presents an analytical model for the optimal location and

pricing of one or more mass transit stations in a monocentric city. We

compare location and pricing decisions for transit stations by a public

agency, a private monopoly and a duopoly where each private operator

controls the location and pricing of one station. Analytical as well as nu-

merical results are derived for different distributions of residential density.
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1 Introduction

Transport economists have analyzed extensively the optimal pricing of mass
transit as mass transit is often considered as part of the solution to urban
congestion problems. These studies take the demand function for transit in
general as given. One of the main determinants of the demand for transit is
the location of the transit stations. In this paper we consider explicitly the
location and access pricing of a limited number of mass transit stations in a
linear monocentric city.

We address the following research questions. First what are the main de-
terminants of the welfare optimal location of a single or multiple mass transit
stations? How do factors as relative speed of private and transit transport affect
the location, and what is the role of congestion in transit and private transport?
Second, if we allow private operators to choose location and access prices of mass
transit stations, can we expect them to make very different decisions?

Discussion of location and pricing requires highly stylized models. We use
a linear monocentric model with homogeneous and immobile residents that all
want to commute to the CBD. The CBD can be reached by a private mode or by
mass transit and users’ decide on the basis of their generalized costs. As mass
transit can only be accessed in a limited number of stations, a mass transit trip
requires always first a private transport trip to the transit station. Accessing the
CBD by private mode and by mass transit imply both congestion that takes the
form of queuing, schedule delay and other discomforts. Once one specifies the
construction and operation costs of the mass transit, one can study the optimal
location of one single mass transit station.

We determine the optimal location that balances the full costs of both modes
for specific residential density functions. Take the case of one station, in a
monocentric station this means radial lines with one station in the CBD and
one station in the residential area. In the easiest case with a uniform residential
density one finds that the unique station is never located beyond 2/3 of the
radius of the city. Higher mass transit infrastructure costs or lower relative
speed compared to the private mode imply a location closer to the CBD. Another
interesting feature of the one station solution is the location and pricing decisions
of a private monopolist or of a public agency with a very demanding revenue
requirement. We find that the private monopolist is not interested in serving
customers that live in between his station and the CBD because this requires
a fare concession that is too costly in terms of his customers living beyond the
transit station.

When one considers multiple stations, we find that the discomfort of an extra
stop of the train to the CBD results in optimal locations further away from the
CBD. We also find that the locations chosen by the monopolist are independent
of the relative speed of the train while an increase of the speed points to an
optimal location of stations further away from the CBD. The main reason is
again that a monopolist is not interested in serving residents located in between
the station and the CBD.

Numerical illustrations show the welfare optimal and profit maximizing lo-
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Figure 1: Spatial organization with one station.

cations for one, two, four and seven stations as well as the optimal frequencies
and prices. The analysis is performed for the case of linear and non-liniear
congestion.

Our paper can be compared with the work by Kraus and Yoshida (2002).
They model the use of mass transit by commuter’s who choose the optimal
departure times in a bottleneck type of model. In the main sections of our paper,
the departure time is not considered explicitly and congestion is a linear function
of total use, we show that our conclusions can be extended to a bottleneck type
of formulation in Appendix A. Another reference point in this literature is Kaus
(1991) who models the discomfort externalities of a mass transit with several
stations. Kraus and Yoshida and Kraus concentrate on optimal frequency and
pricing, we also analyze the optimal location of stations.

Our paper takes the residential density and size of the city as given and con-
centrates on the location and operation of mass transit. Very few attempts have
been made to address the two problems together (e.g. De Lara et al. 2008).Con-
sidering endogenous location and use of two competing modes as in Anas and
Moses (1979), Baum-Snow (2007), preferably in a growing city would be the
next step.

2 One station

2.1 Basic model

We work with a linear monocentric city where all residents want to travel to
the CBD every day and this is the only type of trips considered. All residents
are identical and their location is fixed. There are only two types of travel
modes: mass transit and private. We refer to the private mode as driving and
to mass transit as train transportation. Fig. 1 illustrates the notation used.
The distance from the city center is denoted r and rc is the radius of the CBD.
We assume, w.l.o.g., that rc = 0. The radius of the city is rf . The density
of the population is denoted r(n).We assume that there is only one transit
station located at s. l is the location of the passenger who is indifferent between
transiting by train or driving directly to the CBD (the marginal user).

There is congestion in mass transit and in private transport. Congestion in
mass transit is modeled as a linear function of the number of users. Congestion
in private transport is represented as a linear function of the total number of
drivers entering the CBD. The generalized cost of driving per unit distance is
cp (operation plus time). The corresponding generalized rail cost is ct, and to
simplify notation, all costs are normalized by cp so cp = 1. Average waiting
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time in the station is w and waiting cost is cw. We assume that early and
late delays have the same cost. Appendix A generalizes this feature. Residents
living between l and rf drive to the station and then commute to the CBD by
train. When the user transits by train, he incurs a transfer cost, denoted K,
that reflects any difference in fixed costs between the two transport alternatives
(parking costs, access to train, station, etc). Users of mass transit incur each
a congestion cost Γt. We are now able to compute the total travel cost for a
passenger located at r and using rail:1

p + |r − s| + s ct + w cw + w γt

∫ rf

l

n(r)dr r ∈ (l, rf ). (1)

The first term is the users’ fare for the mass transit. The second term is the
private mode cost to drive to the station. The third and fourth terms represent
the time cost and the waiting cost of using the train. The last term is the
average congestion cost in mass transit. n(r) represents the density of residents
at distance r from the CBD. We work with a uniform density if not specified
otherwise.

Those that do not travel by rail, drive to the CBD: residents living between
0 and l drive directly the CBD. The total travel cost for a driver is the sum of
a road toll τ , a private transportation cost equal to r (remember that unitary
private cost is normalized to one), and a congestion cost incurred at the entrance
of the CBD that is linear function in the number of drivers ( γp times number
of drivers). Transport cost in this second group is thus:

τ + r + γp

∫ l

0

n(r)dr, r ≤ l. (2)

The user who is indifferent between the two modes equates both travel costs.
The housing location of this passenger, l, solves

p + s − l + s ct + w cw + w γt

∫ rf

l

n(r)dr = τ + l + γp

∫ l

0

n(r)dr. (3)

We have the following preliminary result.

