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ABSTRACT 

Map-matching (MM) algorithms integrate the data from positioning sensors (such as GPS) 

with a digital map in order to identify firstly, the road link on which a vehicle is travelling from 

a set of candidate links; and secondly, to determine the vehicle’s precise location on that 

segment. Due to errors in positioning sensors, digital maps and the map-matching process, 

MM algorithms sometimes fail to identify the correct road segment from the candidate 

segments. This phenomenon is known as mismatching. Identification of the wrong road link 

could mislead users and may degrade the performance of the ITS services and reduce their 

efficiency. Therefore, the main objective of this paper is to improve a topological map-

matching (tMM) algorithm by error detection, correction and performance re-evaluation. 

 

Errors in a tMM algorithm are determined using data (62,887 positioning points) collected in 

three different countries (UK, USA and India). After map-matching, each mismatched case 

was examined to identify the primary causes of the mismatches and a number of strategies 

were developed to correct these mismatches enabling enhancement of the tMM algorithm. 

An independent dataset (5,256 positioning points) collected in and around Nottingham, UK, 

was employed to re-evaluate the performance of the enhanced tMM algorithm. The result 

suggests that the enhanced tMM algorithm correctly identified road segments 97.8% of the 

time. With the same positioning data, the success rate was found to be 96.5% before the 

enhancement. The enhanced tMM algorithm developed in this research is simple, fast, 

efficient and easy to implement. Since the accuracy offered by the enhanced algorithm is 

found to be high, the developed algorithm has potential to be implemented in real-time 

location-based ITS applications. 

 

Keywords: Map-matching, GPS, Location-based ITS services, Genetic Algorithm.  
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INTRODUCTION 

Many Intelligent Transport System (ITS) applications require real-time vehicle positioning 

data. A navigation system that provides such positioning data consists of three key 

components: (1) a positioning system such as Global Positioning System (GPS) or GPS 

integrated with a dead-reckoning (DR) system (2) a Geographic Information System (GIS) 

based road map and (3) a map-matching (MM) algorithm (Greenfeld, 2002; Taylor and 

Blewitt, 2006). A map-matching (MM) algorithm is used to augment positioning data from a 

navigation system with spatial road network data. A MM algorithm makes use of a range of 

positioning and navigational data including position, heading, speed and road network 

topology to identify the correct road segment on which a vehicle is travelling and the vehicle’s 

location on that road segment (Quddus et al., 2007). The key task for a MM algorithm is to 

identify the correct road segment from a pool of candidate road segments (Velaga et al., 

2009).  

 

The raw positioning data from a navigation system contain errors due to satellite orbit and 

clock bias, atmospheric (ionosphere and troposphere) effects, receiver measurement error 

and multipath error (Kaplan and Hegarty, 2006). GIS based road maps include errors which 

can be geometric (e.g., displacement and rotation of map features) or topological (e.g., 

missing road features) (Goodwin and Lau, 1993; and Kim et al., 2000). Even when the raw 

positioning data and map quality are good, MM techniques sometimes fail to identify the 

correct road segment, especially at roundabouts, level-crossings, Y junctions, dense urban 

roads and parallel roads (White et al., 2000; Quddus et al., 2007). Any error associated with 

either the raw positioning fix, the digital map or the MM process employed can lead to wrong 

link identification. This phenomenon is known as mismatching. Identification of the wrong 

road link may mislead the users and may reduce the effectiveness of the ITS service. It is 

therefore important to identify the reasons for mismatches and use this information to 

develop strategies for the purpose of increasing the performance of MM algorithms so as to 

enable the further enhancement in navigation modules of ITS.  

 

Navigation modules of ITS may be enhanced by reducing the errors in the positioning 

sensors or improving the quality of the spatial road network map or enhancing the map-

matching process. For instance, the Russian Global Orbit Navigation Satellite System 

(GLONASS) and the upcoming European Galileo system, along with a DR system, can 

enhance the performance of existing vehicle navigation systems. A good map-matching 

algorithm would however be fundamental to physically locate a vehicle on a road network. 

