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ABSTRACT 

This paper presents a train running time prediction model, which takes into account train path 
conflicts and dispatching decisions. Dependencies between train events are modelled as 
arcs in a weighted graph. Data mining of historical track occupation data is used to find 
accurate estimates of the arc weights (running times, dwell times, headway) conditional on 
current delays and factors such as peak hours. A case study of the Dutch railway corridor 
Dordrecht–Rotterdam–Den Haag shows good calibration and validation results. 
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INTRODUCTION 

In order to reduce delays in a railway system and to prevent them from propagating through 
the network, a train dispatcher can apply dispatching actions, for example by changing the 
location of a planned overtaking, or cancelling a train connection. When deciding which 
dispatching measure to apply, the dispatcher needs to estimate the consequences in 
advance. This asks for the possibility to predict the train traffic in the near future (e.g. one 
hour ahead), based on the current state of the railway system. This paper presents a 
statistical analysis of train running times between stations with the aim to make accurate 
predictions of the delay propagation over a railway network. The main goal is to develop and 
test a predictive delay propagation model that obtains its parameters by statistical analysis of 
historical track occupation data and takes into account possible downstream conflicts. 
Over the last decades, much research has been done to improve dispatching procedures 
during disruptions in railway operations. Models for finding optimal dispatching decisions 
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have been developed based on integer programming, graph theory, or microscopic 
simulation using blocking time theory (Hansen and Pachl, 2008). All these methods rely 
explicitly or implicitly on conflict detection and resolution. However, an online tool for 
predicting train path conflicts and calculating the network-wide effectiveness of dispatching 
decisions still has to be developed. This may explain that the developed models and 
prototype railway traffic management systems still have to find their way into practical 
implementations. 
A railway traffic network consists of many interdependencies due to timetable constraints, 
passenger connections, infrastructure constraints, logistic constraints such as rolling stock 
circulations, etc. Such a system can be modelled effectively using a timed event graph, 
which can also be expressed as a linear system in max-plus algebra (Goverde, 2005). The 
graph structure of such a model allows fast calculations of delay propagation (Goverde, 
2010), making the model suitable for online use in decision support systems for dispatchers 
or in dynamic passenger information systems.  
However, train operations are affected by many varying factors, such as driver behaviour, 
passenger volumes, weather conditions, etc. The need for fast running time prediction 
algorithms on the one hand and the complexity of railway systems on the other hand leads to 
a trade-off between fast online train traffic prediction and a detailed calculation of the 
stochastic processes and interdependencies resulting from trains sharing the same railway 
infrastructure. To tackle this problem an adaptive model can be used where the parameters 
such as running times and dwell times are estimated using feedback of current and historical 
operational data. Data mining of railway operations data can be used to find stochastic 
distributions and dependencies amongst delays, process times, and categorical factors, see 
e.g. Goverde et al. (2001ab), Goverde (2005), Yuan (2006), Conte (2007), Daamen et al. 
(2009), Flier et al. (2009), and Van der Meer et al. (2009). 
The next section proposes a running time prediction model based on the (timed event) graph 
modelling with train routes and process times as input parameters. The subsequent section 
presents a statistical analysis of train running times to discover which parameters should be 
added as model parameters in the graph model. Thereafter, the model is calibrated and 
validated in a case study of the heavy used Dutch railway corridor Rotterdam-The Hague. 
The final section contains the main conclusions. 

THE RUNNING TIME PREDICTION MODEL 

Dutch train describer data 
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A train traffic prediction model requires a topological description of the underlying railway 
network including the measurement locations of actual train positions. A good starting point 
is the network configuration of train describer systems. The progress of trains over a railway 
network is followed by train describer systems using track occupation detection messages 
from the safety systems. Both incoming infrastructure messages and generated train 
describer messages are typically recorded in train describer logfiles in real-time. Goverde 
and Hansen (2000) developed the TNV-Prepare data mining tool for Dutch train describer 
records (TNV-logfiles) to match infrastructure messages to train numbers and thus obtaining 
train path realizations on a track section level with a precision of one second. The output of 
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this tool has been used for operations analysis and statistical inference (Goverde, 2001ab, 
2005; Nie and Hansen, 2003; Yuan and Hansen, 2007). More recently, Daamen et al. (2009) 
developed the data mining tool TNV-Conflict which in addition to the train trajectories and 
train delays also identifies realized route conflicts and conflicting trains using object-oriented 
programming and signalling logic. Using this tool unhindered and hindered running times are 
distinguished and the effect of route conflicts can be analysed effectively. Prediction of 
running times and conflicts is the next logical step based on insight gained from the 
descriptive and inferential statistics (Van der Meer et al., 2009).  
The data used in this report are obtained by TNV-Conflict using the train describer logfiles of 
the areas Rotterdam and The Hague of February 2009. The graph model is based on the 
topological description of the railway network according to the train describer configurations. 
The railway network is divided into track sections by track-free detection devices (track 
circuits, axle counters). Each time a train enters or clears such a track section, an 
infrastructure message is received by the train describer system and recorded in a logfile. 
Figure 1 shows an example of the division of railway infrastructure into track sections, where 
the underlined codes are examples of section names. Note the difference between a track 
section and a block section, which always starts and ends at a signal. The high level of detail 
of these train describer data and the accuracy of one second allows a detailed calculation of 
train running times between given elements in the network. This microscopic level is used to 
find statistical dependencies and parameter estimates offline. For the online prediction model 
an aggregated network structure is used corresponding to scheduled station events (arrivals, 
departures and through passages) and the train position steps from the train describers that 
are available online.  
 