Lemma 1 (No congestion). If γt = γp = 0 and if p − τ + w cw ≤ (1 − ct) s,
the user indifferent between using only private and combination of private and
mass transit transportation is located at l given by

lnc =
p − τ + (1 + ct)s + w cw

2
. (4)

If p − τ + w cw ≥ (1 − ct) s, then no user selects the train.

1The implicit assumption is that the value of travel time is not identical for sitting in a
train or walking.Empirical work, e.g. Wardman (2001) and Mackie et al. (2003), recommend
to use a value for walking time double that of in-vehicle time.The value of time in vehicle will
also depend on the comfort conditions in the train.
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Assume p = τ = w = γp = γt = 0. If the relative cost of train is small,
i.e. ct → 0, then all households located beyond s/2 will transit by train. The
other users, those between 0 and s/2, drive directly to the CBD. As the relative
cost of the train increases, the number of those who drive increases until, at
ct = 1, all users no longer have any gain from transiting by train. From (4), for
all s > 0, we have l > 0. So, there exists always some passengers who do not
transit by train, even if s is arbitrarily close to the city center.

Now consider again the case p, τ ≥ 0 and let us assume for simplicity that
congestion does not matter, i.e. γp = γt = 0. We can then compute the gain
from having mass transit for two groups. The first group are those located at s
or beyond. The cost saving for them is:

∆C1 = (1 − ct)s − (p − τ). (5)

Notice that, in this case, all passengers have the same gain from the new
transport mode (∆C1 does not depend on the household’s location r). For the
second group, the rail users living between the CBD and s (segment (l, s)), the
gain depends on housing location r:

∆C2 = −(1 + ct)s + 2r − (p − τ) = 2(r − l), (6)

which is increasing in r (those who live closer to the station gain more). We see
that the user’s gain from having a mass transit is higher for those living beyond
the station. Indeed, from (5) and (6), we have (∆C1 − ∆C2) = 2(s − r) ≥ 0,
since r ≤ s.

The third group are those living between the CBD and l and they drive to
the CBD. In the absence of congestion they are not affected by the availability
of mass transit.

Lemma 2 (linear Congestion). When a solution satisfying l < s to Eq. (3)
exists, we have

dlc

ds
= 1+ct

2+(γp+γt)n(lc) > 0

dlc

dw
=

cw+γt

R rf

lc
n(r)dr

2+(γp+wγt)n(lc) > 0

dlc

dp
= −dlc

dτ
= 1

2+(γp+wγt)n(lc) > 0

dlc

dγt

=
−1

w

dlc

dγp

=
R rf

lc
n(r)dr

2+(γp+wγt)n(lc) > 0,

A solution to (3) may not exist if p − c + w cw is high (as for lc) or if
congestion in mass transit, i.e. w γt

∫ rf

l
n(r)dr, is much higher than congestion

in the alternative mode, i.e. γp

∫ rf

0
n(r)dr. The comparative statics in Lemma 2
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confirms the intuition that lc will vary so as to increase the market share of the
less congested mode. With a uniform distribution of households, i.e. n(r) = 1,
we have an explicit solution for the equilibrium

lc =
p − τ + (1 + ct) s + (cw + rf γt)w

2 + γp + w γt

.

2.2 Optimal location of the station

In the previous section we studied the market share of mass transit as a function
of its location s. The next step is to study the optimal location of the station.
For this we need to introduce the construction and operation costs of the mass
transit. Let θ denote the cost to provide a unit length of train line and 2φ denote
the operating cost of one train.Once the location of the station s and the service
frequency w are fixed, the total travel cost in the city (for all households) is the
sum of travel cost in the two modes (congestion included) and the construction
costs.

The total travel, construction and operation cost is:

TC =

∫ l

0

r n(r)dr +

∫ rf

l

(|r − s| + s ct + w cw)n(r)dr

+ γp ·
(

∫ l

0

n(r)dr

)2

+ w γt ·
(
∫ rf

l

n(r)dr

)2

+ θs +
φ

w
(7)

The first line in (7) is the travel cost, net of congestion, in the two modes. The
second line in the same equation reflects congestion costs in the two modes as
well as construction and operating cost of mass transit. TC in (7) is minimized
when the first-order conditions with respect to decision variables location s,
service frequency w, transit fare p and private road toll τ are satisfied.2

Proposition 1. The location of the station and the waiting time that minimize
total transport cost TC satisfy the first-order conditions:

θ + (1 + ct)

∫ s

l

n(r)dr = (1 − ct)

∫ rf

s

n(r)dr + H, (8)

and

φ

w2
=

(

cw + γt

∫ rf

l

n(r)dr

)(
∫ rf

l

n(r)dr − H

)

(9)

where

H =
(1 + ct)n(l)

[(

w γt

∫ rf

l
n(r)dr − γp

∫ l

0
n(r)dr

)

− (p − τ)
]

2 + (γp + w γt)n(l)
(10)

2The optimal s is necessarily in the interior of (0, s).
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Moreover, if transport prices p and τ are set to minimize transport cost TC,
then H = 0. For γt = γp = 0, ds/dθ < 0 and Eq. (8) has a unique solution if
n(r) is monotone increasing in r.

