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ABSTRACT 

Traffic forecasts provide essential input for the appraisal of transport investment 
projects. However, according to recent empirical evidence, long-term predictions are 
subject to high levels of uncertainty. This paper quantifies uncertainty in traffic 
forecasts for the tolled motorway network in Spain. Uncertainty is quantified in the form 
of a confidence interval for the traffic forecast that includes both model uncertainty and 
input uncertainty. We apply a stochastic simulation process based on bootstrapping 
techniques. Furthermore, the paper proposes a new methodology to account for 
capacity constraints in long-term traffic forecasts. Specifically, we suggest a dynamic 
model in which the speed of adjustment is related to the ratio between the actual traffic 
flow and the maximum capacity of the motorway. This methodology is applied to a 
specific public policy that consists of suppressing the toll on a certain motorway section 
before the concession expires.  
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1. Introduction 

 

Traffic forecasts provide essential input for the appraisal of transport investment 

projects and public policies. In spite of significant improvements to transport demand 

models over the past few decades, there are still high levels of uncertainty in long-term 

forecasts. For instance, a recent study by Flyvbjerg et al. (2006) concludes that 

accuracy in forecasting traffic flow has not improved over time. Given that project 

profitability is highly dependent on predicted traffic flow, uncertainty has to be 

quantified and accounted for in project evaluation.  

 

This paper quantifies uncertainty in traffic forecasts for the tolled motorway network in 

Spain. We estimate a demand model using a panel data set covering 67 tolled 

motorway sections between 1980 and 2008. Uncertainty is quantified in the form of a 

confidence interval for the traffic forecast that includes both the variance of the traffic 

forecast related to the stochastic character of the model (model uncertainty) and the 

uncertainty that underlines the future values of the exogenous variables (input 

uncertainty). Furthermore, we apply this methodology to a specific public policy 

consisting of suppressing the toll on a certain motorway section before the concession 

expires. In this case, the government has to compensate the private motorway 

concessionaire for the revenue forgone up to the end of the concession period. We 

present a point estimate for the present value of the forgone revenue, as if the result 

were certain, and then a set of confidence intervals at different levels of significance 

that account for the variance of the forecasting error. 

 

The predictions are based on an aggregate demand equation, where traffic flow 

depends on the standard variables. However, if maximum infrastructure capacity is not 

allowed for in the model, it may well be that predictions lie above this maximum value. 

To avoid this problem we should, ideally, estimate an integrated demand-supply 
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system. However, as is often the case, we are not able to model the supply side of the 

system due to lack of data. Our paper contributes to this issue by proposing a new 

functional form for the demand equation that accounts for the fact that the rate of traffic 

flow growth diminishes as it approaches full capacity. Specifically, as detailed in section 

3, we suggest a modified partial adjustment model with variable adjustment speed. In 

our case, this proposal outweighs the traditional logistic functional form with a 

saturation level equal to maximum capacity, given that we avoid the assumption that 

traffic follows and S-shaped growth curve.  

 

2. Literature review of uncertainty in traffic forecasting 

Several recent studies confirm the inaccuracy of traffic predictions. Among them, the 

extensive work by Flyvbjerg, Skamris Holm and Buhl (2006) based on 210 transport 

infrastructure projects in 14 nations, 27 of which correspond to rail projects and the rest 

to road projects. They conclude that passenger forecasts for nine out of ten rail projects 

are overestimated, with an average overestimation of 106%. The authors suggest that 

there is a systematic positive bias in rail traffic forecasts. For road projects, forecasts 

are more accurate and balanced, although for 50% of the projects the difference 

between actual and forecasted traffic was more than ±20%1. For both road and rail 

projects, the estimated standard deviation of the forecasting error is high, showing a 

high level of uncertainty and risk. 

Bain (2009) presents the results from a study that analyses the toll road traffic 

forecasting performance from a database including over 100 international toll road 

projects. The research confirms a large range of error in traffic forecasting and the 

existence of systematic optimism bias. On average, toll road forecasts overestimated 

first-year traffic by 20-30%.   

 

                                                 
1 The authors suggest reference class forecasting as an alternative methodology. This proposal is detailed 
in Flyvbjerg (2008). 
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Using data on 14 toll motorway concessions in Spain, Vassallo and Baeza (2007) 

found that, on average, actual traffic was overestimated by approximately 35% during 

the first three years of operation. They conclude that there is a substantial optimism 

bias in the ramp-up period for toll motorway concessions in Spain.  

