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Abstract 
The standard  method to estimate valuations of travel time variability for use in 
appraisal is to estimate the parameters of a reduced-form utility function, 
where some measure of travel time variability (such as the standard deviation) 
is included. A recently discovered problem with this approach is that the 
obtained valuation will in general depend on the standardized travel time 
distribution, and hence cannot be transferred from one context to another. 
Instead, we test another recently suggested approach: estimating a 
scheduling model and then deriving an implied reduced-form expression, 
which can be used for appraisal. The valuations implied by the scheduling 
model turn out to deviate substantially from a reduced-form model estimated 
on the same sample. We conclude that the scheduling model – in the way it is 
usually interpreted and estimated – is not able to capture the entire disutility of 
travel time variability. Hence, although it can be shown that scheduling and 
reduced-form models are ”theoretically equivalent”, they are apparently not 
”empirically equivalent”. We hypothesize that the derivation of reduced-form 
models from an underlying scheduling model omits two essential features: 
first, the notion of an exogenously fixed “preferred arrival time” neglects the 
fact that most activities can be rescheduled given full information about the 
travel times in advance, and second, disutility may be derived from uncertainty 
as such, in the form of anxiety, decisions costs or costs for having 
contingency plans. Finally, we report our best estimates of the valuation of 
travel time variability for public transit trips, for use in applied appraisal.  
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1 INTRODUCTION  

In recent years, the reliability of transport systems has attracted more and 
more attention, both by researchers and policy-makers. There is a rapidly 
growing body of research literature on measuring and valuing reliability, and 
enhancing reliability seems to be an increasingly higher priority for policy-
makers. For example, the Netherlands has introduced “reliability” as a goal for 
its transport policies, and the Swedish Government recently declared that 
more efforts and resources need to be spent on reliability, at the expense of 
funding for completely new investments. The importance of reliability is 
perhaps most apparent in the public transit system: it is now standard that 
transit operators publish reliability measures regularly.  
 
There are two principally distinct approaches used in the analysis of travel 
time variability: the scheduling approach, where the traveller‟s departure time 
choice is explicit in the model, and the reduced-form approach, where some 
measure of the variability is introduced directly in a reduced-form indirect 
utility function. While a scheduling approach is the natural choice for 
forecasting purposes (modelling departure time choices etc.), the reduced-
form approach is usually the only feasible alternative for appraisal and 
evaluation purposes. As a measure of the variability in the reduced-form 
function, most studies have used either the standard deviation of the travel 
time or the average delay relative to scheduled arrival time, although some 
studies include both (Batley et al., 2007), while some studies use percentiles 
of the travel time distribution (Lam and Small, 2001). When the standard 
deviation is used as the variability measure, the approach is usually termed 
the “mean-variance” approach. 
 
Reduced-form approaches can be derived from an underlying scheduling 
model, assuming that travel times follow a known random distribution and that 
travellers choose their departure time optimally to account for this 
randomness. This connection between the two approaches has provided a 
theoretical underpinning for the use of reduced-form approaches in applied 
appraisal. However, the reduced-form approach has two potentially important 
drawbacks. First, and most important, an estimated valuation from a reduced-
form model will (in general) depend on the specific travel time distribution – 
not just on its general properties such as its standard deviation1. This means 
that a value obtained in one circumstance, using a particular distribution, 
cannot easily be transferred to another context where the standardized travel 
time distribution is different. This relationship has been properly characterized 
only recently, in Fosgerau and Karlström (2010), even if the insight had been 
pointed out at earlier (Bates et al., 2002). Second, estimating reduced-form 
models rests on the possibility to present travel time distributions to 
respondents in a stated choice experiment, and then having them indicate 
which they would prefer. The problem of presenting travel time distributions 
comprehensibly to respondents has proven difficult – especially since the 

                                            
1
 However, there are some scheduling models that result in reduced-form models that are 

independent of the standardized travel time distribution. The Vickrey (1973) model analyzed 
by Fosgerau and Engelson (2010) and used in this paper is an example of this.  



 

 

valuation will depend on the shape of the tail of the distribution, so it is 
important to convey enough information about the “far end” of the distribution 
to the respondent.  
 
These two arguments have recently led to a discussion among researchers 
about the possibility to replace the current practice of how valuations of travel 
time variability are estimated. Rather than estimating marginal valuations in a 
reduced-form expression directly, one should perhaps estimate a scheduling 
model first, and then derive a reduced-form valuation that can be used for 
appraisal, given the relevant travel time distribution in each applied context 
(see e.g. Bates, 2009, for a review of these discussions). This solves, in 
principle, the two problems with the reduced-form approach – its dependence 
on the specific travel time distribution, and the need to present travel time 
distributions to respondents – while maintaining its main strength: that one 
does not need to model travellers‟ choices explicitly, nor use information about 
the distribution of preferred arrival times. The possibility to stringently derive a 
reduced-form approach from a scheduling model for any given travel time 
distribution was made possible by a groundbreaking paper by Fosgerau and 
Karlström (2010). This was followed up by Fosgerau and Engelson (2010), 
who give an analogous derivation using a different scheduling model.   
 
Testing this transferability between the two approaches is one of the main 
purposes of this paper. We have collected stated choice data where 
respondents answer two stated choice experiments, one for estimating a 
scheduling model and one for estimating a reduced-form model. Theoretically, 
the two models should be possible to “translate” into each other: the estimated 
parameters of the scheduling model imply specific values of a reduced-form 
function, which should then, in principle, coincide with the parameters 
estimated directly in the second stated choice experiment. If that is indeed the 
case, then this opens up a way to circumvent the problems with the reduced-
form approach. On the other hand, if the two estimated models are not 
consistent, then this means that something is missing from the underlying 
derivation of the reduced-form expression, and one needs to understand why 
and how our theory deviates from how travellers actually make travel choices. 
 
The possibility that scheduling models might not be able to capture the entire 
disutility of travel time uncertainty has been observed before. Noland et al. 
(1998) hypothesize that the pure nuisance of not being able to plan activities 
precisely could, in addition to scheduling costs, play a role in understanding 
aversion to travel time uncertainty. They denote this possible additional cost a 
“planning cost”. However, they do not investigate the precise relationship 
between “scheduling” and “uncertainty” costs, primarily because the 
necessary theoretical framework was not available at the time.   
 