Notice that H in (8) has the same sign as (γt

∫ rf

l
n(r)dr−γp

∫ l

0
n(r)dr)−(p−

τ). This expression reflects the difference between congestion costs and access
charges for the two modes considered. A positive value of H obtains when
congestion in mass transit is under-priced, and vice versa. When prices are set
to reduce total transport cost, H is set to zero. If prices are not optimal then the
location and frequency of service can be used as controls to minimize total cost.
From (8) an increase in the congestion in one mode reduces the market share
of that mode.3 Indeed, an increase in s has a number of impacts. First, the
travel cost of passengers in (s, rf ) decreases (positive impact), and this is the left
hand term in (8). Second, the travel cost of passengers living in (l, s) increases
(negative impact), and this is right hand term in (8). Third, locally around
s, the population belonging to the first group decreases and the population in
the second group increases. Finally, locally around l, the population belonging
to the second group increases and the population in the third group decreases.
Condition (8) means that when all passengers select the lowest transport cost
mode then, the last two impacts vanish. Equation (8) has always a solution in
s. Indeed, at s = 0, the left hand side is positive and the right hand side is
zero, and at s = rf , the left hand side is zero and the right hand side is positive.
So, the continuity of both expressions insures the existence of one solution at
least between s = 0 and s = rf . The first-order condition with respect to s can
be presented in a different way. It is interesting to compare expression (9) and
Mohring’s square root Mohring (1972). Indeed, it is natural to have w = 1/2n
where n is the number of trains serving the station per unit of time. Then (9) is
the sum of two terms. The first one relates the n2 to the number of users (thus
compatible with Mohring’s rule) and the second one relates n2 to the square of
the number of users. This second term, with is obtained from congestion terms
in mass transit is new feature of this model (cf. Mohring 1972, Kraus 1991).

Consider the case where there is no congestion and that waiting/cost time
is zero. Define N(r) =

∫ rf

0 n(r)dr. Then, for γt = γp = 0, (8) is equivalent to

(1 − ct)N(s) = (1 + ct)N

(

1 + ct

2
s

)

− (1 + ct)N(s),

or

N(s) =
1 + ct

2
N

(

1 + ct

2
s

)

.

The same argument for the existence of a solution applies. The second-order
condition, which ensures the existence of a unique solution that minimizes the
total travel cost, simplifies to

n(s) ≥ n(l)

(

1 + ct

2

)2

. (11)

3Notice that the first term in the right hand side of (8) is decreasing in s.

7



Condition (11) is satisfied provided that the distribution of households n(r) is
not “too decreasing”. Indeed, notice that the left hand side in (8) is monotone
decreasing in s, while variation in the right hand side depends on the distribution
n(r). If the population density increases as we move further away from the city
center than the latter is increasing and Equation (8) has necessarily a unique
solution. This structure, is not compatible with the monocentric city model,
however. Notice that by construction there are no external costs in this model
and there is no need to charge the access to the train and the optimal toll is
zero.

Totally differentiating (8) with respect to ct and s and simplifying, yields
(so is optimal location)

d so

d ct

= − 1

2

∫ rf

lo
n(r)dr − lon(lo)

n(so) −
(

1+ct

2

)2
n(lo)

. (12)

At so, where the second order condition (11) is satisfied, the denominator in (12)
is positive. So, the derivative in (12) is negative if

∫ rf

l(s∗)
n(r)dr− l(s∗)n(l(s∗)) >

0, which is the case, for example, for the uniform distribution.

Proposition 2. The train service is welfare improving (decreases the social cost
T (s, θ)) if, and only if,

(1 − ct)N > θ. (13)

Notice that proposition 2 does not depend on the exact distribution of house-
holds, but only on their total number. It is independent from congestion terms
γt and γp, too, since H in (10) vanishes as s gets close to zero. Condition (13)
can be used as a first approximation to see whether it is interesting to invest in a
new mass-transit line. As an illustration assume that the construction cost of an
underground line is 38Md/km4, that the relative cost between private transport
and public transport is 1/4 (based on INSEE survey, 2005, and RATP prices).
Suppose also that we focus on a horizon of 20 years with 200 days in a year.
Then, according to (13) more than 13 000 traveler per day are required before
investment is worthwhile.

When the distribution of households is uniform over (0, rf ) we have an op-
timal location, denoted so(θ), given by

so(θ) = so(0) − 2θ

(1 − ct)(3 + ct)
, (14)

so, as expected, so(θ) ≤ so(0). If θ = 0 then the optimal location of the station
is given by

so(0) = rf

2

3 + ct

. (15)

4This is based on Madrid underground enlargement (1999-2008), source: Urban Public
transport integration and funding.
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So, the optimal location is a weighted average of 0 and rf . If the relative
cost of the train is not small (ct = 1) it is optimal to locate the station halfway
between border and CBD. As the relative cost of the train decreases the relative
importance of rf ’s weight increases and at the limit it moves to point so =
(2/3)rf . Notice that so is monotonic in ct, so for all possible values of the
relative speed of the train, the optimal location of the station varies in 16.7%
of the segment (0, rf ).

Under other distributions of households we still obtain comparable results.
To be consistent with empirical observations let us consider a distribution that
decreases in the distance from the city center. The negative exponential density,
(cf. Stewart 1947, Clark 1951), has been proposed for this purpose. In our
model, if we consider a distribution n(r) = A exp(−λr), where A and λ are
both positive constants, then we obtain (for A = 5 and λ = 0.2) an optimal
location of the station at 0.361 rf for ct = 1, and that increases to 0.492 rf

when ct decreases to 0. However, the exponential distribution does not provide
a closed form solution,

For this purpose, on may consider a simpler linear distribution of the form
n(r) = A(1−r/rf) where A is a positive constant. Similar calculations as above
yield the optimal location at

so =
2
(

3 + ct −
√

2(1 + ct)
)

7 + ct(4 + ct)
rf .

In this case (and for A = 5), so increases from 0.333 rf to 0.454 rf as ct decreases
from 1 to 0. So, in both cases the optimal location varies in a relatively small
ranges as the relative travel speed covers all possible values.

2.3 Private operator

Most mass transit corporations are publicly controlled but with a budget con-
straint and in that case their optimal behavior is a mixture of welfare optimum
and profit maximizing behavior (cf. Boiteux 1956). For this reason we are in-
terested in the extreme case where the station is managed by a private operator
who maximizes profit and imposes a charge p on each passenger transiting by
the train.

