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Abstract: 
 

Understanding the characteristics of incidents can help decision-makers select better 
operational strategies. Using roadway inventory and traffic incident data, provided by the 
Hampton Roads Traffic Operations Center (TOC), traffic incidents were analyzed. Using 
the data, a practical online prediction tool (DSD-Duration-Secondary incident-Delay) was 
developed based on statistical models for incident duration, secondary incident 
occurrence, and associated delays. The tool can dynamically predict the duration of an 
incident (given that one has occurred), the chances of secondary incidents, and associated 
delays in real-time. The tool relies on available inputs about the roadway conditions, and 
incident information, e.g., location, time of day, and weather conditions. The tool can aid 
incident management by generating information about primary and secondary incidents 
and help effectively assign incident management resources. 
 

INTRODUCTION 
Traffic incidents are estimated to cause between 30 to 50 percent of the congestion 
problems on urban roadways (Skabardonis et al. 1995, Ozbay 1999, Kwon et al. 2006). 
They are associated with safety, energy, and environmental problems, such as blocking 
lanes or a shoulder, causing reduction of roadway capacity and creating congestion. 
Incident-induced queues can increase the potential for additional incidents, referred to as 
secondary incidents. Such incidents increase the time needed to return the traffic to 
normal flow.  Based on past literatures, secondary incidents can occur in 3 to 20 percent 
of the cases after an initial incident (Moore et al. 2004, Hirunyanitiwattana and Mattingly 
2006). While some secondary incidents can be relatively minor (e.g., fender benders or 



vehicles running out of fuel), others can be more severe in terms of their congestion and 
safety impacts. 
        The primary and secondary incidents impose substantial travel uncertainty and 
associated costs on highway users. However, there is no practical tool to help traffic 
management centers predict how long the incident will last given the incident has 
occurred, the chances of secondary incident and the traffic delay caused by the incident . 
The main objective of this paper is to develop a methodology to dynamically predict 
incident duration, probability of secondary incident occurrence and associated delay.  
 

LITERATURE REVIEW AND SYNTHESIS 

Incident durations: associations with spatial, temporal, and operational factors 
In general, the incident duration is associated with incident characteristics, temporal 
characteristics, environmental effects, geographic information, and operational factors.  
Variables that are positively associated with longer incident durations are: longer 
response times, accidents (as opposed to other types of incidents), lane blockage, adverse 
weather, more heavy vehicles involved in an incident (Khattak et al. 1995; Ozbay and 
Kachroo, 1999; Kim and Gang-Len Chang, 2008), injury or fatality, occurrence during 
peak hour (Nam and Mannering 1998; Ozbay and Kachroo, 1999; Kim and Gang-Len 
Chang, 2008), incident located farther away from a traffic operations center (partly due to 
longer response times), and more vehicles responding from various agencies (Kim and 
Gang-Len Chang, 2008).  The research by Khattak et al. (2009) explored factors 
associated with longer incident durations and secondary incident occurrence. Some of the 
key factors associated with longer incident durations were accidents (as opposed to other 
types of incidents), freeway facility damage, more vehicles involved in incident, severe 
injuries, when incident affects the left shoulder or ramp, and longer lane closure times.  

Secondary incident definition and associated factors 
Raub (1997) defined secondary crashes using fixed temporal and spatial parameters. He 
assumed that secondary crashes are those occurring within 15 minutes of the clearance of 
an initial accident and within a distance of less than 1 mile. More than 15% of the crashes 
reported by police may be secondary in nature according to this study.  Karlaftis et al. 
(1999) also adopted this fixed threshold to identify secondary crashes and found that 
more than 15% of all crashes in Indiana (Borman, N=741 over 5 years) might have 
resulted from an earlier incident. In more recent research, Chang et al. (2003) considered 
rubbernecking effects when identifying secondary incident and 6.8% of all incidents with 
lane blockage are identified as secondary incidents. Moore et al. (2004) extended the 
boundary to two hours and two miles, with conclusion that secondary accidents are 
considerably rarer events with lower frequencies (secondary crashes per primary crash 
ranged between 0.015 and 0.030). Hirunyanitiwattana et al. (2006) defined secondary 
crashes as any crash that results from the non-recurring congestion or emergency 
response associated with a primary crash, and he used 60minutes as temporal boundary, 
same direction no more than two miles upstream as spatial boundary. Zhan et al. (2008) 
used two miles upstream of the primary incident location (same direction) as spatial 
boundary and 15 minutes as temporal boundary. 7.9% were identified as primary 
incidents in their study. 