Current map-matching algorithms have many constraints and limitations, especially in typical 

operational environments (such as dense urban areas) where highly accurate positioning 

data are essential (see Quddus et. al., 2007). The enhancement in vehicle positioning can 

also be obtained by improving the quality of spatial network data at a national level. Many 

countries are investing resources for the purpose of improving the quality of GIS road maps. 

This however takes a long time to become available to users.  Therefore, further 

improvement in map-matching algorithms can be considered as a viable option to enhance 

vehicle navigation modules.  
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Here, a weight-based tMM algorithm developed by the authors (Velaga et al., 2009) is used 

for detecting and correcting map-matching errors. After map-matching of an extensive 

positioning dataset, each mismatched case was examined carefully. A thematic analysis of 

the mismatching was carried out to identify errors due to: (1) positioning sensor (2) digital 

map and (3) the map-matching process. A number of strategies were identified to correct 

these mismatches enabling enhancement of the tMM algorithm. The tMM algorithm was 

modified accordingly, and its performance is re-evaluated using an independent positioning 

dataset. The enhanced algorithm performance, with respect to correct link identification and 

horizontal accuracy, is reported for each of the improvement strategies separately.  

 

The paper is organised as follows: the next section provides a brief description of the MM 

algorithm used in this study. This is followed by an outline of the positioning data used in this 

study. The process of detecting and correcting map-matching errors is then explained. This 

includes investigating the main reasons for each mismatch, developing the strategies to 

enhance the map-matching algorithm, correcting the algorithm accordingly and finally re-

evaluating the enhanced algorithm using an independent positioning data set. The paper 

ends with conclusions. 

THE MAP-MATCHING ALGORITHM  

A MM algorithm that uses historical data (such as the previously matched road segment), 

vehicle speed and topological information on the spatial road network (such as link 

connectivity) is called a topological map-matching (tMM) algorithm (Greenfeld, 2002; Li et al., 

2005; Quddus et al., 2003). A tMM algorithm is fast, simple and easy to implement (Velaga et 

al., 2009). An algorithm that assigns weights for all candidate links based on different criteria 

such as the similarity in vehicle movement direction and link direction, the nearness of the 

positioning point to a link, and the connectivity of a candidate road link to the previously 

travelled road link is known as a weight-based topological MM algorithm (Quddus et al., 

2003; Velaga et al., 2009). A weighting approach in selecting the correct road segment from 

the candidate segments improves the accuracy of correct road link identification (Greenfeld, 

2002; Quddus et al., 2003). 

 

The map-matching process of the tMM algorithm used in this research is divided into three 

stages: (1) initial matching, (2) matching on a link and (3) matching at a junction. The aim of 

the initial MM process is to identify the correct link for the first positioning point. Initially, the 

algorithm creates an error circle around the first positioning point. Then, the algorithm selects 

all the links which are inside and touching the error circle as candidate links. Among these 

candidate links, the correct link identification is based on the total weight score, which is the 

sum of the heading (similarity in vehicle movement direction and link direction) and proximity 

(nearness of positioning point to a link) weights. The vehicle’s location on that selected link is 

then estimated. This is achieved by a perpendicular projection of the positioning point onto 

the link. After successful completion of the initial MM process, the algorithm calculates the 

distance to the downstream junction. If the vehicle is at or near a junction, then the algorithm 

goes to the stage of ‘matching at a junction’ otherwise the algorithm goes to the ‘matching on 
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a link’ stage. In case of ‘matching on a link’, the algorithm snaps the current positioning point 

to the previously selected road segment. If the vehicle is at or near a junction, it is necessary 

to identify a new road segment. The procedure for the identification of a set of candidate 

segments for a positioning point at a junction is similar to that of the initial MM process. The 

correct link is selected, from candidate links, based on the total weight score (TWS). 

However, at this stage, two additional weights are introduced on turn restrictions at junctions 

and link connectivity. Then the perpendicular projection to the selected link gives the vehicle 

location on that link. A detailed description of the map-matching process can be found in 

Velaga et al. (2009). 

 

It is important to identify the relative importance of the weight scores used in the weight-

based tMM algorithm. Moreover, the relative importance of each weight score used in the 

weight-based tMM algorithm may vary with operational environments. Earlier studies, by 

Greenfeld (2002) assumed equal importance for various factors and Quddus et al. (2003) 

determined relative importance empirically based on a true input-output dataset. Velaga at al. 