 

In spite of the significant errors present in traffic forecasting, uncertainty is often a 

neglected issue. Most of the predictions are presented as point estimates and the 

actual likelihood of this outcome is forgotten about. The most common way to deal with 

uncertainty is to present alternative estimates based on different scenarios for the 

exogenous variables. However, this approach does not recognise all sources of 

uncertainty and, most importantly, does not provide the likelihood of each alternative 

forecast. 

 

As stated by de Jong et al. (2007), the literature on quantifying uncertainty in traffic 

forecasting is fairly limited. The author reviews a considerable amount of the literature 

on that subject considering both the methodology employed and the results obtained. 

He distinguishes between input uncertainty, associated with the fact that future values 

of the exogenous variables are unknown, and model uncertainty which includes 

random term uncertainty and coefficient uncertainty. Given that the 21 studies reviewed 

use different measures to express uncertainty and many of them do not present 

quantitative outcomes, providing an order of magnitude for uncertainty is difficult. De 

Jong suggests that input uncertainty is more important than model uncertainty; studies 

on input uncertainty or both input and model uncertainty obtain 95% confidence 

intervals for link flows between 18% and 33% of the mean. The aforementioned paper 

also offers a methodology for quantifying uncertainty for a case study in The 

Netherlands. 
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The literature shows that quantifying forecast uncertainty and its causes is an area that 

deserves more attention. This paper intends to contribute to this issue with new 

findings. 

 

3. The model 

 

Given that the demand equation is estimated in order to predict future traffic flow, when 

specifying the equation we should take into account that as the volume of traffic 

increases, costs related to congestion emerge and the traffic rate of growth diminishes 

as it approaches maximum capacity.  

 

Ideally, congestion costs and capacity constraints should be considered by using an 

integrated demand-supply system. However, this is frequently unfeasible. As an 

alternative approach, we suggest a functional form that can be considered as an 

implicit reduced form for the demand function. Specifically, we estimate a modified 

partial adjustment model, where the speed of adjustment is variable. The proposed 

equation can be derived as follows:  

 

The static equation of the partial adjustment model takes the standard form and shows 

the equilibrium value of traffic Y* as a function of a set of variables X: 

itiit XY lnln *          (1) 

The dynamic of the adjustment is modified by introducing a variable adjustment 

parameter, it : 

ititititit YYY    )ln(lnln 1
*

     (2) 

We assume that the speed of adjustment decreases as traffic flow increases in the 

following terms. Let us define the quality level of the motorway, τ, as a function of the 

traffic flow related to the maximum capacity of the infrastructure, Y0: 
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This functional form accounts for the fact that the traffic rate of growth is diminishing as 

it approaches the capacity limit. Its implications can be best observed in two polar 

cases.  When there is no traffic on the motorway, the speed of adjustment is maximum: 

  itititY 101       (5) 

In the opposite case, when traffic has reached capacity, the speed of adjustment is 

zero: 

000
1  ititiit YY       (6) 

By substituting lnY* from equation (1) into (2), we get the first equation: 

itititiitit YXY    )lnln(ln 1    (7) 

Next, substituting it  for its value we get the final equation:  

it

it
ititi

it

it YX
Y








 )lnln(

ln
1   (8) 

This is a heteroskedastic model, so we have estimated using weighted least squares. 

This formulation does not need to be restricted to the partial adjustment model. It can 

be easily generalised to “s” lags by assuming that the adjustment process is a weighted 

function of  “s” lags, as shown in Appendix 1. 

 



 7

We estimate a standard demand equation where variables are expressed in logs2.  The 

traffic volume in each section is a function of the level of economic activity (measured 

by Gross Domestic Product, GDP), the toll rate per kilometre, the price of gasoline and 

a set of dummy variables that capture major changes in the road network3. The 

demand function can be expressed as follows: 

it

it
ititiitititii

it

it YZTGPGDP
Y








 )lnlnlnln(

ln
1321

   (9) 

Where Yit = traffic volume on motorway section i in period t 

 GDPt =  real GDP in period t 

 GPt = gasoline price in period t deflated by Consumer Price Index, CPI) 

 Tit = motorway toll in section i period t deflated by CPI 

 Zit = dummy variables capturing major changes in the network 

 αi = individual fixed effects 

 εit = error term 

 

The individual fixed effects explain the differences between cross-section observations 

not captured by the variables included in the model. In our case, they may capture 

generation and attraction effects that determine the magnitude of traffic in each 

motorway section.   