The operator’s profit is equal to total revenues minus the construction cost
of the line and the operating cost of train,

p

∫ rf

l

n(r)dr − θ s − φ

w
. (16)

The operator maximizes the profit in (16) over non-negative variables s, w and
p. The charge should be set such that l ≤ s, or

(1 − Γ(s) − ct)s ≥ p, (17)
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where Γ(s) = γt

∫ rf

l
n(r)dr−γp

∫ l

0 n(r)dr. At the same time, the station should
be located inside the city, i.e.

rf ≥ s. (18)

Let (P ) denote the program that consists in maximizing (16) subject to con-
straints (17) and (18) (and the non-negativity constraints on s, w and p). The
Lagrangian corresponding to (P ) is

L(s, w, p, λ1, λ2) = p

∫ rf

l

n(r)dr − θ s − φ

w
+ λ1[s − l] + λ2(rf − s). (19)

An internal solution of this problem requires s, w, p > 0. Consider the first-
order conditions. We have respectively ∂L/∂p = −pn(l) ∂l/∂p +

∫ rf

l
n(r)dr −

λ1∂l/∂p, ∂L/∂s = −p n(l)∂l/∂s+λ1(1−∂l/∂s)−λ2 and ∂L/∂w = −p n(l)∂l/∂w+
φ/w2 − λ1∂l/∂w. With these conditions, λ1 = λ2 = 0 implies that ∂L/∂s < 0
and thus s = 0. Then s > l and s > 0 imply that λ1 = 0 and thus λ < 0, a
contradiction. So s = l. Finally, λ2 > 0 implies that s = rf but with s = l
this implies zero profit for the operator (l = rf ). The following proposition
summarizes the behavior of the private operator.

Proposition 3. A private operator who maximizes profit given in (16) subject
to constraints (17) and (18) charges a price p∗ so that

l = s∗, (20)

locates the station at s∗, which is a solution to

θ

1 − ct

+

∫ rf

s∗

n(r)dr = s∗ n(s∗), (21)

and chooses a service frequency w∗ which is a solution to

φ

(w∗)2
=

(

cw + γt

∫ rf

s∗

n(r)dr

)(
∫ rf

s∗

n(r)dr

)

. (22)

When households are uniformly distributed over (0, rf ), we obtain s∗ =
rf/2 and p∗ = (1 + Γ(rf/2) − ct)rf/2. There are two important consequences
of Proposition 3. First, Equation (20) implies that the private operator does
not serve the passengers located closer to the CBD than s. To see this point
remember that users beyond s have all the same benefit from using mass transit
and that this gain is higher than the gain for households living closer than
s. Attracting passengers from the latter group requires a relatively important
decrease in the mass transit fare. The net impact on the operator’s revenue of
lowering the fare and attracting these customers turns out to be negative, and
the private operator prefers not to serve this group. In this case, the decrease
in the transport costs generated by mass transit is fully transformed into profit
for the private operator.
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From (21), we see that the infrastructure cost of mass transit influences the
location of the station only through the first term of the left hand side. If
θ = 0, then the station location is independent of ct, and the private operator
takes another decision than the one described above. Notice that the location
decision of the private operator is the same as the socially optimal decision
when the generalized cost of the train is relatively high. Indeed, a Taylor series
development of optimality condition (8), around ct = 1, yields

(
∫ rf

s

n(r)dr − sn(s)

)

+ O(ct − 1)2 = 0, (23)

which is equivalent to (21) for ct close to 1. So, the private operator’s problem
(for all ct) is equivalent to the optimal welfare problem when the travel cost of
the train is comparable to the driving travel cost.5 For a higher speed of the
train, the private operator locates the station too close to the CBD, i.e. s∗ < so

for 0 < ct < 1.
It is interesting to see the extent to which the private operator adopts a

pricing policy that gives a tight condition (17). In particular, if the location
of the station is exogenously fixed as it may be the case in reality, and if it
is located close enough to rf he gets a small market share with that pricing
practice. If s is given, the marginal user depends only on p. Let us write rl(p).
We have the following result.

Proposition 4. When the location of the station s is given exogenously, the
optimal charge for the private operator is the solution to

∫ rf

l

n(r)dr =
1

2
p n(l) (24)

when the condition
∫ rf

s

n(r)dr <
1

2
(1 + Γ(s) − ct + wcw)s n(s) (25)

is satisfied. Otherwise, we have l = s.

It follows that the private operator chooses a charge such that l < s when s
is sufficiently close to rf , and (s, rf ) corresponds to a small part of the market.

A private monopolist running a mass transit system may appear as an ex-
treme, unrealistic solution. Often a public monopolist is given a binding budget
constraint and this solution will be a combination of of the private monopolist
and the social welfare optimum solution.

3 Multiple stations

We extend the analysis to the case of n stations. This step allows us to in-
troduce new features in the model. In particular, a new variable that reflects

5Thus, to compute the optimum location of the private operator it is easier to solve for
the optimum and then fix ct to 1.
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Figure 2: Two stations.

delays incurred by passengers in stops in intermediate stations before arrival is
considered. This variable will affect the equilibrium and optimal quantities. A
further issue to be considered with multiple stations is the construction cost of
the stations. With a single station, this cost is included in the cost of the infras-
tructure (line construction), but with multiple stations we need to distinguish
the two types of costs. We ignore congestion and waiting time in this section.
The two stations are located at respective distances s1,. . . , sn from the city
center. li is the location of the passenger who is indifferent between transiting
through station i and station i + 1.6 Let g reflect a penalty (delay) incurred by
a passenger from the stop in an intermediate station. Our focus will be limited,
from here on, to the location of stations, and we ignore congestion terms as well
as waiting time.

The user who is indifferent between stations i and i − 1 is located at

li(si−1, si) =
si−1

2
(1 − ct) +

si

2
(1 + ct) +

pi − pi−1

2
+

g

2
(26)

for i = 2, . . . , n. A public manager chooses the location of the stations along
the line (0, rf ) in order to minimize total transport cost in the city. Without
congestion, as in the case of one station, it is optimal to set the mass transit
fare pi = 0. The following result characterizes the optimal location solution.

Proposition 5. For θ = g = 0, the first-order condition for the location of
station i, is

(1 − ct)

∫ li+1

si

n(r)dr = (1 + ct)

∫ si

li

n(r)dr, (27)

for i = 1, . . . , n − 1. For i = n, replace li+1 in (27) by rf .

Let us illustrate this result in the case of two stations. Figure 2 illustrates
the notation adopted.