 
Figure 1   Small example of railway infrastructure elements: track sections and signals 

Structure of the prediction model 

In the model proposed in this paper, train operations are described by a set of processes, 
which take a certain amount of time, and events, which form the beginning or the end of a 
process. Examples of process times are: train running times, dwell times, waiting times 
caused by conflicting train routes, etc. In the online macroscopic prediction model the events 
are one of three types: train departures, train arrivals, or train passages at stations.  
The dependencies between events and processes can be graphically represented by timed 
event graphs. As shown by Goverde (2005), this is a suitable way to model railway systems 
if the propagation of train delays has to be calculated quickly. For a correct prediction of train 
running times, it is necessary that dependencies between trains due to conflicting train routes 
are incorporated in the model. Such a dependency is modelled by an arc (i, j), connecting the 
dependent events i and j. The weight of the arc represents the minimum time duration 
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between events i and j. A railway system can thus be modelled by a set of events and a list 
of arcs, which together form a timed event graph. The graph is built by scanning the sectional 
train data as generated by TNV-Conflict from the raw train describer logfiles. This will be 
described in the next section. 

Generating the model from track occupation data 

By mining the track occupation data, a timed event graph of all recorded train operations can 
be generated. In this project, such a model will serve two purposes: the first half of the data 
will be used to calculate parameters, such as running times, blocking times, etc., while the 
second half of the data will be used to generate test cases, in order to test the accuracy of 
the model.  
Track section occupations by trains recorded in the data lead to events in the model, but to 
keep the model simple, not all section occupations will be translated to events. Therefore, the 
track occupation data is filtered for section occupations listed in a set S, being the sections 
where the events occur that are to be modelled in the final model. At some sections, the 
activity is dependent on the train type. For example, the occupation of a track section in a 
small station gives a through event for intercity trains and a departure event for local trains. 
To make this distinction correctly while scanning the data, a line number Line is assigned to 
each train run, while the activity for each train line Line at a section S is stored in a matrix 
Act(S,Line), with entries that can attain the values ‘arrival’, ‘through’ or ‘departure’. For each 
section occupation by a train number, it is now clearly defined whether a train is arriving, 
departing or passing. 
Scanning the data for occupations of track sections in S results in a set of events E. For each 
event i the following attributes are determined: scheduled event time Tscheduled(i), recorded 
event time Trecorded(i), train number N(i), event type Activity(i), and rolling stock type Stock(i). 
After the track occupation data has been scanned for events an arc list A is generated, 
containing all arcs modelling delay dependencies between the events in de model. The arcs 
modelling running times and dwell times are generated as follows. First all events with the 
same train number are sorted on date and time of occurrence. After sorting, all pairs of 
subsequent events are connected by arcs (i, j). If Activity (i) = ‘departure’ and Activity (j) = 
‘arrival’, then (i, j) is a running time arc, whereas in case of the opposite, the arc reflects a 
dwell time at a station. Arcs ending or starting at a ‘through’ event are always running time 
arcs. 
Creating the headway arcs is more complicated, since different types of conflicting train 
routes (e.g. crossing routes or routes merging into the same track) result in different 
headways that have to be implemented in the model as headway arcs. Headway arcs reflect 
the minimum headway that has to be respected between two events of trains with conflicting 
routes. The direction of the headway arc is determined by the order in which the trains pass 
the shared infrastructure element. Headways between following, merging or crossing trains 
are distinguished. In order to check which type of headway arc has to be generated, the track 
occupation data is scanned for train passages at bottlenecks in the network, simultaneously 
to the scanning for events. The set of bottleneck sections B has to be defined in advance, 
such that the resulting model will reflect the train operations and the occurring delay 
propagations as accurately as possible. Note that detailed knowledge of the infrastructure is 
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crucial to define the bottleneck sections correctly, as the quality of the models generated by 
the algorithm mainly depends on a tactical definition of the set S and the bottleneck sections 
in the set B. 
Each time an occupation of a bottleneck section is found in the data, a headway arc is added 
to the model as shown in Figure 2, according to the following rules: 

• A ‘following’ bottleneck models the fact that a train cannot arrive at a station as long 
as its (platform) track is still occupied by a previous train. This leads to a headway arc 
connecting the departure of the previous train with the arrival of the next train. 

• A ‘merging’ bottleneck models the headway between trains with routes merging into 
the same track. This leads to a headway arc between the events of two subsequent 
trains, preceding the passage of the bottleneck. 

• A ‘crossing’ bottleneck models the delay dependency between crossing trains, where 
a delay of the preceding train is propagated to a following train. This leads to an arc 
between the predecessor event of the first train and the successor event of the 
following train, with regards to the bottleneck passage. For example, in Figure 2 (right 
picture) two trains 1 and 2 pass through station A, cross each other, and then pass 
through station B. Here, a delay of train 1 at station A can be propagated to train 2 at 
station B.  