(2009) introduced an optimisation algorithm to identify the relative importance of weights for 

three operational environments: urban, suburban and rural. Using three positioning data sets 

from each operational environment, the relationship between percentage of wrong link 

identification and coefficient of weight scores were identified. Regression equations were 

developed for each of the operational environments. These three functional relationships 

(i.e., map-matching error vs weight coefficients) were optimised using the constrained 

nonlinear minimisation method. The sample sizes (i.e., number of junctions) used in the 

regression analysis, to find the relationship between map-matching error and the weight 

coefficients, in urban, suburban and rural areas were 175, 440 and 40 respectively. Further 

details on the optimisation algorithm and the optimal weight scores for three different 

operational environments can be found in Velaga at al. (2009). 

 

The algorithm performance was then tested in dense urban environments in London and 

Washington, D.C, and a suburban area of London. The algorithm success rate in correct link 

identification in dense urban areas of central London, Washington and suburban area of 

London was found to be 96.8%, 95.9% and 96.7% respectively (Velaga et al., 2009).  

POSITIONING DATA 

Four positioning datasets collected from three different countries were used in the research 

reported here (see Table 1).  
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Table 1 - Positioning datasets used in this research 

Data 

set 
Test location Date 

Equipment 

used 

Sample size 

(hours) 

Route 

Length  

(Km) 

Location 

characteristics 

1 

Loughborough to 

London; Central 

London and South 

part of London, 

UK 

May-08 
AEK - 4P and 

AEK-4R 

42,231 points 

(11.7 hours) 
700 

Mix of dense 

Urban, 

Suburban, and 

Rural 

2 

An urban area 

with narrow 

congested roads 

in Mumbai, India 

Dec-08 AEK-4P 
16,756 points 

(4.6 hours) 
95 Urban  

3 

Dense urban 

roads in 

Washington, DC, 

USA 

Jan-09 AEK-4P 
3,900 points 

(1.1 hour) 
17 Dense urban  

4 
In and around  

Nottingham, UK 
May-09 

AEK - 4P,  

AEK-4R, and  

a Carrier-

phase GPS 

with INS 

5,256 points 

(1.5 hours) 
56 

Urban and 

Suburban 

 

Dataset 1, 2 and 3 were collected in the United Kingdom (a trip from Loughborough to 

London, central London and south part of London), Mumbai metropolitan area, India and 

urban roads of Washington, D.C. respectively. These three datasets were obtained from 

controlled field tests, which were carried out on pre-planned routes. The test routes were 

selected carefully to ensure that the vehicle travelled through a good mix of characteristics 

such as tall building, bridges, flyovers, and dense road network, congested urban roads, 

open areas, construction sites, motorways, rural roads etc. These three datasets (i.e., 1, 2 

and 3) were used for the map-matching error detection process. Dataset 4 was collected in 

and around Nottingham, UK. For this dataset, a true (reference) trajectory was obtained from 

a carrier phase GPS. Dataset 4 was used to evaluate the performance of the map-matching 

algorithm (before and after enhancing the algorithm). All the positioning points are obtained 

for every second. The test trajectory for the four data sets is shown in Figure 1. In this 

research, to analyse the above data sets three separate digital road maps, UK map (map 

scale 1:2,500), Washington DC map (map scale 1:1,250), and Mumbai map (map scale 

1:25,000 ), were used. For all these maps, roads are represented with the road central line.  
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Figure 1 – Positioning data 

 

Data set – 4 (Nottingham, UK) Data set – 3 (Washington, USA) 

Loughborough 

London 

Airport 

White house 

Data set – 1 (UK) Data set – 2 (Mumbai, India) 

Airport 

Nottingham Castle 
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ALGORITHM ENHANCEMENT METHODOLOGY 

A step-by-step process of the enhancement of the tMM algorithm, which consists of error 

detection, correction and re-evaluation process, is shown in Figure 2.  