 

4. The data 

To estimate the demand equation, we used a panel data set of 67 motorway sections 

observed between 1980 and 2008, although not all cross-section units were observed 

for this temporal span. The total number of observations was 1765. The cross-section 

observations correspond to the shortest motorway section allowed by the data 

collection processes, with an average length of 20 kilometres.  

                                                 
2 We considered the three alternatives most widely used to estimate aggregate demand functions: the 
linear model, the semi-log model and the log-linear model. According to the criterion, based on the log of 
the likelihood functions from each model, we selected the log-linear specification. 
3 Matas and Raymond (2003) provide a justification for this model specification. 
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The dependent variable is the annual average daily traffic volume in each section. The 

explanatory variables are: real GDP, gasoline price and toll per km. The last two 

deflated by CPI. GDP and gasoline price are defined at the national level and take the 

same value for all sections in the sample4. Finally, a set of 31 dummy variables 

captures the most important changes in the road network. For example, improvements 

on a parallel free road were captured by a dummy variable that takes value 1 since the 

opening year.  The main descriptive statistics for the variables are outlined in Table 1.  

 

Table 1. Descriptive statistics    

   Mean  Maximum  Minimum  Std. Dev. 
Traffic volume 16807 90033 1689 13523 
GDP (millions of €)1 733009 1063202 471466 177785 
Gasoline price (€ per liter)1 0.982 1.496 0.832 0.176 
Toll (€ per km)1 0.126 0.343 0.058 0.050 
Maximum capacity 78700 121192 59700 15407 

1 The base year for variables expressed in euros is 2006. 

It is interesting to note that there are substantial differences in traffic volume among the 

different sections of the motorway network. The daily average traffic flow ranges from 

1689 vehicles in the section and year having the lowest volume to 90033 in the section 

and year with the highest. Furthermore, we found an extensive price range for toll 

rates. For the whole period, at 2006 prices, the lowest price paid per km was about 

0.058€, whereas the highest was about 0.34€. The reasons for this wide variation are 

twofold. Firstly, each motorway has to cover its own construction costs, so the toll rates 

are higher on those motorways with larger construction costs or lower traffic volume. 

Secondly, the changes in toll policies during the last two decades have resulted in a 

wide variation of rates across the country and over time. For instance, on some 

motorway sections tolls decreased as much as 40% in one year. 

                                                 
4 In some preliminary estimations we used GDP and gasoline prices at the regional level. The estimated 
coefficients and the degree of adjustment showed to be almost the same. Therefore, given that for series 
defined at national level the available time span is much larger, we decided to use GDP and gasoline 
prices at the national level in order to obtain better forecasting models for the input variables.   
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The maximum capacity of each motorway section was calculated according to the 

number of lanes and types of vehicle. 

 

5. Model estimation and results 

 

Before estimating the model equation stated in (9), and in order to decide whether to 

estimate in levels or differences, we analyzed the existence of unit roots and the 

cointegration of the series. The traffic volume and GDP variables were clearly non-

stationary. The evidence for motorway tolls and gasoline prices was doubtful. In any 

case, to justify an estimation using levels of those variables, it was necessary to 

guarantee that cointegration relations existed among them. Using the Kao test for 

panel data and based on the analysis of residuals, the null hypothesis of no 

cointegration was clearly rejected. Given that this hypothesis was rejected, we 

proceeded to estimate the equation in levels. 