 
Figure 2  Bottlenecks (denoted by ‘B’) and the resulting headway arcs in a timed event graph (events are denoted 

by black bars, running time and dwell time arcs are solid, headway arcs are dashed) 

Algorithm 1 gives the pseudo-code for the model construction. Arcs are generated while 
scanning the set of events E and checking for bottleneck passages (in line 4). If two 
subsequent events in the (sorted) set E are associated to the same train number, then a 
running/dwell time arc is constructed (line 3). Headway arcs caused by the different types of 
bottlenecks are constructed in lines 6 – 14. If a section code is listed both in set S (for 
defining events) and in set B (for defining bottleneck passages), then the algorithm treats the 
bottleneck passage as event i, and the subsequent event as event j. This situation can be 
seen in the example of a ‘following’ bottleneck in Figure 2. 
Event dependencies due to passenger transfers, turning trains, coupling and uncoupling 
trains, crew schedules, etc., can be modelled using the same principle. 
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Algorithm 1 (GENARCS) 
Input:  
    E  
    B 
Output: 
    A 

 
= list of events, sorted by occurrence time t, then to train number n 
= list of bottleneck sections b 
 
= arc list 

1. for each pair (i, j) of subsequent events in E do 
2.     if N (i) = N (j) then                                             % i and j belong to the same train run 
3.         A ← A ∪  {i, j};                                                % add running/dwell time arc from i to j 
4.         if a bottleneck b was passed between i and j then 
5.             find previous passage of b; 
6.             if type(b) = ‘crossing’ then 
7.                 find the predecessor event k of the previous passage of b; 
8.                 A ← A ∪  {k, j} ;                                       % add headway arc from k to j 
9.             else if type(b) = ‘following’ then 
10.                 find the successor event k to the previous passage of b; 
11.                 A ← A ∪  {k, i} ;                                       % add headway arc from k to i 
12.             else if type(b) = ‘merging’ then 
13.                 find the predecessor event k to the previous passage of b; 
14.                 A ← A ∪  {k, i} ;                                       % add headway arc from k to i 
15. return A; 
 
After the arc list has been generated the arc weights have to be calculated. Since the arc 
weight of an arc (i, j) reflects the minimum time that has to elapse after event i before event j 
can occur, the most simple way to estimate an arc weight is to calculate a small percentile of 
all observed arc weights in the track occupation data. Different percentiles may be used for 
this depending on the process that has to be modelled. The remainder of the paper is 
devoted to find good estimates of the arc weights, with train running times analysed in more 
detail. 

ANALYSIS OF TRAIN RUNNING TIMES 

The railway traffic model presented in the previous section can be used to predict the delay 
propagation based on the current state of the railway traffic. However, apart from the current 
delays, other factors may influence the running times and dwell times of trains, thereby 
affecting the delay propagation. The influence of a number of parameters on train running 
time is investigated in this section, but first the different components of scheduled running 
time are introduced.  
The scheduled running time between two main stations consists of four components (Hansen 
and Pachl, 2008): 

• Minimum running time between scheduled stops 
This is the shortest possible running time of a train between two stops. This pure running 
time can be derived from running time calculations or from practical experience. 

• Dwell time at intermediate scheduled short stops 
In case of intermediate stops, dwell time is included in the scheduled running time. 

• Running time supplement 
A running time supplement is added to the minimum running time to enable trains to 
make up small delays. Usually, the running time supplement is a certain percentage of 
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the minimum running time. When a train runs according to the schedule, the running time 
supplement can be used differently depending on the train driver. The usual approach is 
to adopt a more energy-efficient driving style by reducing maximum speed or coasting, 
thus avoiding early arrivals and the risk of conflicts at the next station. Note that the 
running time supplement can not always be used fully to recover from delays, since 
sometimes it has to be used to make up for less ideal circumstances, such as bad 
weather, etc. 

• Scheduled waiting time 
Scheduled waiting time is sometimes added to the schedule in order to solve a train path 
conflict or to synchronize train departures to enable passenger transfers. Scheduled 
waiting time may therefore be added to either dwell time or running time. 

A departure delay may influence the running time of that train. Two mechanisms causing this 
influence can be distinguished: (a) the train driver of a delayed train will try to use the running 
time supplement by running at the maximum speed allowed in order to reduce the delay, and 
(b) at intermediate stops delayed trains require less time (if at all) waiting for their scheduled 
departure time. The influence of current delays is studied below for the successive cases of 
non-stop running times, dwell times, and running times including intermediate scheduled 
short stops. 

Influence of delay on non-stop train runs 

To show the influence of the first mechanism, the running times of intercity trains from 
Zwijndrecht (a through station between Dordrecht and Rotterdam) to Rotterdam Centraal are 
investigated. This route has been chosen for two reasons: (1) two tracks per direction are 
available all the way from Zwijndrecht to Rotterdam Centraal, so running times are less likely 
to be influenced by train conflicts, and (2) at Zwijndrecht the trains just crossed the movable 
railway bridge near Dordrecht, so the running times are not influenced by bridge openings. 
The running times are calculated by subtracting the occupation time of the platform track at 
Rotterdam Centraal (section 218BT) and the track section directly after the platform track at 
Zwijndrecht (1335AT). Hindered train runs as detected by TNV-Conflict analysis have been 
filtered out. Table I lists the statistical characteristics of the data sets for IC1900, IC2100 and 
IC2400 trains. 
 

Table I  Summary of running times for intercity trains between Zwijndrecht and Rotterdam Centraal 

Train line 1900 2100 2400 
Train route Vl – Gvc Vs – Asd Ddr – Asd 
Number of data points 594 340 327 
Scheduled running time [s] 660 720 720 
Mean [s] 545 557 564 
Median [s] 534 538 543 
Standard deviation [s] 49 63 58 
R2 of robust regression line 0.0029 0.0517 0.0237 