 

 
 

Figure 2 - Map matching error detection, correction and the performance re-evaluation 

The output of the tMM algorithm provides a road segment on which a vehicle is travelling. If 

the road segment selected by the tMM algorithm is the actual (true) road segment for that 

particular positioning point, then it is assumed that there is no error in link identification. 

Otherwise, the map-matched point falls under the mismatching case. This process was 

conducted for all 62,887 positioning points to identify the main reasons for mismatching 

involving errors in the positioning data or the digital map or the map-matching process. The 

error detection process is followed by the development of different strategies to improve the 

performance of the tMM algorithm and then to modify the algorithm accordingly. Finally, the 

performance of the enhanced tMM algorithm (before and after enhancement) is examined 

using an independent positioning data set. The following section describes the mismatching 

identification process.  

Does the tMM identify 
the correct road? 

No error 
Yes 

No 

Positioning data Digital road map 

tMM 

The reference vehicle trajectory and  
the Google earth map 

Error in the 
positioning data 

Error in the map-
matching 
process 

Error in the 
digital map data 

Developing strategies to improve 
the tMM algorithm 

Enhance the tMM  
algorithm 

Performance evaluation of the tMM 
before and after enhancement 

Error identification process 

Positioning data 

Digital road map 

Independent  
data set 
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ERROR IDENTIFICATION PROCESS 

The error detection process is carried out by classifying the mismatches due to errors in the 

positioning data, the digital map, and the map-matching process. The quality of raw position 

points is decided based on the number of visible satellites and the value of the Horizontal 

Dilution of Precision (HDOP) representing the quality of positioning solution. The UK Google 

earth satellite image is used as a base map to check errors in the GIS road maps (examples 

include, topological and geometric errors, missing links, extra links and digitisation errors). If 

the quality of a raw positioning point is good and no errors are identified in the digital map, 

then the reason for mismatching is assumed to be an error in the map-matching process. 

Each of mismatches due to the MM process is examined carefully to identify which part of 

the algorithm (i.e., the candidate link identification, the total weight score calculation and the 

consistence checks) caused the mismatching. Though the overall performance of the tMM 

algorithm is good, there are some mismatches in situations where the vehicle took a ‘U’ turn 

at junctions or at complex road configurations (i.e., Y junctions, roundabouts and parallel 

roads etc). The main cause of each mismatching case was identified through careful 

observation and critical judgement. 

 

Table 2 shows the results from the tMM algorithm on three separate data sets collected in 

from UK, USA and India.  

 
Table 2 – Reasons for mismatches  

 
 UK 

(Data set 1) 
 Washington, DC, 
USA (Data set 3) 

 Mumbai, India 
(Data set 2)  

Positioning data sample size 42,231 3,900 16,756 
Mismatches due to positioning 
sensor error 

472 (33.9%) 47 (29.6%) 159 (11.6%) 

Mismatches due to digital map 
error 

238 (17.1%) 27 (17.0%) 985 (71.7%) 

Mismatches due to MM 
process errors 

683 (49.0%) 85 (53.4%) 230 (16.7%) 

Total number of mismatches 1,393 159 1,374 

 

The tMM algorithm has 96.7%, 95.9% and 91.8% success rate of correct road link 

identification with data set 1, 3 and 2 respectively. From 62,887 map-matched positioning 

points, a total of 2,926 mismatches were discovered. In order to find out the reasons (i.e., 

errors in positioning data, map-matching process and digital map) of mismatching, each 

mismatching case was individually examined. In Table 2, the percentage contribution of 

mismatches due to the corresponding error is provided in parenthesis. It can be seen that 

about half of the mismatches in data sets 1 and 3 are due to errors in the map-matching 

process. The similar result for data set 1 and 3 suggest that the algorithm may be 

transferable. In case of data set 2, the major contribution of mismatches is digital map errors. 

This is due to the fact that the Mumbai GIS map has more missing links and digitisation 

errors. Clearly, the map-matching errors are predominant where the digital maps are good.  
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ENHANCEMENT OF THE MAP-MATCHING ALGORITHM 

From 62,887 map-matched positioning points, a total 998 of mismatches were found due to 

errors in map-matching process. The tMM algorithm failed to identify the correct road 

segment particularly in complex road configurations (such as Y junctions, roundabouts and 

parallel roads). Examples of mismatching cases at a roundabout and at a Y junction are 

shown in Figures 3 and 4 respectively. 