 

Table 2. Kao Residual Cointegration Test   
Series: LOG(traffic_?) LOG(toll_?) LOG(GDP) LOG(gas price)    
Sample: 1980-2008     
Included observations: 29     
Null Hypothesis: No cointegration    
Trend assumption: No deterministic trend    
User-specified lag length: 1     
Newey-West automatic bandwidth selection and Bartlett kernel  
     
   t-Statistic Prob. 
ADF   -4.676612 0.0000
     
Residual variance   0.001894  
HAC variance    0.003072   

 

As specified in equation (9), the estimation of the demand equation would require to 

estimate 400 coefficients. Given that the number of total observations was 1765, it 

seemed advisable to introduce some constraints to the coefficients in order to allow for 
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efficiency gains. Based on a previous work by Matas and Raymond (2003), we 

assumed that the demand elasticity of GDP and gasoline prices were the same across 

all motorway sections. Nonetheless, we maintained a specific toll coefficient for each 

motorway section.  

 

Under these assumptions, we estimated equation (9) using weighted least squares. An 

AR(1) term was included to control autocorrelation of the error term. The coefficients 

for GDP, gasoline price, and the lagged value of the dependent variable take the 

expected sign and were estimated with a high degree of precision. In relation to the toll 

coefficients, a significant variation across motorway sections was observed. A Chi-

square test allowed us to clearly reject the null hypothesis of equality of toll coefficients 

across all sections. However, the difference in the values of the toll coefficients could 

be explained by certain motorway characteristics: contiguous sections on the same 

motorway present very similar characteristics; the more inelastic sections are located 

on corridors with high traffic volumes, and demand is seen to be more elastic where a 

good alternative free road exists. 

 

The observed results suggested the possibility of re-estimating the model by 

introducing the hypothesis of equality of toll coefficients across those motorway 

sections that showed similar coefficients in the initial model. We re-estimated the initial 

model introducing equality constraints among coefficients not rejected by the data. The 

constraints were introduced by classifying the motorway sections into 3 groups 

according to the toll coefficient estimated in the general model:  

- Low toll elasticity: sections with toll coefficient between 0 and -0.2. 

- Medium toll elasticity: sections with toll coefficient between -0.2 and -0.35 

- High toll elasticity: section with toll coefficients larger than -0.35. 
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The final estimation results are detailed in Table 3. As can be observed, the toll 

coefficients are estimated with a high degree of precision. Demand is sensitive to toll 

variations, although in the short term it is inelastic in all three groups. 

 

To provide an additional insight on the accuracy of our model we compared its 

forecasting capacity to that of a logistic regression model. Using the same explanatory 

variables, we estimated a logistic regression with a saturation level equal to maximum 

capacity. We compute the mean square error (MSE) for a dynamic forecast over the 

period 2000-2008. The results showed a value of 5,979,872 for the logistic approach 

and 2,732,930 for our proposal. A “t” test for the equality of both MSE clearly enabled 

to reject the null hypothesis (t=6.19).  

 

Table 3. Estimation results   

Dependent Variable: D(Ln(traffic))/tau     

Estimation method: weighted least squares  
 Coefficient Std. Error t-Statistic 
ln(GDP) 0.753772 0.040268 18.72

ln(Gas price) -0.380198 0.015718 -24.19

ln(traffic(-1)) -0.605873 0.022587 -26.82

ln(toll_1) -0.154903 0.015938 -9.72

ln(toll_2) -0.340256 0.019311 -17.62

ln(toll_3) -0.487923 0.027644 -17.65

AR(1) 0.734674 0.021841 33.64

Dummy variables yes   
Fixed effects yes   
    

R2 0.62   
Observations 1668     

 

An interesting property of the proposed functional form is that it makes it possible to 

avoid the often unrealistic assumption of constant elasticity. As shown in Appendix 2, 

demand elasticity depends on the value of τ, that is, it depends on the degree of 

motorway use. For a given level of τ, elasticity in period J is defined as: 
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
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kJ         (10) 

Where kk  *
 and )1(*    

 

As an illustration, we compute the demand elasticity with respect to GDP for different 

values of τ and for the first 6 years after the change in the exogenous variable.  

Elasticities are detailed in Table 4. For τ = 1, when the level of traffic approaches 0, 

short-term elasticity is 0.8; after 5 years, the elasticity tends to the long-term value, 

1.24. However, as traffic increases and τ decreases, demand elasticity becomes less 

sensitive to GDP variations. For τ = 0.1, when traffic flow approaches capacity, short-

term elasticity is less than 0.1. The elasticity values computed for τ = 0.7, which 

correspond to the average observed value in our sample, are in line with those 

reported in the literature.  