 
Note that the scheduled running time is calculated until the actual arrival (i.e. standstill at the 
platform) of the train, whereas the observed running times are calculated using the section 
occupation time, which causes the observed running times to be shorter than the scheduled 
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running times. Hence, the running times of the arriving trains on the platform section itself 
(i.e. from the occupation of the last platform track section to standstill) is not taken into 
account. A lower bound for this value is the time that elapses between the occupation of the 
platform section and the release time of the last section before the platform, which is the 
running time over the train length from the first axle to the last axle passing the beginning of 
the platform track section. For the IC1900 trains for instance, the median of these running 
times is 35 seconds. Note that the release time of the pre-platform track section is a more 
accurate arrival time estimate but this depends on the train length. Calculating all running 
times over the same distance as the difference of section occupation times avoids an 
additional dependency on train lengths. 
Figure 3 shows a scatter plot of the running times of the IC1900 trains depending on the 
through delays with respect to the scheduled passing time in Zwijndrecht. A robust 
regression line resisting 25% of the outliers (Rousseeuw and Van Driessen, 2006) has been 
included to investigate the dependency between the delay and the running time. No such 
dependency can be recognized, as is also shown by the low value of explained variation R2 = 
0.0029. Apparently, between Zwijndrecht and Rotterdam Centraal, the IC1900 trains cannot 
use any recovery time to reduce their delays, which means that either there is not enough 
recovery time in the schedule or that the available recovery time is used for other purposes. 
Figure 4 shows a scatter plot and histogram of the IC2100 trains with a scheduled running 
time of 720 seconds, which is one minute longer than the IC1900. Again, very little linear 
relationship between the running time and the delay can be found. However, the running 
times of the punctual IC2100 trains show more variation, which can be explained by the 
different anticipating behaviour of train drivers. From the scatter plot can be concluded that 
some train drivers adopt a more slow and energy-efficient driving style if they know their train 
is running punctual or ahead of schedule while other drivers always run at the maximum 
allowed speed, depending on their experience, willingness to avoid too early arrivals at 
Rotterdam Centraal, save energy, etc. The IC2400 trains show the same behaviour as the 
IC2100 trains. 
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Figure 3 Delay dependency of running times Zwd - Rtd for IC1900 trains 
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Figure 4 Delay dependency of running times Zwd - Rtd for IC2100 trains 

Influence of delay on dwell times 

When trains run ahead of schedule, they have to wait on their scheduled departure time at 
station stops. Therefore, delays have a large influence on dwell times of trains at stations. In 
this section, the dwell times of the intercity trains at Rotterdam Centraal are calculated by 
subtracting the occupation times of infrastructure elements 218BT and 278, being the 
platform track section of track 9 and the signal directly after the platform respectively. The 
dwell times of the other trains are calculated using the occupation times of sections A280T 
and 283BT, being the platform track section of track 8 and the first section after the platform. 
 

Table II Dwell times at Rotterdam Centraal 

Train line IC 1900 IC 2100 IC 2400 S 2200 ST 5100 ST 5000 
Train route Vl-Gvc Vs-Asd Ddr-Asd Bd-Asd Rsd-Gvc Ddr-Ledn 
Number of data poins 596 341 345 549 946 345 
Scheduled dwell time [s] 180 120 120 240 180 60 
Mean [s] 258 295 326 351 232 173 
Median [s] 262 301 340 338 232 155 
Standard deviation [s] 75 91 76 104 89 59 
R2 of robust regression line 0.90 0.94 0.97 0.91 0.92 0.61 
Estimated min dwell time [s] 179 157 155 140 126 131 
 
Table II summarises the statistical properties of the dwell times at Rotterdam Centraal of 
trains heading in the direction of Den Haag. From the scatter plots in Figure 5 it can be 
concluded that a strong relationship exists between the arrival delays and the dwell times of 
trains, which is also confirmed by the slope of the robust regression line (again, 25% of the 
outliers were resisted). However, for the model based on timed event graphs, the minimum 
dwell times of trains are important, since the arc weights model the minimum time that has to 
elapse between two connected events. Therefore, a separation has to be made between 
trains that actually experienced a minimum dwell time, and trains that had to wait for their 
departure time, leading to longer dwell times. 
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A robust method to obtain such a separation makes use of the fact that trains experience 
their minimum dwell time only if they arrived with a certain delay. Good results were obtained 
by using the scheduled dwell time minus 60 seconds as a limit for this minimum arrival delay. 
The red dashed vertical line in Figure 5 denotes this limit. The median of the dwell times of 
all trains with an arrival delay beyond this limit (i.e. right of the vertical, dashed line) is the 
robust estimation of the minimum dwell time, indicated by the horizontal dashed line. For 
short stops a small percentile of all dwell times can be used as a robust estimator of the 
minimum dwell time. Note that the use of section occupation times leads to relatively high 
values for the minimum dwell times as they include the running time on the platform track. 
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Figure 5  Scatter plots of dwell times at Rotterdam Centraal of IC 1900 (left) and IC 2100 (right) trains heading in 
the direction of Den Haag 

Influence of delay on train runs with intermediate scheduled short stops 

The previous sections showed that delays affect dwell times of trains, whereas pure running 
times may be almost unaffected by delays. In this section, the influence of delays on train 
runs with intermediate stops will be investigated for the S2200, ST5100 and ST5000 trains 
between Zwijndrecht and Rotterdam Centraal. The results are summarized in Table III. 
 