The conditions that determine the user indifferent at l1 (using private trans-
port or station 1) and l2 (using station 1 or 2), respectively, are

(s1 − l1) + s1ct + p1 = l1, (28)

and

(s2 − l2) + s2ct + g + p2 = (l2 − s1) + s1ct + p1, (29)

6Except l1 who is indifferent between transiting by train or driving directly to the CBD.
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From (28) and (29), we obtain

l1(s1) =
s1

2
(1 + ct) +

p1

2
, and (30)

l2(s1, s2) =
s1

2
(1 − ct) +

s2

2
(1 + ct) +

g + p2 − p1

2
. (31)

Because we did set the cost per unit distance of driving equal to 1, the delay
g is a cost relative to the driving cost. Similarly, p1 and p2 are also charges
divided by the unit cost of private transport.

With a uniform distribution of households over line segment (0, rf ), we can
solve for the optimal locations of the stations78

so
1 =

2rf

5 + ct

+
4g

(1 − ct)(1 + ct)(5 + ct)
(32)

so
2 =

4rf

5 + ct

+
(3 + ct)g

(1 − ct)(5 + ct)
, (33)

After rearranging terms we see that the optimal locations have two compo-
nents. The first one reflects the geometry of the city and depends on rf . The
second component is introduced by the discomfort imposed on users of station
2 at the stop in station 1. The discomfort penalty g moves the locations of the
stations away from the city center. We can check that we have always s1 ≥ l1,
but that s2 ≥ l2 only when

g ≤ rf (1 − c2
t )

3 + ct

,

which we assume to hold. The distance between the two stations is

so
2 − so

1 =
2rf

5 + ct

+
(c2

t + 4ct − 1)g

(1 − ct)(1 + ct)(5 + ct)
. (34)

So, an increase in g increases the distance between the two stations as long
as c2

t + 4ct − 1 ≥ 0, or ct ≤
√

5− 2. Otherwise an increase in g induces stations
to be located closer to each other. Let us inspect the impact of the relative
travel speed ct on the optimal location of the stations. We have,

∂ so
1

∂ ct

= − 2rf

(5 + ct)2
+

4(3c2
t + 10ct − 1)g

[(1 − ct)(1 + ct)(5 + ct)]2
, and (35)

∂ so
2

∂ ct

= − 4rf

(5 + ct)2
+

(17 + 6ct + c2
t )g

[(1 − ct)(5 + ct)]2
. (36)

Assume first that g = 0. An increase in ct generates locations closer to the
city center for the two stations. The impact is twice as high on the location

7With s1 < s2 we check that we have l1 < s1 and l2 < s2. When a mass transit fare is
charged these constraints should be taken explicitly into account.

8Investment costs are not considered here
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of station 2 than on the location of station 1. If g > 0, then a second impact
appears. For station 2, this new impact goes in the opposite direction: to move
the station away from the CBD. The reason is that moving station 2 further
away reduces the number of passengers that will experience the extra delay g.
For station 1, the new impact is in the same direction as the initial one when
ct is small (moves the station closer to the city center), and has the opposite
impact for ct > 2

√
7 − 5.

Assume that θ > 0 and let us denote optimal locations by so
1(θ) and so

2(θ),
respectively for station 1 and station 2. Similar calculations as above yield9

so
1(θ) = so

1(0) − rf

N
θ

2

(1 − ct)(5 + ct)
(37)

so
2(θ) = so

2(0) − rf

N
θ

4

(1 − ct)(5 + ct)
. (38)

The distance between the two stations does not depend on g and decreases
with ct. From (37) and (38), we have so

1(0) − so
1(θ) = (so

2(0) − so
2(θ))/2. The

optimal charge here is zero, because there is no externality. Although, the more
passengers at station 1 the more stops are necessary for trains coming from
station two.

3.1 Private operators

A private operator collects revenues from charges p1 and p2 in station 1 and in
station 2. We discuss below, respectively, the case of monopoly and the case of
duopoly.

3.1.1 Multi-stations Monopoly

A private operator is responsible for both location and pricing at the two sta-
tions. The profit function is

p1

∫ l2

l1

n(r)dr + p2

∫ rf

l2

n(r)dr. (39)

Any solution must satisfy the ordering of the stations, i.e. l1 ≤ s1, l2 ≥ s1,
l2 ≤ s2 and s2 ≤ rf . In explicit form these constraints are respectively

(1 − ct)s1 − p1 ≥ 0 (or, l1 ≤ s1) (40)

(s2 − s1)(1 − ct) − (g + p2 − p1) ≥ 0 (or, s1 ≤ l2) (41)

(s1 − s2)(1 + ct) − (g + p2 − p1) ≥ 0 (or, l2 ≤ s2) (42)

s2 − rf ≥ 0 (or, s2 ≤ rf ). (43)

Furthermore, all decision variables s1, s2, p1 and p2 are non-negative. The
optimal solution for a monopolist is given in the following proposition.

9In the case of more than one station, it is more convenient to distinguish the cost of
providing the lane and the cost of providing a station. This is useful to find the optimal
number of the stations (to develop).
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Proposition 6. Assume that g ≤ (1 − ct)rf/2. Then, the locations chosen by
the monopoly are a solution to the system of equations

∫ sM
2

sM
1

n(r)dr = sM
1 n(sM

1 ) (44)

∫ rf

sM
2

n(r)dr =

(

sM
2 − sM

1 − g

1 − ct

)

, (45)

where the superscript M refers to monopoly values. The optimal charges are
given by,

pM
1 = (1 − ct)s

M
1 (46)

pM
2 = (1 − ct)s

M
2 − g. (47)

Thus, the solution of the Monopoly with two stations is a direct extension of
the case of one station managed by a private operator. Notice that with g = 0,
the location of the two stations does not depend on the relative speed of the
train. From (45) we notice the substitution effect between g and ct. Indeed, an
increase in g may be compensated for by a decrease in ct, i.e. a decrease in the
relative cost of the train.

If users are uniformly distributed over (0, rf ), and if g ≤ (1 − ct)rf/2, the
two stations are located at

sM
1 =

1

3

(

rf +
g

1 − ct

)

(48)

sM
2 =

2

3

(

rf +
g

1 − ct

)

, (49)

and the charges are given by

pM
1 = (1 − ct) sM

1 (50)

pM
2 = (1 − ct) sM

2 − g. (51)

In order to compare with alternative distributions of households we consider
the output of the linear distribution, n(r) = A(1 − r/rf ), and the negative
exponential distribution n(r) = A exp (−λr), where in both cases, A and λ are
positive numbers. The optimal locations for each case are given in Table 1. To
find the optimal location of the monopoly, recall that the problem of the private
operator is equivalent to the optimal problem when driving speed is similar to
the train speed. So, ct = 1 in Table 1 is also the optimal value for a public
monopolist.