 

 
Figure 3 - Mismatching at roundabout 

 

 

Figure 4 - Mismatching at Y junctions 

A 

P1 

B 

P5 

Positioning point after MM 

Positioning point before MM 

Junction 

Positioning point after MM 

Positioning point before MM 

Mismatching 
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Figure 4, at junction A, for positioning fix P1 the algorithm identified the wrong road segment 

(i.e., link A-B). However, to avoid continuous mismatching, the algorithm measures the 

distance between the raw positioning point and the map-matched positioning point. If the 

distance is more than the allowable limit (a threshold value), then the algorithm reinitiates the 

map-matching process. In this case, for positioning point P5, the algorithm reinitiates the 

process and chooses the true road segment. Two other thresholds (a distance threshold and 

a heading threshold) were also used to check whether a vehicle is near a junction or not. As 

mentioned before, in the tMM algorithm, the correct road segment selection at a junction is 

based on the total weight score (TWS) which is the sum of four weights: heading, proximity, 

link connectivity and turn restriction. Further, the relative importance of these weights varies 

with the operational environments. Therefore, any mistake in the identification of the 

operational environment may lead to an error in the total weight score. This may 

subsequently lead to wrong road link identification. Moreover, the threshold values used in 

the algorithm may influence the correct road segment identification.  

 

After careful observation of each mismatching case due to errors in map-matching process, 

the following three strategies were identified to enhance the tMM algorithm:  

 

1. re-examining the optimal weight scores using a Genetic Algorithm (GA) optimisation 

technique  
 

2. using a lookup table to identify the weight scores corresponding to the operational 

environment (e.g. urban, suburban and rural)  
 

3. re-estimating the thresholds used in the algorithm  
 

In addition to these three strategies, it was also recognised that integrating a map-matching 

algorithm with a routing algorithm, which suggests a preferred route based on the shortest 

path or the lowest travel cost, may lead a better outcome in terms of correct link 

identification. However, a routing algorithm needs information on an origin (O) and a 

destination (D) of a trip. Since our objective is to enhance a generic MM algorithm which 

does not assume any O-D information, enhancing the tMM algorithm by a routing algorithm is 

not considered in this study.   

Optimisation of the weight scores using a Genetic Algorithm (GA) 

Previously, a gradient search method was used to determine the optimal values of weight 

scores used in the map-matching process (see Velaga et al., 2009). In the gradient search 

minimisation problem there is a possibility that the optimisation stops at a local rather than a 

global minimum (Michael et al., 2007). In order to ascertain whether the optimisation has 

reached a global minimum, Konar (2005) suggested to employ a more refined method such 

as a Genetic Algorithm (GA). Therefore, a GA-based optimisation algorithm is used to 

determine the relative importance of different wrights.  
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In this optimisation problem, the MM error (i.e., the percentage of wrong link identification) is 

assumed to depend on the weight coefficients for heading, proximity, connectivity and turn 

restriction. Here, the weight coefficients represent the relative importance of each weight. 

The objective function in the optimisation problem is formed by identifying the relationship 

between the MM error and the weight coefficients at each junction. To identify this 

relationship for each operational environment, a regression analysis is carried out by 

considering the MM error as a dependent variable and the four weight coefficients, their 

squares, inverse and interaction terms as independent variables. The functional relationship 

can be written as follows (see Velaga et al., 2009 for details): 
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            (1)  

where 

MMerror is the map-matching error and 

α is an intercept term. 

32121
,,,.....,,

ttthh
βββββ  are the regression coefficients for heading, proximity, 

connectivity and turn restriction weights.  

i
ε is the error term. 

Hw, Dw, Cw, and Tw are the weight coefficients for heading, proximity, link connectivity 

and turn restriction respectively.  

 

In the regression analysis statistically insignificant parameters were eliminated using a step-

by-step backward elimination process. The final functional form with all statistically significant 

parameters is considered as the objective function in the optimisation problem.  