Table III  Running times Zwijndrecht - Rotterdam Centraal of trains with intermediate stops 

Train line S2200 S ST50T5100 00 
Train route Bd-Asd R Ddr-Lsd-Gvc edn 
Number of stops 2 4 4 

94 345 
10 1124
10 1120

71 57 

Number of data poins 555 8 
Mean [s] 889 86  
Median [s] 902 82  
Standard deviation [s] 78  
R2 of robust regression line 0.99 0. 0.70 

11 1200
10 1078
11 10 

30 
Scheduled running time [s] 1020 40  
Estimated min. running time [s] 787 15  
Running time supplement % 23  
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Figure 6 Delay dependency of running times Zwijndrecht – Rotterdam Centraal (left: S2200, right: ST5100) 

As can be seen in the scatter plots of Figure 6, the dependency between delays and running 
times (including intermediate stops) is not always as strong as with dwell times. This can be 
explained by the different amount of slack time in the schedules of both trains. Apparently the 
S2200 has more slack time, enabling compensation of delays up to approximately 200 
seconds. Another result is that trains of the same train line may have a different delay 
dependency on different segments of their route. For instance, the robust regression model 
of the S2200 trains between Zwijndrecht and Rotterdam has explained variation R2 = 0.99, 
while between Rotterdam and Den Haag HS this is R2 = 0.18 (Van der Meer et al., 2009). 
Consequently, finding a robust estimator for the minimum running time using delay 
dependency is more difficult. It is therefore advised to use a fixed percentile as an estimator 
for the minimum running time. The dashed lines in Figure 6 denote the 10th percentile, which 
yields a good estimation for each of the train lines, as can be seen in the figures. 
An estimation of the running time supplement can be made from the difference between the 
scheduled running time and the estimated minimum running time, which can be found in 
Table III as well. 

Influence of peak hours 

During peak hours more boarding and alighting passengers may lead to longer minimum 
dwell times. In the track occupation data, this effect only becomes visible for trains with short 
stops, or for late arriving trains where the minimum dwell time could be measured. As can be 
seen in Table IV, where the statistics of dwell times at Rotterdam Centraal during peak and 
off-peak hours are summarized, the number of trains running in the peak hours with an 
arrival delay more than the scheduled dwell time minus 60 seconds, is small compared to the 
total data set. This makes it difficult to draw statistical conclusions about the influence of 
peak hours on dwell times at Rotterdam Centraal. Merging the data sets of similar train lines 
may be a solution to this problem. For instance, the train lines ST5100 and ST5000 have the 
same stopping pattern, rolling stock, etc., and so have the IC2100 and the IC2400. 
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Table IV  Peak and off-peak dwell times at Rotterdam Centraal 

Train line IC 1900 IC 2100 IC 2400 S 2200 ST 5100 ST 5000 
Train route Vl-Gvc Vs-Asd Ddr-Asd Bd-Asd Rsd-Gvc Ddr-Ledn 
Scheduled dwell time [s] 180 120 120 240 180 60 
N peak and arrival delay 16 6 3 2 28 9 
N off-peak and arrival delay 128 29 11 13 88 38 
p-value rank-sum test 0.025 0.015 0.071 0.93 0 0.51 
Med. peak and delayed [s] 215 180.5 201 142.5 148 138 
Med. off-peak and delayed [s] 176.5 152 148 140 120 125 
 
Despite the small numbers of data points, the scatter plots in Figure 7 indicate that the 
minimum dwell times during peak hours are longer than in the off-peak. The medians of 
peak-hour and off-peak dwell times, both only for trains with an arrival delay beyond the red 
dashed line, are given in Table IV and show that the peak-hour dwell times indeed tend to be 
longer than off-peak dwell times. A Wilcoxon rank-sum test is performed to investigate the 
difference between both sets of dwell times as well. At a significance level of 5%, statistical 
evidence for different peak and off-peak dwell times is found for the IC1900, IC2100 and 
ST5100 trains. It should be noted however that although the Wilcoxon rank-sum test can be 
used for different sample sizes, the lack of balance in the sample sizes of this analysis may 
lead to unreliable outcomes, particularly for the S2200 and IC2400 trains. 
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Figure 7 Dwell times in peak hours (denoted with '+'), compared to off-peak dwell times (denoted with 'o') for two 
train lines at Rotterdam Centraal 

More useful results for the analysis of the influence of peak hours were obtained from the 
busy station of Delft, where short stops are scheduled. No statistical evidence is necessary 
to show the clear peak hour dependency in Figure 8, where the dwell times of S2200 trains 
in February 2009 are shown. The dwell times have been estimated by subtracting the 
occupation time of the platform track section (14A/BT) and the section directly thereafter 
(34AT). It can be concluded that peak hour dependencies themselves depend on many 
factors, such as the train line, station and the scheduled dwell time. 
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Figure 8   Dwell times (in seconds) of S2200 trains at Delft in February 2009. Note that a ‘short stop’ is scheduled 

at Delft for this train line 

Influence of rolling stock and weather 

The influence of different rolling stock and rainy weather has also been analysed using 
additional rolling stock and weather data. In both cases statistical significant differences 
could be found but the values are so small that implementation of these factors in a running 
time prediction model is not justified (Van der Meer et al., 2009).  

VALIDATING THE PREDICTION MODEL 

Delay propagation algorithm 

A delay propagation algorithm has been developed in order to use the model described 
above for predicting train running times. Half of the available track occupation data has been 
used to calculate the model parameters (i.e., the set of arc weights W), whereas the other 
half of the data has been used as a test case for validation. 
When testing the prediction model, it has to be carefully taken into account which information 
is assumed ‘known’ by the model, and which information is not, see Figure 9. Before the start 
of the experiment, a prediction time horizon is chosen. Based on this time horizon, the 
starting point of the prediction process can be found for each train that is to be predicted. For 
example, if the prediction time horizon is 20 minutes, and a train arrives at 17:28 according to 
the track occupation data, then the starting point tstart for the prediction of that arrival will be at 
17:08. In the figure can be seen that all event times later than tstart are considered as ‘future’, 
and therefore they are unknown and have to be predicted. The running orders, scheduled 
event times and parameters like rolling stock are assumed known. The choice to regard the 
order in which the trains will run downstream (i.e., in the future) as known may not seem 
logical. However, if the model is applied in an online decision support system to evaluate 
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dispatching decisions, the running orders of trains are input for the predictive model. Hence, 
for use in online dispatching systems future train orders are controlled by the dispatcher (or a 
control system) and do not have to be predicted.  