We estimate two different scheduling models, one introduced by Vickrey 
(1969) and subsequently Small (1982) (called the “step” model since the 
marginal utility of being at the destination has a “step” at the preferred arrival 
time), and one introduced by Vickrey (1973) and subsequently Tseng and 
Verhoef (2008) (called the “slope” model since the marginal utilities of being at 
the origin and destination, respectively, change linearly over time). These two 



 

 

scheduling models imply different reduced-form expressions: the “step” model 
results in an expression including the standard devation, as shown by 
Fosgerau and Karlström (2010), while the “slope” model gives an expression 
including the variance, as shown by Fosgerau and Engelson (2010).  
 
For model estimation, we use two different sets of binary stated choice 
experiments. One set of choices is designed to estimate scheduling models 
and the other set was deigned to estimate reduced form models. The stated 
choice experiment is related to an observed public transit trip. 
 
The question of consistency between scheduling and reduced-form models 
goes beyond just the idea to derive valuations from an estimated scheduling 
model. Historically, different measures of travel time variability were 
introduced for appraisal purposes in a rather ad-hoc manner, without any 
proper theoretical motivation. The theoretical motivation, that variability 
measures such as standard deviation or variance can be formally derived 
from scheduling models, is a fairly recent insight2. However, to our knowledge 
there have been no investigations into whether the two approaches are really 
“empirically consistent”, i.e. whether the valuation implied by a certain 
scheduling model coincides with the valuation obtained from the 
corresponding reduced-form model. If not, then this is a signal that either 
model captures something that the other does not, and it may be important to 
understand what this might be.  
 
In addition to the investigation of the consistency between scheduling and 
reduced-form approaches, we also present valuations of travel time variability 
for use in applied appraisal of public transport investments and policy 
measures, and we analyse what factors affect travellers‟ valuations of delays. 
 
The paper is organized as follows. Section 2 is devoted to explaining the 
relation between the scheduling and reduced-form approaches more 
precisely, hence making the research question more precise. In section 3, we 
present the survey data. The main estimation results are presented in section 
4, followed by a discussion of their implications in section 5. Section 6 
concludes.  

2 THEORY 

We referred earlier to two approaches to valuation of travel time variation: the 
“scheduling approach” and the “reduced-form approach”. In our analysis, we 
draw on two particular scheduling models, each with its own assumptions 
about what conditions and constraints travellers are facing. For each of these, 
we use recent theoretical findings that connect these to the corresponding 
reduced-form expressions. We refer to the two scheduling models as the “step 
model” and the “slope model”, in reference to the shape of the marginal 
utilities of spending time at the origin and the destination. 

                                            
2
 The way theory has trailed application here is rather similar to the way the widely used 

“gravity models” introduced were theoretically motivated only after a long period of practical 
application, through the work by Wilson (1967, 1970), Snickars and Weibull (1977) and 
several others. 



 

 

 
For both the step model and the slope model we apply a schedule-based and 
a reduced-form approach. A key difference is that in the schedule-based 
model, we specify exactly what departure and arrival times the traveller will 
experience in each alternative, while in the reduced-form version, we give the 
traveller information about the random distribution, and then assume that the 
resulting choice is based on an optimal choice of departure time. 
 

2.1 The “Step Model” 
 
The first scheduling model draws from Vickrey (1969) and Small (1982), as 
adapted by Fosgerau and Karlström (2010). Assume that the traveller faces 
the problem of choosing the optimal departure time from the origin, given that 
there is some preferred arrival time (PAT) at the destination. Let the PAT be 0, 

   the departure time and   the travel time. Assume that the traveller has a 
utility function of the form: 
 

         (   )     (1.) 
 
where the notation ( )  denotes the positive part of  , i.e.    (   ). Hence, 

the traveller has a marginal utility of   of being at the origin, a marginal utility 

of   of being on trip, a marginal utility normalized to 0 of being at the 
destination before the PAT, and a marginal utility of   of being at the 

destination after the PAT3. The travel cost   has a marginal utility of  .  
 
We refer to this model as the “step” model, and we demonstrate it graphically 
in Figure 1. Marginal utilities for the activities at the origin and destination are 
constant, with the exception that the marginal utility of being at the destination 

changes from 0 to   at time 0 (the PAT). In the example shown, the headstart 
D is greater than the travel time T, so the traveller arrives before the PAT. The 

figure is drawn assuming that  <0< < , which may not necessarily be the 
case. The shaded area is the achieved total utility. 

                                            
3
 One of these four marginal utilities has to be normalized: we have chosen to normalize time 

at the destination before the PAT to 0. Other authors have chosen other normalizations, but 
this does not change the model.  



 

 

 

Figure 1. The “Step” Model of Scheduling Preferences 

 

In the case of random travel time, assume that   is distributed as           , 

where   is a standardized random variable with mean 0, standard deviation 1, 
density   and cumulative distribution  . If the traveller can choose head-start 

  freely and the distribution of   is independent of  , then it can be shown 
(Fosgerau and Karlström, 2010) that the optimal head-start    is: 
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and the expected optimal utility is: 
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It is the last formula that provides the bridge from the scheduling model (1) to 
the reduced-form expression (3.). Given a set of scheduling parameters 
(     ) and a standardized travel time distribution  , the resulting reduced-
form expression is the so-called “mean-variance” expression (a slightly 
misleading name, since it is the standard deviation, not the variance, that 
enters the expression). Note that the valuation of the standard deviation will 

depend not only on the parameters   and  , but also on the standardized 

distribution   (more specifically on the tail of     beyond      ).  
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Estimating the Step Model 
 
The estimated “step” scheduling model is specified in (1). Respondents are 
asked to choose between two alternative trips with different departure, arrival 
and travel times, which allows us to estimate the parameters of (1) directly. 
 
The corresponding reduced-form model corresponds to (3), and is simply a 
standard mean-variance expression. We estimate the parameters (     ) in 
the utility function: 
 

                 . (4.) 
 
If the step model correctly describes travel behaviour, then we should get 
         and        (     ). One of the main purposes of the paper is 
to investigate whether this prediction holds, i.e. whether we get the predicted 
relation between the parameters of a scheduling model and a mean-variance 
model. 
  