3.1.2 Duopoly

Assume that each station is managed by a private operator who charges the
users of his station. Assume that the operation cost is zero and that passengers
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n(r) = A
(

1 − r
rf

)

n(r) = Ae−λr

s1 s2 s1 s2

ct = 0 2.68 5.98 2.81 6.73

ct = 1 1.18 4.79 2.27 5.32

A = 5 ; λ = 0.2 ; rf = 10

Table 1: Numerical examples.

are distributed uniformly over (0, rf ). It is natural to consider a two-stage game
where, at stage one each firm chooses the location of its station, and at stage
two both firms observe the choice made at stage one and compete in prices.

Consider the decision of firm 1 at stage 2. The firm observes s1 and s2 and
has to choose the best reply to the charge of firm 2, p2. When firm 2 chooses
the charge such that l2 = s2, firm 1 may be seen as the private operator in
the model of one station, but in a city of radius s2 instead of rf . Thus, firm
1 sets its charge so that l1 = s1. Similar reasoning applies to firm 2, and it is
likely that at the equilibrium both firms choose their charges so that l1 = s1

and l2 = s2.
Then consider the location decisions at stage 1. Assume that the city has a

unit length and that g = 0. We have seen above that a monopoly will locate
the two stations at s1 = 1/3 and s2 = 2/3, respectively. Let us check if this is
an equilibrium for the duopoly. When firm 2 chooses the location at 2/3, firm
1 is faced with a city that extends from 0 to 2/3, and we know from the one
station model that it is optimal for a private operator to locate in the middle
of the city, i.e. at 1/3 in this case. Similarly, when firm 1 locates at 1/3, firm 2
is facing a location problem in a city that extends from 1/3 to 2/3. From the
same argument, its optimal decision implies a location at 2/3. Thus, s1 = 1/3
and s2 = 2/3 is an equilibrium choice for the duopoly in this case. Pricing
and location decisions are the same under duopoly and monopoly in this model.
That a duopoly behaves like a monopoly is the result of the separation of the
two markets. The result extends to the case where the delay penalty is positive,
i.e. g > 0.

If entry is sequential, then the first firm will locate at the middle of the city
(for simplicity, we assume the uniform distribution), i.e. s1 = 1/2. If the entrant
firm has to choose any location, the solution would be to locate at s2 = s1 + ε,
where ε is an arbitrarily small positive number. This allows firm 2 to collect
(almost) all the gain of firm 1, which gets a zero profit now. This may induce
firm 1 to reconsider its initial decision. An existence problem arises in this
case. It is better to restrict the strategy space of the entrant in order to avoid
such situation. For example, if firm 2 is restricted to choose between 0 and s1,
then would locate at 1/4. An entrant restricted to choose location between r
and rf , with s1 < r will choose s1 = r. We summarize our conclusion in this
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Station location by a private manager
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Figure 3: Comparison between one and two stations (g = 0).

proposition.

Proposition 7. Under the framework discussed above, the duopoly problem is
identical to monopoly problem.

3.2 Comparison between one and two stations

We compare the case of one station with the case of two stations, assuming a
uniform distribution of households. From (15) and (33), we have (for g = 0)

so
2 − so ≥ 0 and so − so

1 ≥ 0, (52)

and

so
2 − so

so − so
1

=
1

2
(1 + ct). (53)

Let us call “initial station” the optimal location of the station in the first
model (one station). Condition (52) says that station 1 will be located between
the initial station and the city center, and station 2 will be located beyond the
initial station. Condition (53) says that station 2 will be closer to the initial
station than station 1.

Figure 3 illustrates the difference between one and two stations for g = 0.
The dot indicates the location of the station chosen by a private operator, while
the white lines correspond to the optimal location (but would never build a rail
line). The latter depends on the relative cost of the train. For ct = 1 the private
operator chooses the optimal locations. As ct decreases (the relative cost of the
train is lower), the optimal location moves away from the city center, while the
private operator’s remain unchanged. Under both management regimes, the
impact of g is a translation further away from the city center. The general case
is not particularly different and the same result hold.

3.3 Discomfort in mass transit

We now give the formulation of the problem when discomfort is taken into
account. This step makes the model less tractable and is mainly intended to
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introduce the numerical experiments we undertake in the next section. Total
cost for each mass transit passenger has four parts.

1. Home-to-station trip : |r−si|. Taking into account the distribution of the
population and summing for all stations i = 1, . . . , n we have

n
∑

i=1

∫ li+1

li

|r − si|n(r)dr,

where ln+1 = rf .

2. The trip from station si to station si−1 in the train implies two costs:
time-value ct and discomfort reflected by a function f(·). Summing on all
trips, we get

n
∑

i=1

N(li)(si − si−1)[ct + f(N(li))],

where N(x) =
∫ rf

x
n(r)dr, i.e. the population living beyond x. The func-

tion f(·) may reflect a linear discomfort, as we have done in the case of one
station, but we keep it in this more general and flexible form for instance.
Below we propose a new and more convenient formula to mass transit.

3. All those who use mass transit incur a waiting time in the station,

N(l1)w cw.

4. Under each stop those who are in the train incur a delay cost equal to g.
The total cost in the city is:

n
∑

i=1

[N(li+1) − N(li)] (i − 1) g.

Total cost in mass transit in the city is the sum of these four parts. The
computation of this quantity requires, as a first step, the identification of market
segmentation. This provides for each station the location of all passengers which
use it. Thus, we have to find all those locations where a passenger is indifferent
between two adjacent stations. This leads to the following equation

pi−1 + li − si−1 + si−1 ct = pi + g + si − li + N(li) · f(N(li))(si − si−1), (54)

which have to be solved for i = 2, . . . , n (with s0 = 0). For i = 1 the user who
is indifferent between using his car or mass transit is located at l1 that solves

τ + l1 + γp(N(l1) − N) = p1 + s1 ct + w cw + N(l1) f(N(l1)) s1. (55)
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4 Numerical illustration

With more than two stations it becomes difficult to derive analytical results and
it becomes interesting to use a numerical approach. When a numerical approach
is used it is also interesting to use a more general formulation of the discomfort
in mass transit. We start this section with a discussion of this feature and next
discuss the numerical results.