 t < tstart tstart t > tstart tpredicted event 
 ‘past’ ‘future’  
Event times known unknown  
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Figure 9 Set up for the prediction model 

The prediction horizon is taken into account in Algorithm 2, which makes the actual running 
time predictions by calculating the delay propagation. The delay propagation algorithm runs 
backwards in time. Starting with the event to be predicted the algorithm recursively goes 
through the predecessor events until the starting point tstart has been reached at which all 
event times are known. Then from these known event times the algorithm determines the 
successive event times forward in time again back to the event time to be predicted. In this 
procedure only the events relevant for the prediction are visited and predicted as well. 
The input to the algorithm consists of the set E containing all events as found in the track 
occupation data, the arc list A as generated by Algorithm 1, the set of arc weights W, the 
delay vector z which initially contains all known delays of events that occurred before tstart, the 
minimal delays zmin, the event j to be predicted, and the prediction starting time tstart, The 
minimal delays zmin correspond to the fact that trains cannot depart before their scheduled 
running time. They are estimated off-line for each event by calculating a small percentile of 
all observed delays. This has to be done for the following reasons: 
• The fact that departing trains always wait for their scheduled departure time has to be 

modelled. Since the model in this project uses section occupation times rather than the 
actual departure times, this waiting behaviour has to be modelled by a minimal delay zmin 
for the occupation time of the first section after the platform, such that the time between 
the actual departure and the occupation of the first section after the platform is taken into 
account. 

• Train runs with intermediate stops may be aggregated into one arc. The fact that such 
trains wait for their scheduled departure time at their intermediate stops, when running 
ahead of schedule, is modelled by the value of zmin at the arrival events of such trains. 

Note that for non-stop train runs zmin may be redundant, as the minimum running times of 
such trains directly imply a minimal delay at their next downstream arrivals. 
The algorithm works as follows. In line 1, the delay of the current event j is updated 
according to the minimal delay zmin. Line 2 checks whether the current event occurred in the 
past (and is known) or in the future. Trecorded(j) is the observed occurrence time of event j, as 
recorded in the track occupation data. If the event occurred in the past, its delay can easily 
be calculated in line 3, and the algorithm returns. For events in the future, the prediction 
process starts at line 5 in a loop for all incoming arcs of event j, since all predecessor events 
i may propagate a delay to event j. In line 6, the appropriate arc weight w is found in the set 

Scheduled event times known known  
Running orders  known known  
Other (e.g. rolling stock) known known  
    
  Prediction horizon  
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W of arc weights that have been calculated offline. In line 7, the algorithm calls itself, but now 
for the preceding event i, such that all events preceding the event to be predicted are found, 
until tstart is reached. The actual delay propagation takes place at line 8, where the delay of 
event j is updated using the delay of the preceding event i and the arc weight w. The output 
of the algorithm is an updated delay vector z. 
 
Algorithm 2  (PROPAGATE) 
Input:  
   E 
   A 
  W 
   zmin 
   z 
   j 
   tstart 
Output: 
   z 

 
= set of events 
= arc list 
= set of arc weights 
= vector of smallest delays 
= delay vector 
= event time to be predicted 
= starting time of prediction 
 
= predicted delay vector 

1. z(j) ← max(z(j), zmin(j)) ; 
2. if Trecorded(j) <= tstart then 
3.     z(j) = Trecorded(j) – Tscheduled(j); 
4. else 
5.     for each incoming arc (i, j) in A do 
6.         find the arc weight w in W based on events i and j; 
7.         z ← propagate(E, A, W, zmin, z, i, tstart );              % call algorithm for preceding event i  
8.         z(j) ← max(z(j), z(i) + w ); 
9. return z; 

Test case Rotterdam Centraal – Den Haag HS 

As a test case for the model, the railway line Rotterdam Centraal – Den Haag HS is used. 
The train running times on this line (IC trains: approximately 20 minutes, local trains 
approximately 30 minutes) allow a realistic prediction time horizon of 20 – 25 minutes. 
Furthermore, Rotterdam Centraal – Den Haag HS is one of the busiest railway lines in the 
Netherlands, and train conflicts at Rotterdam Centraal will arise easily in case of delays since 
4 tracks merge into 2 tracks here, making the case interesting for running time predictions 
with regards to blocking times and conflicts being taken into account. The model data 
consists of track occupation data of both the Rotterdam and the Den Haag area of May 2007. 
The model has been generated using Algorithm 1, as described above. Figure 10 shows the 
infrastructure elements used to construct the model. To keep the example clear, the 
surrounding tracks, switches and stations are not shown.  
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Figure 10  Test case Rotterdam Centraal - Den Haag HS. 
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Events are found by scanning the track occupation data for section occupations, as 
mentioned before. The set S, i.e. the codes of the infrastructure elements used for this are 
listed in Table V, along with the activities coupled to the section occupations. Signal 278 has 
been used to record the departure times of trains from track 9 at Rotterdam Centraal, since 
the first section after this platform is a shared switch with other train routes, which could lead 
to getting the wrong departure event times for track 9 corresponding to a train from another 
platform track. The red circles in Figure 10 denote the bottleneck sections, which are listed in 
Table VI. 
 