In this paper, we will use a particularly simple travel time distribution, namely 

the binary distribution where the travel time is   with probability     and 

    with probability  . In other words, there is a delay of length   with 
probability  . In this case,    takes the form (see appendix 1): 
 

   {
(   )  (   )         (      )

(   )  (    )        (       )
. (5.) 

 
For an individual, we see one of these two cases depending on whether 

      . In Case I, a risk-taking individual will maximize utility by choosing a 
later departure, while in Case II, a risk-averse individual will optimize by 
choosing an earlier departure.  
 
For a population, we estimate the parameters in (5.) by simplifying to a single 
utility function: 
 

            ( )     , (6.) 
 
To interpret the shape of   ( ), consider the case where   is distributed 

across the population. For small  ,    will converge towards    , while for 
large  ,    will converge toward an upper bound of   ⁄   . For moderate 

values of  , the estimated value of    will depend on what mixture of the 
population belongs to each of the two cases in (5.). We estimate   ( ) non-

parametrically by estimating a dummy parameter for each risk level  . 
 

2.2 The “Slope Model” 
 
Another scheduling model is specified in Vickrey (1973), and has been used 
by Tseng and Verhoef (2008) and Jenelius et al. (2010). Fosgerau and 
Engelson (2010) derive the corresponding reduced form. Instead of constant 
marginal utilities at the origin and destination, marginal utilities are assumed to 



 

 

be affine functions, increasing or decreasing with clock time, while the 
marginal utility of travel time is normalized to zero. We refer to this model as 
the “slope” model. 
 

Let    be the rate of change of the marginal utility of spending time at the 
origin, and    be the rate of change of the marginal utility of spending time at 
the destination (see Figure 2). Assume that the marginal utilities intersect at 
some point (otherwise, the traveller would spend all his time at either the 
origin or the destination); we normalize the point of intersection to (    ). This 

means that if travel time   was zero, the traveller would depart and arrive at 

time 0, and at this point in time, the marginal utility of time is   .  
 

 

Figure 2. The “Slope”-Model of Scheduling Preferences. Derivation of optimal departure time.  

 
As with the step model, the slope model implies a specific reduced-form 

expression, as shown by Fosgerau and Engelson (2010). Let   be a random 

variable with  ( )      and    ( )     . The traveller‟s optimal departure 

time    is given by the condition that the marginal utility of time at the origin at 
the time of departure must be the same as the marginal utility of time at the 
destination at the time of arrival: 
 
   

     ( 
   )  ⇒          (     ) (7.) 

 

Note that this quantity is independent of  , so the optimal departure time    is 
the same whether   is random or not.  
 
The expected maximal utility, assuming optimal choice of departure time, then 
becomes: 
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Note that    does not depend on the full distribution of  , only on its mean and 
variance. The reduced-form expression implied by slope model differs from 
that of the step model two ways: it is the variance, not the standard deviation, 
that enters the expression, and the value of travel time is not constant, but 

increases with travel time (the value of travel time becomes    
    

, (     )-
  ).  

 

Estimating the Slope Model 
 
As with the step model, we estimate the slope model using both a schedule-
based and a reduced-form approach. Estimating these models are less 
straight-forward than the step models, however, since the formulation of this 
model includes the travel time of a reference trip (the observed trip of the 

respondent). To define estimable models, let   be a deviation from the 
observed departure time (  ), and let   be a deviation from the observed 
arrival time. Assume that the respondent has chosen arrival and departure 

time optimally, so the observed travel time equals   in the slope model 
expression.  
 

Suppose that   is negative and   is positive; then the traveller loses activity 
time at both the origin and the destination. The total loss of utility is shown in 
Figure 3 by the shaded areas. Similarly, if activity time had been gained at the 
origin or the destination, the equivalent shaded area would represent a gain in 
utility. 

 

Figure 3. Variations in Utility in the “Slope”-Model 
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The difference in utility due to these changes in trip schedule compared to the 

observed trip (     ), assuming no change in cost, is: 
 

      .   
  

     
  /  (   )  

  

 
     

  

 
   . (9.) 

 
The first component corresponds to the rectangular change in total utility 
shown as areas i and ii in Figure 3; this corresponds to a fixed marginal utility 
of (      (     )   ). Yet with each additional loss of activity time, the 

marginal cost increases according to    and   . The last two terms in (9.) 
account for these additional costs, which are given in Figure 3 as areas iii and 

iv. Note that (9.) is valid irrespective of the signs of   and  . 
 
When estimating the slope model, the utility function of each alternative in the 
binary choice experiment becomes: 
 

  (       )  (   )  
  

 
     

  

 
      . (10.) 

 

The parameters   ,   ,    and    can be estimated directly in the scheduling-
model approach. Theoretically, we should have  
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). However, 

the estimation of  
 
 will rely on inter-individual variation only, since   only 

varies across respondents. If  
   varies between individuals and is correlated 

with  ,  
  picks up intra-individual variation in  

 
. The utility of each alternative 

  does not reflect the absolute utility level in this model, but rather a utility 
difference as compared to the observed trip. This has no effect on the 

estimation, however, since (10.) is linear in  , and only the utility difference 
between the alternatives in each binary choice is relevant.  
 
Just as before, we will use a binary travel time distribution where a delay of 

length   occurs with probability  . This implies          and     
  (   )  , and the reduced-form expression (8.) becomes 
 

      (    )     (    )
       (   ) 

    , (11.) 
 

After estimating the three  -parameters, we can compare these to the 
estimated parameters from the scheduling model. Theoretically, we should get 

       ,     
 
  

    

, (     )-
 and         . 

 

The value of expected delay will be      ( - )    (     ); hence, the 

value of delay time will depend on  ,   and  . Note in particular that the 
disuility of delay is proportional to the square of delay length. The value of 

scheduled travel time,    in the step model, corresponds to          in the 
slope model, which depends on the average delay. 
 