 

Table 4. Elasticities with respect to GDP    

 tau  
j (years) 0.1 0.5 0.7 1 

0 0.075 0.377 0.528 0.754 
1 0.146 0.640 0.832 1.051 
2 0.213 0.823 1.006 1.168 
3 0.275 0.950 1.107 1.214 
4 0.334 1.039 1.165 1.232 
5 0.389 1.101 1.199 1.239 
     

 

Figure 1 displays the elasticity values for τ ranging from 0.1 to 1.  
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For the particular case where τ = 1, the coefficients can be interpreted as those in the 

standard partial adjustment model. The short- and long-term elasticities for all the 

explanatory variables are reported in Table 5. 

 

Table 5. Estimated demand elasticities  

  tau = 1 
 Short Term Long Term 
GDP 0.754 1.244 
Gasoline price -0.380 -0.628 
Toll 1 -0.155 -0.256 
Toll 2 -0.340 -0.562 
Toll 3 -0.488 -0.805 

 

 

6. Forecast results and uncertainty 

From the estimated demand model, we proceeded to forecast traffic flow for the 2009-

2025 period. The first step was to predict the explanatory variables in the model. GDP 

and gasoline price are predicted according to a time series model and motorway tolls 

are assumed to remain constant in real terms given that the toll revision formula is 
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linked to CPI. We applied univariate distributions for the exogenous variables given that 

no correlations were observed among them. 

 

Figure 2 displays the forecasted traffic flow for two representative motorway sections 

according to both a non-restricted model (standard partial adjustment model) and a 

capacity restricted model (modified partial adjustment model). In the first one, traffic 

flow is well below maximum capacity in the year 2025, whereas the second has 

reached capacity by approximately 2019. As can be observed, the effect of the 

capacity constraint is almost unnoticeable when traffic volume is below maximum 

capacity. However, the effect is clear for the second motorway section. The standard 

partial adjustment predicts an unrealistic level of traffic flow; whereas our suggested 

functional form forces traffic flow to remain below capacity. 

 

Figure 2. Forecasted traffic flow for two motorway sections 
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Finally, we proceeded to quantify uncertainty in the traffic forecasts. It is well known 

that there are three possible sources of error in traffic forecasting. The first one is input 

uncertainty, due to the fact that the future values of exogenous variables are unknown. 

The second one is random term uncertainty that accounts for specification errors in the 
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demand equation. The third is coefficient uncertainty, due to using parameter estimates 

instead of true values. The sum of the last two corresponds to model uncertainty. 

 

To fix ideas, let us consider the following non-linear model: 

( , , )y X             (11) 

in which the dependent variable is, in general, a non-linear function of a set of 

explanatory variables, of a set of unknown   coefficients and of a random term  . The 

forecasted values of the dependent variable are obtained by substituting the unknown 

terms for their respective estimates. 

ˆˆ ˆˆ ( , , )y X             (12) 

In case we are dealing with a deterministic simulation, ̂  is fixed in the expected value 

of  , that is zero, ̂  is the estimated value of  , and X̂  is the assigned value of the 

explanatory variables. 

In a stochastic simulation we assume that each of the elements of equation (11) follows 

a certain distribution. This is: 

ˆ

ˆ

ˆ( , )

ˆ( , )

(0, )

X
X Dist X

Dist

Dist





 









         (13) 

 

M random realizations of such distributions are generated using a bootstrap 

methodology. The model is solved for each realization of those distributions. So, M  

forecasted values of the dependent variable are obtained. The empirical distribution of 

the forecasted values enables an expected value to be computed that is the 

arithmetical average. Using the empirical distribution, for a certain confidence level, is 

also possible to compute upper and lower limits. The contribution to total uncertainty 

derived from the components could be calculated by difference. In this study all three 

types of uncertainty have been obtained through a stochastic simulation process. 
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To evaluate total forecast uncertainty we consider the distribution of ŷ  after generating 

M  realizations of , ,X   . 

To evaluate model forecast uncertainty we consider the distribution of ŷ  after 

generating M  realizations of ,  ; but holding the values of the explanatory variables 

X  fixed in X̂ . 

Finally, input uncertainty can be computed from the difference between total forecast 

uncertainty and model forecast uncertainty. 

 

Because the model is non-linear it should be noted that the empirical average of the 

stochastic simulations, in general, will not coincide with the deterministic simulation. 