Table V Infrastructure elements defined as events 

Section codes Trains  Modelled activity 
972BT, 974CT Local trains 5000 and 5100  arrival at Rotterdam Zuid 

Express train 2200   passing through Rotterdam Zuid 
IC and international trains  passing through Rotterdam Zuid 

A280T, 218BT, 214CT All trains    arrival at Rotterdam Centraal 
283BT, 278, 275BT All trains    departure from Rotterdam Centraal 
8B-DT All trains    passing through Delft Aansluiting 
A242BT, A244A/BT All trains    arrival at Den Haag HS 
249BT, 249AT All trains    departure from Den Haag HS 

 
Table VI Infrastructure elements defined as bottlenecks. 

Section codes Modelled conflicting operations 
A280T, 218BT, 214CT Following conflict 
213AT Merging conflict 
8B-DT Following conflict between passing events 
A242BT, A244A/BT Following conflict 

Predictions with fixed arc weights 

The first test of the prediction model is carried out with fixed arc weights. This means that all 
minimum process times in the model are independent of delays, peak hours, etc. The arc 
weights, being the shortest times in which the according processes can be completed, have 
been calculated using the data 1 may – 18 may 2007. The minimal headways between trains 
are estimated by the 10th percentile of selected groups of headways observed in the data, 
and are shown in Table VII. The group numbers in this table refer to the following groups of 
headways that have been aggregated (see Figure 10 for the track numbers): 

1. Headways between a departure and the next arrival at the same track at Rotterdam 
Centraal (track 8, 9 or 11). 

2. Headways between a departure from track 9 and the departure of the next train from 
track 8, 9 or 11. 

3. Headways between a departure from track 8 or 11 and the departure of the next train 
from track 8, 9 or 11. 

4. Headways between trains passing Delft Aansluiting. 
5. Headways between a departure and the next arrival at the same track at Den Haag 

HS (track 5 or 6). 
Note that departures from track 9 have been separated from departures from tracks 8 or 11 
at Rotterdam Centraal (groups 2 and 3). The reason for this is that trains departing from track 
9 can accelerate directly to 80 km/h, whereas the routes from tracks 8 or 11 in the direction 
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of Den Haag have a maximum speed of 40 km/h until the end of the interlocking area, 
leading to a longer headway time for the next train leaving Rotterdam Centraal after such a 
route has been used. Headways between different types of trains have not been calculated 
separately. The reason for this is that the estimation of the minimal headways may become 
unreliable for combinations of trains that occur only rarely (i.e. unscheduled combinations of 
following trains due to disruptions or rescheduling actions). 
 

Table VII Arc weights w for headway arcs (i, j)  

Leading event i Following event j Group Min. headway [s] 
Departure at 283BT Arrival at A280T  

1 
 

137 Departure at 278 Arrival at 218BT 
Departure at 275BT Arrival at 214CT 
Departure at 283BT of 275BT Departure at 283BT, 278 or 275BT 2 141 
Departure at 278  Departure at 283BT, 278 or 275BT 3 130 
Through at 8B-DT Through at 8B-DT 4 134 
Departure at 249BT  Arrival at A242BT  

5 
 

120 
Departure at 249AT Arrival at A244A/BT 

 
The running times and dwell times are estimated by the 20th percentile of the times observed 
in the data, which can be found in Table VIII. The only exceptions are the trains which have a 
scheduled dwell time longer than 1 minute. Recall that the minimum dwell times of trains with 
a long scheduled dwell time can be estimated by calculating the median of observed dwell 
times for trains with a sufficiently large arrival delay, which is the approach followed here as 
well. 
 

Table VIII Arc weights w for running and dwell time arcs (in seconds) 

Group 
Operation 

Local trains 
5100, 5000 

Express train 
2200 

Intercity 
1900 

Intercities 
2100, 2400 

International 
and Thalys 

Rtz – Rtd 381 319 158 154 156 
Stop Rtd 133 163 174 152 197 
Rtd – Dta 926 812 845 538 617 
Dta – Gv 441 230 225 222 219 
Stop Gv 133 123 142 134 159 

 
The minimal delays zmin of all events are determined by calculating the 10th percentile of all 
observed delays for each (group of) train lines, and can be found in Table IX. These values 
clearly show that the zmin reflect the fact that a departure event can never occur before the 
scheduled departure time, since all departure events have a positive zmin. 
 

Table IX Minimal delays zmin calculated using 10th percentiles (in seconds) 

Group 
Event 

Local trains 
5100, 5000 

Express 
train 2200 

Intercity 
1900 

Intercities 
2100, 2400 

International 
and Thalys 

Arrival/passage Rtz -100   -60   -35 -202     -1 
Arrival Rtd   -69   -78 -104 -219   -80 
Departure Rtd    21    25    32    28    45 
Passage Dta   -46 -161 -148   -29   -46 
Arrival Gv -135 -158 -101 -158 -111 
Departure Gv    21    29    21    21    23 
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The running time predictions using this model are carried out for the arrival times of the 
IC1900 trains at Den Haag HS, based on a prediction horizon of 20 minutes, and for the 
arrival times of the local trains ST5100 at Den Haag HS, based on a prediction horizon of 25 
minutes. The results are shown in Figure 11, with on the left 401 predicted arrival delays of 
IC1900 trains, and on the right 446 predicted arrival delays of ST5100 trains. 
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Figure 11 Predicted arrival delays at Den Haag HS (left: IC1900, with prediction horizon 20 minutes, right: 
ST5100 with prediction horizon 25 minutes) 