 

 

3 THE DATA 

3.1 Survey method 
 
The data originate from a stated choice study administered to travellers on the 
metro and commuter trains going toward and from the centre of Stockholm 
city during the morning and afternoon peak periods. The respondents were 
recruited at the stations Monday-Thursday 7-9 am and 4-6 pm during one 
week in October 2009. The respondents received questionnaires along with a 
pen and a stamped envelope. They were asked to fill in the questionnaire on 
the journey or shortly afterwards and to mail-back the survey. In total, 3200 
questionnaires were distributed, and the final data set comprised 1260 
respondents, giving a response frequency of 39%. 
 
The questionnaire first listed some questions about the observed trip (travel 
time, start time, constraints at origin/destination, transfers, safety margins, 
frequency of delays etc.), partly to remind respondents about the 
circumstances of this particular trip.  

 
The second part of the questionnaire comprised two different sets of binary 
stated choice experiments related to their actual journey. The first experiment 
was designed to estimate a scheduling model. The alternatives differed in 
three dimensions: fare, start time and travel time. As a consequence of the 
last two variables the alternatives also differed with respect to arrival time. The 
second choice experiment was designed for estimating a reduced-form model, 
where the binary choices differed in delay length, delay risk, scheduled travel 
time (without delays) and fare. The option to cancel the trip was also offered. 
Examples of the binary choices are shown in Figure 4 and Figure 5. Each 
questionnaire contained four binary choices from each of the two experiments. 
 
 

   Departure 1 Departure 2  

      

 
Start Time 

 25 min later than today 5 min later than today  

 Travel Time  15 min longer than today 45 min longer than today  

 Ticket Price  €0.70 higher than today €0.40 lower than today  

 Arrival 
Time 

 (40 min later than today) (50 min later than today)  

      

 I choose 
väljer: 

  1  2  

   Cancel the trip  3  

Figure 4: Survey question, choice experiment 1 

 
 

   Departure 1 Departure 2  

      



 

 

 Delay (if 
you made 
this trip 
every day): 

 

 
Once every other month, the 

train is 45 min delayed.                                 
All other trips are on-time. 

Once every other week, the 
train is 10 min delayed.                         

All other trips are on-time. 

 

 Travel time 
according 
to the 
timetable: 

 

3 min shorter than today 10 min shorter than today 

 

 Ticket price  €0.20 higher than today €1.00 higher than today  

      

 I choose 
väljer: 

  1  2  

   Cancel the trip  3  

Figure 5: Survey question, choice experiment 2 

 

3.2 Experimental Design 
 

An orthogonal pivot design was used. The difference between each of the 
factors in the binary choice alternatives was constructed using an orthogonal 
design tables with 16 rows and one column for each factor. Remember that 
the first experiment included three factors and the second four factors. In both 
experiments, all factor differences took four levels. The absolute level of each 
factor facing the respondents took many more levels, but this is irrelevant in 
the estimation. Simulation over a wide range of model specifications and 
parameter values, which also included the parameter values that were 
achieved in the pilot and the main study, was undertaken. This guarantees 
sufficient efficiency in parameter estimates and that the design retrieves 
properties of the data assuming different underlying model specifications.   
 
Eight different questionnaires with eight choice situations were constructed. 
Each of these were also mirrored, such that the left and right hand alternatives 
were switched, to investigate if there is a greater tendency to choose the left 
hand alternative. No such tendency was found in the analysis. The choice 
alternatives are summarized in Table 1. 
 

Table 1: Summary of the stated choice design. Departure, travel, arrival and travel time is 
given in [min] and fare in [€]

4
  

 Min. Mean Max. 

Departure time, exp. 1  -45 -0.2 47 

Travel time, exp. 1 -6 9 45 

Fare, exp. 1 [€] -1 -0.1 1.5 

Arrival time, exp. 1 -49 9 50 

Travel time, exp. 2 -10 3.5 22 

Fare, exp. 2 [€] -0.5 0.4 1.2 

Delay length, exp. 2 5 25 70 

Delay risk, exp. 2 0.025 0.08 0.2 

 

                                            
4
 In this table and throughout the paper we have converted SEK to Euro using an approximate 

conversation rate of 10 SEK/€. 



 

 

3.3 Sample Statistics 
Table 2 and Table 3 summarize the descriptive statistics of the sample. The 
purpose at the destination was „work‟ for 61 percent of the respondents and 
„home‟ for 17 percent. The remaining 22 percent had some other purpose at 
the destination. 49 percent state that they had a time constraint at the 
destination. The mean door-to-door travel time was 46 minutes, and 
respondents having a constraint at the destination had a safety margin of on 
average 15 minutes.  
 
Table 4 shows experiences of frequency of delays stated by respondents who 
make regular trips. The tabulated frequencies correspond to the levels of risk 
of delay included in the stated choice experiment, which according to the 
table, are realistic. Table 4 shows also that about half of the respondents do 
not have a connection from the subway/commuting train to reach their final 
destination. The vast majority of the respondents having a connection have a 
connection with high frequency.  
 

Table 2: Sample statistics for categorical variables. 

Shares of the total sample population Shares of purposes at 
destination  

Travellers recruited on the subway 0.45 Work 0.61 

Travellers with constraint at the origin 0.20 School 0.06 

Travellers with constraint at the destination 0.49 Business 0.02 

Women 0.65 Shopping 0.03 

Children <13 years in the household 0.29 Recreation 0.03 

Employed 0.81 Other  0.08 

  Home trip 0.17 

 

Table 3: Sample statistics for continuous variables.  

 Min. 1st Mean 3rd Max. NA's 

Door-to-door travel time? [min] 0 30 46 55 580 39 

Safety margin, travellers with constraint 
at destination [min] 

0 10 15 20 100 703 

Age [years] 18 34 44  55 87 69 

Monthly income before tax [€] 500 2250 2850 3750 7000 7700 

 

Table 4:  Stated frequency of delays and headway of connection to final destination. Shares 
of the total sample. 

Stated frequency of delays for regular trips Headway of connection  

 Subway Commuting train  

Once per week 0.14 0.19 < 5 min  0.17 

Every other week 0.13 0.15 10 min 0.15 

Once per month 0.18 0.26 15 min 0.13 

Every other month / less 0.30 0.25 20 min 0.04 

Not a regular trip 0.26 0.15 1 hour or more 0.02 

   Don‟t know 0.03 

   Don‟t take a 
connection 

0.45 

Sum 1.00 1.00  1.00 

 



 

 

4 ESTIMATION RESULTS 

In this section, estimation results are presented for the two scheduling models 
and the two corresponding reduced-form models. As explained in Section 2, 
we denote the two scheduling models the “step model” and the “slope model”. 
We estimate binary logit models. The left-hand alternative is chosen if: 
 

          
 

where   is a logistic error term, and    and    are the measurable utilities of 
the left- and right-hand alternatives. 