 

In the previous optimisation test the sample size for the rural operational environment was 

low, containing only 40 junctions. Here this is increased to 186. A new objective function (i.e., 

the relationship between the map-matching error and the weight coefficients) for the rural 

operation environment is identified. A detailed description of the derivation of the objective 

function is provided in Velaga et al., 2009. The objective function for the rural operation 

environment is identified as: 
 

 
wwwwwwwwerror TDDHTCDHMM 00037.000079.0028.0035.002.0029.0)ln( +−+++=    (2) 

 

The associated constraints are:  

 

100),,,(1

100

≤≤

=+++

wwww

wwww

TCDH

TCDH
       (3) 

 

This is a minimisation problem in which minimising the map-matching error is the objective.  
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The adjusted R2 value of the above model (equation 2) was found to be 0.98. For the other 

two operational environments (i.e., urban and suburban), optimisation functions are the same 

as the functions provided in Velaga et al. (2009).  

 

To re-estimate the optimal weight scores, the Matlab GA toolbox is used (Russel and Norvig, 

2002; Callan, 2003; Karray and DeSilva, 2004; MathWorks, 2008). In the GA optimisation 

process, a population size of 20, which were uniformly distributed with lower range of 1 and 

higher range of 100 were used. Stopping criteria is selected as 5,000 generations. After 

approximately 1,500 generations, the function value (fitness value) shows that the function 

achieves the global optimal values. The optimal values of heading, proximity, connectivity 

and turn restriction weight scores for the three operational environments, using the gradient 

search method and a Genetic Algorithm, are illustrated in Table 3.  

 

Table 3 - Optimal weight scores using gradient search method and GA 

Gradient search method Genetic Algorithm Weight 
coefficient Urban Suburban Rural Urban Suburban Rural 

Hw 39.99 46.24 44.48 37.15 46.42 42.37 
Dw 8.13 44.99 53.52 8.06 43.76 55.63 
Cw 36.4 4.46 1 35.85 4.29 1 
Tw 15.48 4.31 1 18.94 5.53 1 

 

It is noticeable from Table 3 that the weight scores from the two optimisation techniques are 

very similar. But, there is a slight difference in Hw values in urban and rural areas and Dw 

values in suburban and rural, Cw value in urban area and Tw value in urban and suburban 

areas. However, the optimal weight scores obtained using the GA are more reliable as those 

are solved as a global optimisation problem. Therefore, the second set of optimal values 

(from GA) is included in the enhanced tMM algorithm.  

Use of a lookup table to identify the operational environment 

Table 3 shows that the relative importance of the weights varies with the operational 

environment. The algorithm should identify the operational environment in which the vehicle 

is travelling, and should select the corresponding weights from the weight matrix shown in 

Table 3. The identification of the operational environment (whether the vehicle is in an urban, 

suburban or rural area) can be based on the complexity of road network, land-use data, 

building height data, etc. For instance, the road network in an urban area is denser (i.e., 

more junctions and roads per unit area) than that of in a suburban or a rural area. Since, 

land-use data and building height data are not easily available, the identification of 

operational environment can be determined by a threshold which is a function of the total 

length of the road network and the number of junctions per unit area:   
 

( )NLfTOE ,=         (4) 

where, 

TOE  is the threshold for operational environment,  
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L is the total length of road network (in km) within a given area and  

N is the number of junctions in that area. 

 

An empirical analysis was conducted, using a national level GIS road network, to identify the 

TOE which can be used to detect the operational environment on which a vehicle is travelling. 

Firstly, using the UK Google Earth map, a sample of rural areas was identified in the 

network. Random points are selected within the road network of rural area, and a circle of 

radius 200m is drawn around each of the points. After performing a sensitivity analysis a 

circular area of radius 200m was found to be successfully established the threshold for the 

identification of operational environment. The total length of all road segments (L) and the 

number of junctions (N) within that circular area are calculated. This procedure is repeated 

for 300 different random points in the network. This procedure provides a set of L and N for 

that particular operational environment. A factor, which is the ratio of N and L, is identified 

and its mean )(µ  and standard deviation (σ ) are calculated. The same procedure is 

repeated for the urban and suburban environments. The means and standard deviations of 

the factor for urban, suburban and rural operational environments are shown in Figure 5. 