As an example, Figure 12 contains the prediction for the IC 1958 at May 21. The solid lines 
denote the actual prediction, whereas the dashed lines denote the actual operations as 
recorded in the track occupation data. This train is scheduled to run between trains 2256 and 
5058, but at Rotterdam Centraal the departure of IC 1958 is postponed, causing the IC 1958 
to run behind train 5058. As can be seen, the headway time at Delft Aansluiting guarantees 
that route conflicts between the two trains are taken into account. The minimum running 
times of the IC 5058 and IC 1958 are slightly too short in this case. 
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Figure 12 Prediction of the arrival of IC 1958 on May 21, 2007 
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Figure 13 Prediction of the arrival of ST 5160 on May 27, 2007 

Figure 13 shows the prediction for the local train 5160. This train should run before train 616, 
but arrived with a delay at Rotterdam Centraal, where its departure was postponed until 
trains 2260 and 1962 had departed. As can be seen, the model takes into account the 
minimal headways at Rotterdam Centraal and Delft Aansluiting between trains 1962 and 
5160 correctly, leading to a good prediction. 
As explained in the statistical analysis of the previous chapter, some trains experience more 
peak-hour dependency than others. In order to test whether the model can be improved by 
including peak-hours, the arc weights for the running times of the local trains between 
Rotterdam and Den Haag are changed to include peak hours. The running times are now 
calculated separately for each train number. As an estimation for the minimum running time, 
the 20th percentile of all recorded unhindered running times of that train number, and its two 
neighbouring train numbers, is calculated (e.g. the minimum running time for train 5168 is 
estimated by the 20th percentile of the recorded unhindered running times of trains 5166, 
5168 and 5170). Hence, a ‘moving percentile’ is obtained, which can be found in Figure 14, 
where the peak hours are clearly visible. 
The same has been done for the ST 5000 trains, for which the moving 20th percentile roughly 
has the same shape (until 20:15 after which the ST 5000 no longer runs). The running times 
of the other trains were unchanged for the following reasons: 
• For the S 2200 and IC 1900, almost no peak hour dependency on the section Rotterdam 

Centraal – Den haag HS was found. 
• The IC 2100, IC 2400 and international trains have no scheduled stops between 

Rotterdam Centraal and Den Haag HS. Since the peak hours influence train operations 
mainly via dwell times almost no peak hour dependency has been found for these trains,. 
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Figure 14   Running times of ST 5100 trains at Rtd - Gv. The red line is the moving 20th percentile. 

Now, the same predictions as before have been tested for the ST 5000 trains. The results 
are shown in Figure 15. Comparison with Figure 11 (right) shows only limited difference. In 
order the compare the results, a mean squared error MSE has been calculated by 
 

2

1

1MSE (Actualdelay( ) Predicted delay( ))
n

i
i i

n =

= −∑  

 

For the prediction of the ST 5000 trains with fixed arc weights MSE = 8969, whereas for the 
analysis with peak-hour dependent running times for the local trains MSE = 8669. Hence, a 
small improvement has been found, although the individual predictions only show very small 
differences when compared to the model with the fixed arc weight. No case with a relatively 
large improvement could be found. 
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Figure 15   Prediction of the ST 5100 arrival times at Den Haag HS, with a time horizon of 25 minutes, with peak 

hour dependency 
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CONCLUSIONS 

This paper presented a flexible delay propagation model in which train path conflicts and 
dispatching decisions are taken into account, and parameters are estimated by offline 
statistical analysis of historical train detection data. In dense railway networks, like the Dutch 
network, delay propagation has a great impact on train operations. The model can be used 
for predicting running times and arrival times of punctual and delayed trains, which can be 
used in decision support systems for dispatchers, to evaluate the effectiveness of certain 
dispatching decisions, or for dynamic passenger information systems. 
A statistical analysis showed the dependencies of running times and dwell times on current 
delays and period of the day. A simple but well performing estimate for minimum running 
times is obtained by taking a small percentile of the observed running times, both for non-
stop train runs and train runs including intermediate short stops. A robust estimate for 
minimum dwell times at stations with large scheduled dwell times is obtained by the median 
dwell time of trains with a sufficiently large arrival delay. Waiting times due to train path 
conflicts are added to the running and dwell times by the precedence constraints in the delay 
propagation model. 
The structure of directed graphs to model precedence relations between events is not limited 
to timed event graphs, as used in this paper and for example in Goverde (2005, 2010) and 
Van der Meer (2008), but is generally applicable. The results of this research may thus form 
a starting point for further investigation on how to make these graph-based models more 
accurate by thorough statistical analysis of track occupation data, while achieving fast 
calculation times by keeping the models simple. For instance, the results of this research are 
equally applicable to the alternative graph models for computing optimal dispatching 
decisions (D’Ariano, 2008). 
This paper considered simple estimators for the minimum running times. However, the 
statistical analysis revealed a linear dependency between delays and running times for small 
delays up to some threshold, and in particular for trains with large running time supplement. 
More advanced minimum running time estimations may therefore be used as a piecewise 
linear function consisting of the maximum of the regression line for small delays and a small 
percentile for large delays. Also multiple regression models can be investigated with a 
combination of many factors. The network model in this paper used only a subset of arrival, 
departure and passing events on the train routes. This can be refined to the measurement 
locations of the train describer systems (at signals) so that the most up-to-date current train 
positions and their dependencies are available to the online model. This will result in a more 
accurate but still manageable model as opposed to modelling all section occupations and 
releases and their relations. Current research focuses on the right balance between 
complexity and accuracy. 
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