4.1 Experiment 1: Scheduling models  
 
The step model specification was given in (1.). In our estimation, the preferred 
arrival time was taken to be the actual arrival time of the respondent. 
Respondents were also asked whether they had to be in time for anything 
specific at the destination, and if so, how much margin they had before that 
time. However, replacing the actual arrival time with this time yielded 
considerably worse estimation results. 
 
To estimate the “slope” model, we use (10.). Remember that we assumed that 

the observed departure time is the optimal departure time   so that observed 
arrival time is    . 
 
Estimation results for the two models are found in Table 5.  
 



 

 

Table 5:  Estimation Results Using a Scheduling Approach 

 Step Model Slope Model 

 Value t-stat Value t-stat 

 -0.0805 -14.5 -0.0962 -16.1 

  -0.0631 -17.4   

  -0.0267 -4.4   

  -0.122 -18.1   

 0   -0.115 -18.9 

 2   -0.000007 -0.4 

 1/2   -0.00121 -11.7 

 1/2   -0.00028 -2.3 

     

Observations 3413  3413  

Final log(L) -1768.2  -1719.4  

D.O.F. 4  5  

Rho²(0) 0.253  0.273  

Rho²(c) 0.253  0.273  

     

All values below are evaluated at a 15 min. change and expressed in €/hour5  

Value of earlier 
departure time ( + )/ = 6.7   ( 0+15 1/2)/ = 8.3  

Value of later 
departure time ( + )/ = 6.7  ( 0-15 1/2)/ = 6.1  

Value of earlier arrival 
time   / = 2.0  ( 0-15 1/2)/ = 6.9  

Value of later arrival 
time ( + )/ = 11.1  ( 0+15 1/2)/ = 7.5  

 
All important parameters are significant and have the expected sign. The 
slope model fits the data better than the step model. The models‟ common 
cost parameter is similar in size in the two models.  
 
There is no evidence that the value of time increases with travel time – the 
parameter  

 
 is not significant, and the equality  

 
    

 
 ( 

 
  

 
)  predicted 

by the theoretical model, does not hold empirically. The estimation of  
 
 relies 

on inter-individual variation only, since   only varies across respondents, not 
across each binary stated choices. If  

   varies between individuals and is 

correlated with  ,  
  picks up intra individual variation in  

 .  If, for instance, 

travellers with lower    had longer travel times, then the impact of travel time 
on the marginal utility of time would be cancelled out. This could be a reason 
for the insignificance of  

 
.  

 
The values of scheduling time in the models are compared in Table 5 and 
Figure 6. The step model gives a lower value of early arrival and higher value 
of late arrival, compared to the slope model. This is mainly due to the 

                                            
5
 The cost parameters have units in SEK, but the values of time are converted to € assuming 

1 € = 10 SEK.  



 

 

restriction of constant marginal utility of time at the origin in the step model, 
whereas the slope model shows that the marginal utility of time at origin is 
larger before than after the observed departure time. The step model‟s 
restriction in marginal utility of time at the origin affects the other estimates, 
since early departure is correlated with early arrival and late departure is 
correlated with late arrival. Since the disutility of early departure is 
underestimated by the step model, so is the utility of early arrival; since the 
utility of late departure is overestimated, so is the disutility of late arrival 
arriving late. In fact, according to the slope model, the marginal disutility of 
early departure is in fact higher than the marginal disutility of late arrival.   
 
Interestingly, we could not find any differences in scheduling parameters 
between respondents with constraints at origin/destinations.  We could 
interpret this finding as that most individuals have constraints to a varying 
degree, but that this is not always obvious to them if this is rigid „constraint‟ or 
not, which would strengthen the support for the slope model.  
 

 

Figure 6. Comparison of Estimated Values of Time at the Origin and Destination in the Step 
and Slope Models 

 

4.2 Experiment 2: Reduced-form models 
 
As explained in Section 2, the two scheduling models imply different reduced-
form model defined in (6.) and (11.). Estimation results are found in Table 6.  

Table 6: Estimation Results Using a Reduced-Form Approach 

 Step Model Slope Model 

 Value t-stat Value t-stat 

 -0.112 -7.4 -0.143 -13.0 

 1 -0.111 -5.8 -0.119 -8.4 

 2   -0.0086 -5.3 

 2(p=.025) -0.742 -5.3   
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 2(p=.05) -0.595 -6.6   

 2(p=.10) -0.648 -7.5   

 2(p=.20) -0.547 -8.8   

 3   -0.00298 -9.3 

     

Observations 3129  3172  

Final log(L) -1863.79  -1863.57  

D.O.F. 6  4  

Rho²(0) 0.1407  0.1524  

Rho²(c) 0.1406  0.1524  

     

Value of scheduled travel 
time (€/h) 6.0   5.5 

p=0.08, L=25 
(design means) 

Value of delay time (€/h)    
L=25, T=46 (design 

and sample means) 

p=.025 39.8  25.3  

p=.05 31.9  25.3  

p=.10 34.8  24.9   

p=.20 29.4  24.3  

 
By definition, the step model predicts that the disutility of a possible delay of 

length   should be linear in  . Intuitively, this might be unexpected – but in 
fact, this is supported by the estimation results. Trying various piecewise 
linear functions, we find no evidence that the marginal value of a “delay 

minute” changes with  . 
 
The two reduced-form models have similar goodness-of-fit, although the slope 

model has fewer parameters. The values of travel time are very similar. The  2 
dummy parameters in the step model get the theoretically expected relative 

magnitude (higher for higher risk levels), except for  2 and  3, but the 
difference between these two parameters is not significant.   
 