Therefore, in non-linear models the deterministic simulation will offer a biased forecast. 

 

In this study the model has been solved repeatedly for 1000 random draws of various 

components. 

 

To illustrate the impact of uncertainty, we computed the 70% confidence interval for the 

traffic forecast of one of the motorway sections. As can be observed in Figure 3, model 

uncertainty (black line) is relatively low and almost constant over time. However, once 

input uncertainty is added (red line) the confidence interval widens and clearly 

increases over time. The second part of Figure 3 shows the expected value of traffic for 

a deterministic forecast (green line), model uncertainty (black line) and total uncertainty 

(red line). It can clearly be observed that the deterministic simulation will underpredict 

the average level of traffic flow.  

 

As previously mentioned and shown in equation (11), the model is non-linear and 

stochastic. Under these conditions, in general, the deterministic solution of a stochastic 
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model will offer a biased estimate of the expected traffic value. Nonetheless, the 

expected value of the traffic forecast can be approximated by using the average of a 

set of stochastic simulations. Applying this approach to all the motorway sections in the 

sample, we found that the stochastic forecast for the year 2025 was on average 8.8% 

higher than the deterministic forecast. 

 

Figure 3. Confidence intervals and expected traffic flow for one motorway 
section 
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Table 6 offers an order of magnitude of uncertainty for the same motorway section 

featured in Figure 3. The coefficient of variation for total uncertainty ranges from 0.03 in 

the first forecasted year to 0.24 in the last. In the first few years, uncertainty is low and 

mainly explained by model uncertainty. However, as time goes by, total uncertainty 

increases due to lower precision in predicting the unknown values of exogenous 

variables. 
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Table 6. Coefficient of variation for total uncertainty and 
% explained by model and input 

 CV Model Input 
2009 0.032 80.3% 19.7% 
2010 0.059 69.8% 30.2% 
2011 0.082 59.3% 40.7% 
2012 0.103 51.7% 48.3% 
2013 0.121 47.2% 52.8% 
2014 0.136 42.7% 57.3% 
2015 0.150 38.9% 61.1% 
2016 0.163 36.4% 63.6% 
2017 0.174 34.8% 65.2% 
2018 0.183 33.3% 66.7% 
2019 0.191 31.8% 68.2% 
2020 0.200 30.4% 69.6% 
2021 0.209 29.1% 70.9% 
2022 0.217 28.2% 71.8% 
2023 0.224 27.1% 72.9% 
2024 0.232 26.1% 73.9% 
2025 0.242 25.3% 74.7% 

 

7. Uncertainty effects on forecasting forgone revenue 

In recent year, tolls on certain motorway sections have been removed before the 

concession expires. In these cases, the government has had to compensate the private 

motorway concessionaire for the revenue forgone up to the end of the concession 

period. We selected one motorway section in the sample in order to compute the effect 

of uncertainty on the revenue to be forgone. The selected section was 20 kilometres in 

length with an average traffic value of around 12800 vehicles per day. We assumed 

that the concession period would expire in 2025.  

 

The annual revenue was obtained by multiplying the predicted traffic by the average toll 

paid by 365 days a year5. This value is computed for each forecasted year from 2009 

to 2025 and for each of the 1000 random draws. Next, we worked out the results by 

calculating the Net Present Value (NPV) of the revenue to be forgone along these 17 

years at a discounting rate of 5%.   

                                                 
5 To obtain the compensation to be paid to the concessionaire, we should deduct from the revenue to be 
forgone any taxes or other costs related to toll operation.  
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Finally, we analysed the empirical distribution of the NPV, which enabled us to 

calculate the mean and the confidence intervals for different significance levels. For the 

selected motorway section, the expected NPV of revenue is 122,897,992 euros. The 

minimum and maximum values for the confidence interval at 70% significance are 

106,595,480 euros and 137,934,400 euros; when we compute the interval at 95% the 

figures are 93,952,016 euros and 154,969,120 euros. In the first case, the difference 

between the two extremes is 29%, whereas in the second it rises to 65%.  

 

Figure 4 presents the empirical distribution of the NPV.  
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Figure 4. Distribution of the NPV of revenues forgone

 

Quantifying uncertainty provides evidence that using point estimates to assess 

investments or public policies can lead to errors in the decision-making process. In this 

example, the negotiation process between government and concessionaire should 

include the probabilities associated with the different forecasted revenue values.  