4.1 Non-linear discomfort formula

The mass transit vehicle has n1 seats and its loading capacity allows n2 − n1

other passengers to be standing under non-crowded conditions. Let c0 denote
the time cost for a passenger having a seat and c1 denote the time cost for a
standing passenger (but non crowded situation). When there are more than
n2 passengers in the vehicle, the discomfort increases strongly with every new
passenger.

The following congestion function reflects this situation :

C(n) = c0 +
c1 − c0

1 + eα(n1−n)
+ βeγ(n−n2), (56)

where α, β and γ are parameters used to calibrate the congestion or discomfort
function. A large value of α(more than ten) provides satisfactory results, but
for β and γ convenient values have to be discussed on the basis of empirical
evidence.

Equation (56) is illustrated on Figure 4. As long as n ≤ n1 the second and
third terms are small, and as soon as the number of passengers becomes larger
the denominator of the second term gets close to 1 and (since the third term
remains small) the cost (for new passengers) is almost equal to c1. As more
passengers arrive and as their number gets higher than n2 the vehicle gets more
and more crowded and time cost increases substantially (the third in (56) term
becomes important).

Notice that the above formula gives the travel cost for single user and for all
passengers. This is because passengers who have a seat will not have an increase
in their cost as new passengers arrive. Total travel cost in the vehicle is:

TC(n) =

{

n c0 if n ≤ n1

n1 c0 + (n − n1)C(n) if n > n1.
(57)

Consequently the marginal cost of a new passenger is:

TC(n) =

{

c0 if n ≤ n1

C(n) + (n − n1)C
′(n) if n > n1.

(58)

4.2 Summary table

Except for N and rf all other parameter values are expressed as relative values
with respect to cp. Base-case parameter values are given in Table 2. Total
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Figure 4: Discomfort in mass transit.

population N and the radius of the city are set to the same value so that the
average distribution of households per unit of distance is equal to one. The travel
cost in mass transit, net of discomfort, is set to one third travel cost in private
vehicle, net of congestion cost. The waiting cost in the station is about one half
of the travel cost. The implicit assumption here is that travelers are better off
being in the station than being in the vehicle. This is not crucial but seems
convenient as passengers have more flexibility in the station (the possibilities
of doing some shopping, or changing the travel decision, . . . ). Construction
cost θ (normalized to a daily cost) are smaller than travel cost. This is also
the case for the service cost φ, but the sum of these two costs is higher than
one. The delay cost g resulting from intermediate stops of the train is equal
one tenth the travel cost. Concerning congestion and discomfort cost γp, γt

and the parameter in the non-linear discomfort function, there aren’t obvious
values to propose initially. We have tried many values and considered those
which provide the most coherent results. Empirical investigation of this question
remains important. n1 and n2 are set so that only a small part of the population
finds a seat but most of the population travels under non-crowded conditions. Of
course, alternative analysis focusing on peaked hours characterized by crowding
in mass transit have to be considered in the future.

Summary output is given in Table 3. There are three situation considered :
non congestion, linear congestion and non-linear congestion. To obtain the
first case simply set γp = γt = 0 in the analytical model above. The linear
case corresponds to positive values of these two parameters and the non-linear
congestion corresponds to the formulation introduced in Section 3.3.

For each case we provide output indicators for the optimum decision, which
minimizes total transport cost in the city, and values related to the monopoly
decision. There are three set of indicators provided. First the optimum num-
ber of stations, then transport costs in the city and monopoly profit then the
locations of the stations, the service frequency, the pricing at each station and
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Variable Value
rf 10.0
N 10.0
ct 0.33
cw 0.15
θ 0.4
φ 0.7
gt 0.001
gp 0.08
g 0.1

Table 2: Parameter values in the base case.

road toll level. Market segmentation is given only for the optimum since for
monopoly the corresponding constraint is always binding and the stations’ lo-
cation is sufficient.

There are some visible facts one can observe from Table 3. In all cases the
monopoly chooses more stations than in the optimum case. As a consequence,
the transport cost induced by a monopoly is always substantially higher than
the optimal transport cost. Continuing the comparison between the monopoly
and the social optimum, notice that the private operator always chooses more
stations (about twice). The intuition for this outcome is that doing so the
monopoly is able to discriminate more between mass transit users and thus
collects higher profits.

Service frequency is better under the optimal regime unless for the case
of non-linear congestion. In this case, it is optimal to locate the first station
far away from the city center. The last part of the train trip, between the
first station and the CBD, is characterized by an important congestion. To
reduce this term, the monopoly increases the train service instead of moving
the stations away from the CBD. The function played by the pricing is not the
same under the two regimes. The private operator chooses its prices in order to
increase the profit, while at the optimum pricing of mass transit induces correct
segmentation of the market, i.e. each station is used by a convenient number of
passengers. Despite this divergence we notice that the pricing of mass transit
increases with the distance between the station and the city center. The increase
is much higher under monopoly, however.
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No congestion

no 4 TC 25.89 s (1.81, 3.63, 5.45, 7.30)
l (1.51, 2.79, 4.60, 6.50)
w 0.16
p (0.77, 0.83, 0.90, 0.97)
τ 0.70

nm 7 PRF 17.72 s (0.71, 1.59, 2.49, 3.59, 4.91, 5.71, 6.74, 7.71)
TC 31.21 w 0.5

p (0.48, 1.07, 1.67, 2.41, 3.29, 3.82, 4.52, 5.17)

Linear congestion

no 4 TC 26.13 s (1.52, 3.40, 5.30, 7.23)
l
w 0.15
p (0.71, 0.78, 0.85, 0.91)
τ 0.75

nm 7 PRF 18.78 s (1.51, 2.38, 3.28, 4.23, 5.23, 6.28, 7.39)
TC 31.84 w 0.70

p (1.18, 1.76, 2.36, 3.00, 3.66, 4.37, 5.10)