The slope model produces lower values of average delay time than the step 
model, especially for high risk levels. The relatively low value of average delay 

in the slope model arises from the fact that the coefficient for    is restricted to 
equal the coefficient for   in this model. According to the step model, the 
parameters for    are considerably larger than the parameter for  . The third 

term in the utility function of the slope model in (11.) also includes both    and 
  and cannot increase the relative weight on    as compared to  . The fourth 

term includes the square of  ; the finding that the value of expected delay is 
linear in  , according to the step model, explains why this parameter also 

becomes relatively small. Still, at larger delay lengths,    and travel times,  , 
the third and fourth terms of the  utility function will increase the value of 

average delay in the slope model. For instance, at      and      the 
value of average delay in the slope model will lie in the same range as the 
step model (31-32 €/h, depending on the risk level).  
 



 

 

Just as in the scheduling models, the valuation of average delay is not 
different for respondents with arrival or departure time constraints. 
 

Note that in the step model, we must have       ( ) for theoretical 
reasons6, with the “gap” getting smaller for increasing risk  . If the difference 
in direct utility between travelling and being at the destination before the PAT 

(  in the scheduling model) is negligible, then equality is possible. It turns out 
that the estimated model passes this consistency test, with equality obtained 

for         . This means that it is, in fact, theoretically possible to extrapolate 
the value of delay for higher risk levels, since   ( ) must be equal to      – if 
we trust the theoretical model, naturally.  
 

4.3 Comparison of scheduling and reduced-form models 
 
With the estimation results above, it is now possible to compare the 
parameters of the estimated reduced-form models with those of the 
scheduling models. The comparison is shown in Table 7.  
 

Table 7: Parameter Comparisons Between Scheduling and Reduced-Form Specifications 

 Step Model Slope Model 

Theoretical prediction Scheduling 
specification 

Reduced-form 
specification 

Scheduling 
specification 

Reduced-form 
specification 

Value of travel time: 
(   )      

   


      

            

Value of expected 

delay: (  
 )    ( )(           ) 

(   )  
       

  (       )  ⁄
       

  

Baseline value of time: 
 
 
      

   
 


      

          

Value of mean travel 
time squared: 

    

, (     )-
     

   
 
 
 

, ( 
 
  

 
)-
 ⁄

        

  


       

Slope of destination 
marginal utility = value 
of travel time variance: 
 
 
        

   
 

 

       

 

  


       

 
Evidently, the reduced-form models give much higher valuations of delays. 
While valuations of travel time are comparable in size (although it differs quite 
considerably in the slope model), delay valuations differ by a factor 4 and 20, 
respectively.  
 

4.4 Other remarks on estimation results 
 
From the extensive testing of model specification that was carried out, the 
following observations can be noted: 
 

                                            
6
 This follows from the condition that      in the derivation of the reduced-form expression. 



 

 

 There are no significant differences in scheduling parameters between 
morning and afternoon trips, or between different trip purposes.  

 There are only small differences in preferences between metro and 
commuter train travellers. The only significant difference is that 
commuting train travellers value time at origin higher. A likely reason for 
this is that commuting trains are more crowded; the traveller‟s door-to-
door travel times do not differ between the models. This difference is only 
significant in the first experiment. This was not included in the final model, 
however.  

 People who stated that they had constraints on their arrival or departure 
time did in fact not have significantly larger scheduling parameters than 
the rest of the respondents. Nor did people with constraint on their arrival 
have a higher valuation of expected delay. 

 The model using the observed arrival time as preferred arrival times give 
better model fit and response scale than models adjusting the arrival time 
with respondents‟ stated “safety margin” (if any).  

 Having a connecting trip at the end of the recruitment trip did not affect 
valuations.  

 Higher income attenuates the cost parameter.  

 Once income differences are controlled for, no gender differences are 
found.  

 Parents, both men and women, with children 12 years or younger have a 
higher valuation of time but not a higher valuation of expected delay or 
larger scheduling parameters. A reason might be that there are very few 
trips with purpose “fetch the children from day-care” in the sample. 

 Employed persons have a higher valuation of lateness.  

 The experiment also contained an “abstain from the trip” alternative. The 
experiments were also estimated as nested models with the choice of 
whether to accept any of the alternatives at the upper level and the choice 
between the right-hand and left-hand side at the lower level. This did not 
change parameter estimates for the scheduling model, while it almost 
doubled the value of delay time in the reduced-form models. This seemed 
to be because some respondents abstained from the trip once there were 
high delay risks. Due to a number of internal consistency problems with 
these model specifications, “abstain” answers were eventually dropped 
from the estimations.  

 There is no significant constant for the left-hand alternative in any of the 
experiments. Hence, no tendency was found that respondents “cheated” 
on a difficult by task by always selecting the same side.  

 

4.5 Mixed logit models 
 
Mixed logit (MXL) models have been estimated, to ensure that the results are 
robust and to take panel effects into account.  In the first MXL model of the 

first experiment, the  ,  ,  , and   parameters were assumed to be normally 
distributed. The valuations, computed using the mean values of the 
parameters, remained robust as compared to the MNL model. There was no 

significant variation between individuals in the   parameter.  The largest 
random variation was found in the   parameter.  



 

 

 
Assuming normally distributed parameters, fairly large parts of the mass of the 
distribution of the parameters were positive.  To remedy this problem, the 
parameters were assumed symmetrically triangular and constrained to be 
negative.  This model, on the other hand, turned out unsatisfactory, resulting 
in very high valuations. Presumably, there is a significant mass close to zero, 
with are better accounted for by using the normal distribution. The option of 
using log-normally distributed parameters was not tested, since the valuations 
are normally sensitive to assumptions about the long and flat tail where the 
data do not cover the support of the distribution.   
 
Mixed logit models estimated for experiment 2 give the same results as for 
experiment 1. The heterogeneity is largest for the expected delay parameters. 
The valuations are robust assuming normally distributed parameters. The 
triangular distributions give very high valuations that would be due to a 
misspecification.  

5 DISCUSSION  

Comparing the results of Experiment 1 and Experiment 2, it is apparent that 
they are inconsistent, in the sense that the estimated scheduling parameters 
in Experiment 1 cannot explain the value put on travel time variability in 
Experiment 2. In the “step” model, the valuation of travel time variability in 
Experiment 2 is almost four times higher than implied by the parameters of 
Experiment 1. In the “slope” model, the difference is even larger. 
 