Here, Uµ , Sµ  and Rµ are the mean values and Uσ , Sσ  and Rσ  are the standard deviations 

of the factor for urban, suburban and rural operational environments respectively.  

 

 

Figure 5 - Thresholds for operational environment identification 

 

As stated before, the identification of an operational environment is critical to a MM 

algorithm. Figure 5 shows that the values of the means and standard deviations of the N by L 

ratios for different operational environments are over-lapped meaning that it is not easy to 

derive threshold values for the identification of an operational environment. In the case where 

a vehicle travels along a mixed urban setting (i.e. partly urban and partly suburban), the 

algorithm should recognise that the vehicle is in an urban area so that more stringent weight 

coefficients are selected for the map-matching process. This is also true for the case of 

mixed suburban area (i.e. partly suburban and partly urban) in which the weight coefficients 

for the suburban area should be employed.  

 

N/L 

 

Urban 

1.6 8.8 

Uµ
Rµ

2.88
4.19 

Suburban 

Sµ

5.7 

TOE1 
295.1=Rσ

41.1=Sσ

993.0=Uσ

Frequency 

Rural 

)2( ss σµ −

6.81
2.88

)2( UU σµ −

TOE2 



Detecting and correcting map-matching errors in location-based Intelligent Transport 
Systems 

VELAGA, Nagendra; QUDDUS, Mohammed; BRISTOW, Abigail 

 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 

14 

Assuming the ratio of N and L follows a normal distribution and based on the above 

argument, two threshold values (TOE1 and TOE2) are identified as:  

 

SSOET σµ 21 −=       (5)  

   

UUOET σµ 22 −=       (6) 

 

if 1OEOE TT ≤  then it is assumed that the operational environment is rural 

if 21 OEOEOE TTT << then it is assumed that the operational environment is suburban 

if 2OEOE TT ≥  then it is assumed that the operational environment is urban 

 

Where, TOE is the calculated threshold in the map matching process. 
 

The mean of the factor for urban, suburban and rural operational environments are identified 

as 8.8, 5.7 and 1.6 respectively; and the corresponding (σ ) values are 0.993, 1.41 and 1.29 

respectively. The TOE1  and TOE2 were found to be 2.88  (i.e., 5.7-2*1.41) and 6.81 (i.e., 8.8-

2*0.99). In the map-matching process if the calculated threshold (TOE) using the same area 

(i.e., 200m radius circle), is less than TOE1 (i.e., 2.88) a vehicle is in a rural area; if it is more 

than TOE2 (i.e., 6.81) vehicle is in an urban area, if it is between these two values then the 

vehicle is in a suburban area. 

Checking threshold values used in the algorithm 

In the topological MM algorithm three different threshold values are used. They are distance 

threshold (Dt), heading threshold (Ht) and a threshold value for a consistency check (Ct). The 

former two threshold values are used to identify whether the vehicle is near a junction. The 

tMM algorithm checks whether a vehicle reaches a junction using two criteria: (1) checking 

distance from the previously map-matched vehicle position to the downstream junction; in 

which a distance threshold (Dt) is used. (2) checking the vehicle heading with respect to the 

previously matched link direction; in which a heading threshold (Ht) is used. The third 

threshold value is used in a consistency check (i.e., whether the distance between the raw 

position point and the map-matched position on the link is large). Every time the algorithm 

checks the distance between the raw positioning point and the map-matched positioning 

point. If it exceeds a certain limit (i.e., the threshold value) then the algorithm re-initiates the 

process. Previously, these three thresholds (Dt, Ht and Ct) were identified, using 1800 

positioning points, by manually checking whether the algorithm selects ‘map-matching at 

junction’ process when the vehicle reaches a junction and whether the algorithm can 

recognise the continuous mismatches in order to reinitiate the process to identify the correct 

link. Dt, Ht and Ct thresholds were identified as 20, 5 and 40 respectively. Now, as part of the 

algorithm correction process, thresholds (Dt, Ht and Ct) were re-estimated using a positioning 

data set of 2,814 positioning points collected in Central London (part of data set 1 in Table 

1). An experiment was conducted with different possible threshold values and its 

corresponding percentage of correct link identification was measured. The Dt, Ht and Ct 
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values with minimum error in correct link identification are identified as 23, 5 and 37 

respectively. 