 

8. Conclusions 
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This article proposes a new methodology for incorporating capacity constraints into 

long-term traffic predictions. Doubtless, a complete model that simultaneously 

considers traffic demand and traffic supply would be the best solution. However, 

frequently, not enough data is available to construct the supply side of the model.  In 

such cases, our approach makes it possible to carry out long-term forecasts that verify 

the capacity constraints of the motorway without having to introduce an arbitrary 

functional form. This is achieved by specifying a dynamic model in which the speed of 

adjustment is related to the ratio between the actual traffic flow and the maximum 

capacity of the motorway. 

 

This paper also outlines the importance of developing stochastic simulations based on 

bootstrapping methodologies in order to obtain confidence intervals for the forecast. In 

a traffic demand model, the uncertainty of the forecast depends on the uncertainty of 

the estimated coefficients and on the uncertainty coming from the random disturbance 

term of the model. It also depends on uncertainty about the future values of the 

explanatory variables. In general, the latter type of uncertainty is the most important. By 

integrating the three types of uncertainty through the stochastic simulation process, it is 

possible to obtain confidence intervals for future traffic volumes. In the case of toll 

motorways, those traffic intervals enable computing confidence intervals for the present 

value of the future toll revenue. 

 

Finally, for non-linear models this paper calls attention to the inadequacy of the 

deterministic simulation to forecast future traffic volumes. When dealing with non-linear 

models, the expected future traffic value can be approximated by averaging the 

different realizations of the variable using stochastic simulations. As an illustration, this 

paper shows that the deterministic simulation at the end of the forecasting period 

underpredicts expected traffic flow across all motorway sections in the sample by on 

average 9% with a maximum difference of 12%. 
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Appendix 1. Generalisation to s lags 

 

The dynamic partial adjustment model can be easily generalised to account for s lags 

as follows: 

 

The static equilibrium equation takes the standard form: 

*ln ·lnit itY X            (1.1) 

whereas for the dynamic part we assume that the adjustment process is a weighted 

function of s lags: 

* * *
1 1 2 2

1

ln · ·(ln ln ) ·(ln ln )··· · · · · · ·(ln ln )

1

it it it it it it s it it s it

s

i
i

Y w Y Y w Y Y w Y Y

w

   



         


(1.2) 

That is, the correction of the disequilibrium between the actual value and the optimal or 

desired value of the dependent variable at period t depends on the disequilibrium in the 

previous periods.   

 

Substituting the expression for Y* defined in (1.1) into equation (1.2), we obtain: 

 
 

1 1 2 2

1 1 2 2 3 3 1 1

1 1 2 2

· ·( · ) ·( · )· ·· · ·· ·· ·( · )

· · · · · · ·· · ·· ·
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it i it it it it s it s it s it
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Y w X Y w X Y w X Y

X w Y w Y w Y w Y Y

X w Y w Y

       

   
     

  

      

 

           

        

    1 1· · ·it s it s it it s itw Y Y       
 

Given that 

0
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0
· ·i it

it it
i

Y Y

Y
    
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and substituting: 

 

1 1 2 2

1 1

ln · · · · ·ln · · ·ln · · ·ln

······ · · ·ln · ·ln
it it i it it it it it it

it s it s it it s it

Y X w Y w Y

w Y Y
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That is: 
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Appendix 2. Demand elasticity with a capacity constraint 

 

This appendix shows how demand elasticity depends on the level of traffic when a 

constraint on infrastructure capacity is in force. 

 

For simplicity, we assume that the modified partial adjustment model is: 

0 1 1

ln
·ln ·lnit

it it
it

Y
X Y  

 


    

It can be rewritten as: 

0 1 1ln ·ln (1 )·lnit it it it it itY X Y              

* * *
0 1 1ln ·ln ·lnit it it it it itY X Y       

where  

*
kit it k       * (1 )it it      

 

For a given level of traffic flow, τ, we have: 

* * *
0 1 1ln ·ln ·lnit it itY X Y       

*
k k       * (1 )      

 

Taking into account the dynamic structure of the model and following a recursive 

process of substitution, the elasticity in period J will be: 
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