Clearly, the disutility of being subject to a risk of a delay exceeds what the 
scheduling models predict that the disutility should be. There seems to be 
some disutility associated with the uncertainty in Experiment 2, over and 
above the mere disutility of “late arrival” that is captured by the scheduling 
model in Experiment 2 – where the arrival time is certain. In other words, 
being “delayed” seems to be worse than just being “late”, i.e. to arrive after 
one‟s preferred arrival time. 
 
Interestingly, the respondents do in fact answer the two experiments 
consistently in a specific sense: the respondents that have the highest 
disutility of late arrival in Experiment 1 are also the ones with the highest 
disutility of delay risk in Experiment 2. This was established using a bootstrap 
estimation, where the valuations of repeated sub-samples were estimated.  
This gave a correlation of 0.25 between the valuation of late arrival in 
Experiment 1 and the valuation of average delay in Experiment 2. On the 
other hand, no correlations were found for the cost or the (scheduled) travel 
time parameters. Apparently, the individual-specific variation in these 
parameters is swamped by random variation. This is consistent with the 
finding from the mixed-logit estimations, that the variations in the cost and 
time parameters are small compared to the variation in the value of expected 
delay.  
 



 

 

So, it seems as if the discrepancy between the scheduling and reduced-form 
models cannot be explained merely by randomness. Instead, there may be 
several possible explanations of this phenomenon.   
 

Timing of information about the actual arrival time 
 
One of the differences between the two experiments is the point in time at 
which the traveller gets information about her actual arrival time. In 
experiment 1, the traveller is given her arrival time in advance, and hence 
knows in advance whether she will be late with respect to the preferred arrival 
time (PAT). In experiment 2, only the probability and length of a delay is given, 
so the traveller does not know if she will actually be delayed when making a 
choice – in other words, information about the actual arrival time comes later 
than in experiment 1. Under the theory of the scheduling model, this does not 
matter: the disutility of arriving after the PAT only depends on how late the 
traveller arrives – not how long in advance the actual travel time is known.  
 
In reality, it is often the case that given ample warning, travellers can respond 
by adjusting their plans, thereby minimizing any lateness penalty they may 
incur by arriving late. In experiment 1, the traveller is told that she will arrive 
after the PAT, and she can take measures accordingly, such as rescheduling 
activities in advance. In experiment 2, if a delay actually occurs, activities 
have to be rescheduled with much shorter notice, if at all possible. Expressed 
in the terminology of the scheduling model, this means that the lateness 
penalty depends on how long in advance the traveller knows that he or she 
will be late. If information about the actual arrival time comes “early” (as in 
experiment 1), the lateness penalty will be lower than if the information comes 
“late” (as, potentially, in experiment 2). Put somewhat differently, 
“rescheduling costs” are bigger the later information comes.  
 
Another way of putting it is that the notion of an exogenously fixed preferred 
arrival time may be untenable. For many travellers, the PAT may in fact be a 
wide interval, in which all arrival times are equally preferred – as long, that is, 
the traveller knows in advance when she will arrive, and can plan accordingly. 
If this is the case, the “preferred” arrival time will be a function of when the 
traveller expects to arrive.  
 
A natural question is then whether there is any way to present experiment 1 in 
such a way that the traveller does not get informed about the arrival time in 
advance (and thus can adjust her PAT). However, this is virtually impossible: 
one would have to ask respondents to rank alternatives that are essentially 
variants of “you would be delayed X minutes without knowing it in advance” – 
and at the same time, we want to assume that travellers choose the optimal 
departure time given an unknown travel time (knowing just its distribution). 
This is obviously not realistic. It is simply not possible to ask respondents 
whether they would prefer A or B – pretending at the same time that they 
would not know whether they had “chosen” A or B!  
 



 

 

The disutility of uncertainty per se 
 
In the scheduling model, there is no direct disutility of travel time uncertainty 
per se. Disutility only arises from the risk of arriving late (and hence the need 
to start the trip earlier than otherwise). But due to the higher parameters 
estimated parameters in Experiment 2, it seems as if many people dislike 
uncertainty as such. This dislike can either be interpreted as an “anxiety cost”, 
or as the “decision cost” needed to solve the optimal departure time problem. 
From other sources, it is well established that information about the length of a 
delay is valued by travellers. This may be because it facilitates rescheduling of 
activities, but it may also be that the uncertainty in itself is a concern for many 
travellers.  
 
Another interpretation is that uncertainty creates a need for “contingency 
plans”, if the traveller should be late. The need to arrange a contingency plan, 
should one be delayed, is a cost created by the uncertainty in itself, over and 
above the mere value of the (expected) delay.  
 
In practice, anxiety costs, decisions costs and contingency planning costs are 
virtually inseparable from each other, Separating them is not necessary, on 
the other hand: what is important is that they all may cause a disutility 
exceeding the value of the actual, average delay.  

Policy bias and focus bias  
 
In all stated preference experiments, there is a risk that valuations are 
overestimated due to policy bias or focus bias. “Policy bias” refers to 
respondents‟ tendency to answer in a way that they think will cause certain 
desirable effects – for example overstating their valuation of delays to make 
the transit authority try harder to decrease delays. “Focus bias” refers to 
respondents‟ tendency to forget other important characteristics of a trip, and 
hence unconsciously overstate their valuation of a certain aspect – in this 
case delays. Both these phenomena may be present in experiment 2, since 
this dealt with delay risks explicitly.  

6 CONCLUSIONS 

The standard way to include the cost of travel time variability in appraisal is to 
estimate the parameters of a reduced-form expression including some 
measure of travel time variability – usually the standard deviation or the 
average delay. Different assumptions about the underlying scheduling model 
result in different forms of the reduced-form expression. The problem with 
such reduced-form approaches is that the valuation of variability will usually 
depend on the standardized travel time distribution. Since this distribution is 
likely to vary between contexts, a valuation estimated in one context cannot 
(consistently) be applied in another context.  
 
One way to overcome this problem would be to estimate a scheduling model, 
and then derive the valuation in the reduced-form expression. This would also 
overcome the need to present travel time distributions to respondents in 



 

 

stated choice experiments, which has turned out to be a difficult pedagogical 
task.  
 