PERFORMANCE OF THE ENHANCED TMM ALGORITHM 

An independent dataset (sample size 5,256 positioning points) collected in and around 

Nottingham, UK was used to re-evaluate the performance of the enhanced map-matching 

algorithm. This positioning data is a part of dataset 4 in Table 1. A reference (true) trajectory 

was obtained from a carrier phase GPS receiver integrated with a high-grade Inertial 

Navigation System (INS). Accuracy of this equipment (carrier-phase GPS/INS) was found to 

be better than 5 centimetres over 97.5 percent of the time in all three coordinate components 

(Aponte et al., 2009). The total length of the test trajectory is 55.9 km.  
 

The improvement in the correct road link identification also affects the horizontal accuracy. 

The highly accurate positioning data from carrier phase GPS/INS enabled us to check the 

algorithm’s horizontal positioning accuracy. The algorithm’s performance for each 

enhancement strategy, with respect to the original (base)  tMM algorithm is shown in Table 4.  
 

Table 4 – Enhanced algorithm performance 

Horizontal 
accuracy (m)  

Along-track error 
(m) 

Cross track error 
(m) Enhancement 

% of correct 
link 

identification  Average SD Average SD Average SD 
Base tMM algorithm  96.5 4.33 2.83 2.16 1.74 3.29 2.86 
1: New weight scores  96.7 4.31 2.78 2.14 1.69 3.28 2.85 
2: Lookup table 97.7 4.20 2.48 2.12 1.53 3.20 2.60 
3: Threshold values 96.5 4.33 2.83 2.16 1.74 3.30 2.87 
1 and 2 97.8 4.19 2.47 2.11 1.52 3.19 2.59 
1 and 3 96.7 4.31 2.79 2.15 1.69 3.29 2.85 
2 and 3 97.7 4.20 2.48 2.12 1.53 3.20 2.60 
1, 2 and 3 97.8 4.19 2.47 2.11 1.52 3.19 2.59 

SD- Standard deviation 

The original algorithm correctly identifies the road links 96.5% of the time. However, when all 

three improvements are included in the final algorithm which increases the correct link 

identified to 97.8%. An improvement of 1.3% in correct road link identification is noticed. The 

second improvement (i.e., using a lookup table to identify the operational environment) 

contributes most to the improvement in the algorithms performance. The first enhancement 

(i.e., re-examining the optimal weight scores using a Genetic Algorithm) slightly improves the 

algorithm and the third enhancement (re-estimating the thresholds used in the algorithm) did 

not contribute in improving the algorithm performance. The horizontal accuracy of the 

enhanced algorithm is identified as 9.1m )2( σµ +  with along track and cross track errors as 

5.2 m )2( σµ + and 8.4m )2( σµ +  respectively.  

CONCLUSIONS  

An improvement process of a weight-based topological map-matching algorithm was 

presented in this paper. The enhancement process included: mismatching detection, 
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improvement strategies identification, algorithm modification and performance re-evaluation. 

After map-matching using extensive positioning data sets, all mismatches due to positioning 

data errors, digital road map and map-matching process were identified. In positioning data 

sets 1 and 2 (for which the digital maps are good) about 50% of the wrong road link 

identification was due to the map-matching process. After further examining the mismatches 

due to the map-matching process, three strategies were identified to enhance the tMM 

algorithm. They were:  

 

1. re-examining the relative importance of weight scores using a Genetic Algorithm tool, 

2. using lookup table for operational environment identification, 

3. re-estimating threshold values 

 

The performance of the algorithm was re-evaluated using an independent positioning data. 

The enhanced algorithm succeeded 97.8% of the time in correct link identification with an 

horizontal accuracy of 9.1 m )2( σµ + . Before the enhancement the success rate was 96.5% 

with 10.0m )2( σµ +  horizontal accuracy. This suggests that the proposed modifications 

were rational as they improves the performance by 1.3% in correct link identification and 

0.9m horizontal accuracy. 
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