Non-linear congestion

no 4 TC 23.05 s (4.20, 5.77, 7.02, 8.00)
l (2.23, 5.33, 6.69, 7.72)
w 0.087
p (0.94, 1.86, 2.84, 3.90)
τ 2.36

nm 8 PRF 13.16 s (1.07, 2.00, 2.92, 3.86, 4.84, 5.86, 7.08, 7.79)
TC 33.43 w 0.05

p (0.61, 1.15, 1.69, 2.27, 2.85, 3.48, 4.26, 4.72)

Table 3: Optimal and equilibrium values for transport sector.
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5 Conclusion

This paper discussed the endogenous location of mass transit stations. The anal-
ysis has been conducted under both public and private management regimes,
and with respect to various formulations of discomfort in mass transit. In this
context we have proposed a new formulation of a non linear discomfort function
that takes into account the number of seats available and the possible crowding
that may occur in the vehicles.

The literature on mass transit is relatively poor by comparison to road trans-
port, in particular with respect to congestion and discomfort. Our analysis
extends earlier models by Mohring (1972) and Kraus (1991).

The first part of the paper has focused on an analytical model of station’s
location, which we have used to derive a number of results with respect to deci-
sions of a private manager by comparison to optimal decisions (which minimizes
total transport cost in the city). The relative cost of the two transport modes
plays an import role in the solution of the public manager. Indeed, the optimal
location in this case depends on the relative cost. As mass transit becomes
more attractive, the public manager locates the station further away from the
city center. The private manager, by contrast, sets the price and locates the
station independently of the relative cost. In this case all the surplus, generated
by mass transit, is collected by the private manager and all users are set to their
willingness to pay.

The model incorporates congestion in the two transport modes. Congestion
in mass transit has been considered by a limited number of authors (cf. Kraus
1991). With an arbitrarily distribution of households, users split between the
two modes cannot be derived explicitly, but it remains possible to conduct
sensitivity analysis with respect to key parameters of the model. We find that,
as a transport mode becomes more congested, it is optimal to reduce its market
share by relocating the mass transit station.

With multiple stations the new feature introduced in the model is the delay
incurred at the intermediate stops of the train before it reaches the destination.
In both regimes, this delay induces a location of the station away from the city
center. With many stations the model is less tractable and we have omitted the
congestion impacts, unless in the numerical part, where a non-linear discomfort
function has been considered. The adequate calibration of this function with re-
spect to empirical data has to be undertaken in the future, but the first analysis
conducted here shows a good explanatory potential of this formulation.
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A Dynamic departure time

This section extends the analysis with respect to waiting time by distinguishing
between early and late arrival costs. We consider early delay and arrival time.
To make the analysis at this stage simple, we assume that all the households
have a uniform arrival time preferences over a closed interval between date t = 0
and date t = T , with T > 0. We follow the related literature by denoting Early
delay cost by β and late delay cost by γ, with γ > β. Let s denote the time when
service is given s ∈ (0, T ), i.e. the time when the train leaves the station. When
there are two trains, the user who is indifferent between both has a preferred
arrival time that we denote by t̂. When needed, s and t̂ will have indices.

If two services are provided at dates s1 and s2 respectively, the indifferent
user will have a preferred arrival time t̂ that satisfies

(t̂ − s1)γ = (s2 − t̂ )β (59)

or,

t̂ =
γ

γ + β
s1 +

β

γ + β
s2. (60)

Equation (59) reflects a situation when users are not aware of congestion. If the
latter is taken into account, and if it take a linear form, then10

(t̂c − s1) + δt̂c
N

T
= (s2 − t̂c)β + δ(T − t̂c)

N

T
(61)

10As it becomes clear from the analysis below, the exact formulation of congestion not
crucial as long as the preferred arrival time of households is uniformly distributed.
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or,

t̂c =
γs1 + βs2 + δN

γ + β + 2δN/T
. (62)

Thus t̂c − t̂ have the same sign as γ + β − 2(γs1 + βs2), or in other words t̂c > t
if and only if

T

2
>

γs1 + βs2

γ + β
. (63)

For example, if s1 = 0, s2 = T and γ > β then t̂c > t̂. The intuition for this
result is straightforward: Higher congestion cost induces a smaller importance of
delay costs. The following result describes the behavior of a public administrator
who wishes to minimize the transport cost in mass transit.

Proposition 8. Whether congestion is taken into account or not, the optimal
timing of the service when there are n trains is

so
i =

(

i − γ

γ + β

)

T

n
(64)

for i = 1, . . . , n.

A consequence of this proposition is that the problem with n services in
the time interval (0, T ) is equivalent to the problem of one service in the time
interval (0, T/n) repeated n times. Indeed, we have the following conclusion.

Corollary 1. If train services are provided according to (64), then the marginal
users have respective preferred arrival times at

t̂i = i
T

N
(65)

for i = 1, . . . , n.

Consequently, t̂ci = t̂i, i.e. the allocation that takes into account congestion
leads to the same allocation that does not take into account congestion.

With an alternative transportation mode available only a part of the pop-
ulation uses the train. To simplify, assume that users have a fixed reservation
cost, denoted η. When P users are uniformly distributed, according to their
preferred arrival time, over (0, T ), and if there are n trains during the same
time interval, then the number of households using the train is given by the
following demand function

D(n) =

{

ηP n
T

β+γ
βγ

if η ≤ βγ
β+γ

T
n

P if not.
(66)

To determine the optimal number of services, assume that the cost of one
service is ξ. The total cost of n services can be written in the form

ϕ(n) =
T

n
Γ + ξ n, (67)
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where Γ is a constant that depends on β and γ. It is clear that total travel cost
in the mass transit is minimized with nf services where, nf is given by

nf =

√

T
Γ

ξ
. (68)

The expression of the optimum number of services corresponds to the well known
Mohring’s square root rule (cf. Mohring 1972, Kraus 1991) adapted to our model.
If congestion is taken into account, then (68) remains true but with a higher
value of Γ, inducing a larger number of services at the optimum.
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