This approach has been tested in the present paper through comparing the 
results from two scheduling models and the corresponding reduced-form 
expressions. It turns out that the valuations in the reduced-form models are 
much higher than the valuations implied by the scheduling models. The 
differences are so large that one may question the validity of the approach of 
motivating the standard reduced-form models from underlying scheduling 
models of the usual type. It seems unlikely that the valuations from the two 
models can be reconciled by mere tweaks of the models. 
 
Instead, we are inclined to believe that the basic assumptions used when 
deriving a reduced-form model from an underlying scheduling model are not 
realistic – they do not capture enough of the essential features of the choice 
situation that travellers face. We hypothesize that there are two factors that 
are important to take into account. 
 
First, the parameters of scheduling models, as they are usually interpreted 
and estimated, refer to a situation where the traveller gets information about 
his or her actual arrival time in advance (since respondents need to be aware 
of the attributes of the alternatives to make stated choice questions 
meaningful). This means that activities can be rescheduled to some extent, if 
necessary, to fit the actual arrival time. In contrast, when the travel time is 
random, the actual arrival time is not known until immediately before the 
arrival time. This makes rescheduling much more onerous, if possible at all, 
and hence the “lateness penalty” will be higher. Phrased differently, the 
parameters of the scheduling model, including the preferred arrival time, may 
depend on when traveller gets information about the actual arrival time.  
 
Second, there might be a disutility connected to the uncertainty of the travel 
time per se. This disutility can either be interpreted as an “anxiety” cost, as a 
“decision cost” to solve the optimal departure time problem, or as a cost for 
making up contingency plans for the event that a delay occurs.  
 
In a historical perspective, this is a half step backwards. Reduced-form 
expressions, where some measure of travel time variability was introduced in 
an indirect utility function, were originally introduced and motivated in a rather 
ad-hoc manner. The theoretical underpinning of reduced-form expressions 
came only later, when it was shown that such models could be derived from 
scheduling models in a microeconomically consistent way. Our results in this 
paper, however, cast some doubt on whether this derivation really captures 
the whole story. It seems as if the derivation of the reduced-form model from a 
scheduling model omits certain features essential to the understanding, 
analysis and valuation of travel time variability. Even if this derivation is useful 
for proving the microeconomic consistency of suggested reduced-form 
expression, and for showing the theoretical equivalence between scheduling 
models and reduced-form models, the empirical equivalence of these models 
turns out to be a different matter. It seems as if the “late arrival” concept in 
scheduling models does not fully capture the “delay risk” central to reduced-



 

 

form models. Or in other words, it seems as if being “delayed” is considerably 
worse than just being “late”.  
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 APPENDIX 1: DERIVATION OF THE REDUCED-FORM 
EXPRESSION FOR A BINARY DISTRIBUTION 

Assume that the travel time is   with probability (   ), and     with 

probability  . The reduced form expression corresponding to the “step” 
scheduling model can be derived directly, or using Fosgerau & Karlström‟s 
(2010) general formula. To derive it directly, note that a traveller departing at 

time    before the PAT will get the expected utility: 
 

    ( ( ))   (       (   )      (    )    (    

 )   (   )(   ) , (12.) 
  

where the cost parameters  ,   and   are all negative. Let    be the optimal 
departure time and    the maximal achieved utility, i.e.            (  ) and 

        (  ). Assuming        , i.e. that the cost of late arrivals is 

greater than the cost of early departures, we always have      (otherwise, 
the traveller is always late), so the last term is always zero. Moreover, we 

always have       , since     and    . This means that we can 
rewrite the expression as: 
 

   (    )   (    )    (   ),         (13.) 
 
Depending on the sign of (    ), we get one of two cases: 
 
            
              

   (   )  (   )  (      )

   (   )  (    ) (       )
 (14.) 

 
In case I, the expected lateness penalty is so small that the traveller will still 
depart just to be in time if no delay occurs. In case II, the expected lateness 
penalty is so large that the traveller starts early enough to always be on time.  
  
The same expression can be derived using the general Fosgerau-Karlström 

formula. Let   be the mean travel time and   be the standard deviation of the 
travel time. For the case of a binary travel time, we have: 
 

   {
                     

                     
 (15.) 

   (   )  (   )       (16.) 

   √ (   ) (17.) 

 
To express the reduced-form utility in terms of scheduling parameters, we use 
the approach presented by Fosgerau & Karlström (2010). We start by taking 
the standardized distribution of travel times: 
 

  
   

 
 (18.) 
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 for    

 for  
 (19.) 



 

 

  
where: 
 

  
   

 
  

   (   )  (   ) 
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(   ) 

 
 (21.) 

 

Note that we leave   and   in terms of  , since the standard deviation will 
cancel out at later stages. (The same derivation can be made without 

standardizing the travel time distribution by  , but we leave it in here for 
consistency with earlier literature.) 
 
Now, define the cumulative distribution of the standardized travel time 
distribution as  ( ). With the binary distribution given above, this distribution 
follows a step function: 
 

 ( )  {
 for    

   for      

 for    

 (22.) 

 

We invert this to find the quantile function,    ( ):  
 

   ( )  {
 for        

 for        
 (23.) 

 
In the setting used by Fosgerau & Karlström (2010), the optimal departure 
time, in terms of the mean and standard deviation, is given by: 
 

           .  
 

 
/ (24.) 

 

Because of the discontinuous nature of the quantile function    ( ),  we can 

define its value in terms of where in the range         lies the quantity 
      using this to find the optimal head-start depending on    :  
 
Case I   
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)    
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Case II   
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)    

              (   )      
 
As a consequence of these optimal departure times with respect to the two 
cases, we can compute disutility using the formula for mean lateness given by 
Fosgerau & Karlström (2010): 
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Under Case I, where a risk-taking traveller chooses a later departure and risks 
being delayed, we have: 
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(   )   (29.) 
 
The first term has the scheduled travel time weighted by a value of time 
(   ), and the second term has expected delay weighted by the value of 

delays (   )   
 
Under Case II, where a risk-averse traveller chooses an earlier departure time 
and avoids the possibility of delay, we have: 
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(    )  (31.) 
 
That is, the first term for the scheduled travel time weighted by (   ), and 
the second term for the delay has mixed weights, where the cost of the certain 

headway is fully  , but the cost of extra travel time,   , is contingent on the 

delay actually occurring (which has probability  ). 
 