        All of above methodologies of classifying secondary accidents are using the static 
thresholds. Sun (2005, 2007) proposed an improved dynamic threshold methodology to 
extract secondary accidents from an incident fusion database. The dynamic spatial 
threshold is derived from a master incident progression curve. The analysis shows that 
the static and dynamic methods can differ by over 30% in terms of identifying secondary 
incidents. Also, Zhan et al. (2009) developed a method to identify secondary incidents 
based on estimating the maximum queue length and the associated queue recovery time 
for incidents with lane blockages. 4.98% were identified as primary incidents, which are 
substantially lower than the 7.94% incidents identified by the static method in their 
previous study (Zhan, 2008). 

Studies have found that various factors are associated with the occurrence of a 
secondary incident. The peak hour and weekdays are associated with more secondary 
incidents, and the clearance time is also associated with secondary incidents occurrence 
(Raub, 1997).  In the study by Karlaftis et al. (1999), clearance time, season, vehicle type 
(car, semi) and lateral location are the most significant factors for higher secondary 
incident likelihood.  Odds of a secondary crash increase by 2.8% for each minute the 
primary incident is not cleared. Chang (2003) stated that the likelihood of having 
secondary incidents increases consistently with the primary incident duration and 
congestion level based on statistical data. Hirunyanitiwattana (2006) found that 
secondary crashes occur more often during rush hour and rear end collision is the 
predominant secondary collision type, which accounts for about two thirds of all 
secondary crashes. He also found that the typical secondary crash on the State of 
California Highway System is a rear-end, property damage only crash on a greater than a 
four lane urban freeway that occurs during one of the peak periods and is caused by 
excessive speed. Zhan et al. (2008) identified five major factors influencing secondary 
incidents, which include the number of involved vehicles (in the primary incident), the 
number of lanes, the duration of primary incident, the time of day, and the primary 
vehicle rolling over. In a later paper, Zhan et al. (2009) found four factors were 
associated with likelihood of secondary crashes: primary incident type, primary incident 
lane blockage duration, time of day, and whether the incident occurred on northbound I-
95. Khattak et al. (2009) demonstrated that primary incident duration and secondary 
incident occurrence are statistically interdependent and the key factors associated with 
higher occurrence of secondary incidents included longer primary incident duration, 
primary incident is a crash and occurs during peak hours, with more vehicles involved, 
and on higher AADT roadways. 

Incident-induced delays 
Generally accepted methods for delay calculations are: deterministic queuing (Moskowiz 
and Newman, 1963; Morales, 1987) and shock-wave analysis (Lighthill and Whitham, 
1955; Richards, 1956 ,Wirashinghe ,1978,). Many studies calculated delays using either 
of these two methods. To check the interrelationship and consistency of these two 
models, Chow (1974), Rakha and Zhang (2005) conducted their investigations and both 
studies found the results from these methods to be identical if a unique flow-density 
relationship is applied in the shock-wave analysis. However, both methods are limited by 
static demands, which is unrealistic under peak hour or flow fluctuation situations. 
Khattak et al. (2004) used the FREEVAL model, which faithfully replicates the freeway 
facility methodology in Chapter 22 of the 2000 Highway Capacity Manual (HCM 2000) 



to estimate incident induced delay for prioritizing and expanding freeway safety patrols 
service. But the above-mentioned methods do not consider dynamic route diversion that 
would be expected in practice, Al-Deek et al. (1995) proposed a loop-detector based 
method to estimate single incident or multiple incident induced delays on freeways by 
capturing traffic demand variation due to diversion of traffic. With the development of 
more sophisticated car-following and lane change models, microscopic simulation is a 
tool that can be easily used to estimate the incident-induced delays.  

 Few studies have examined the delay relating to the primary and secondary incident 
pairs. Only one recent study (Sun and Chilukuri 2005) uses accident data from Missouri, 
and focuses on analyzing the safety impacts. For incidents of various sizes, clearance 
times can have a relatively wide range (from a few minutes to several hours), depending 
on the incident type, number of vehicles involved, time of day, and response by various 
agencies.  Zhang et al. (2009, 2010) used simulation methods showing that total delays 
substantially increase as the time gaps between primary and secondary incidents increase; 
and for those secondary incidents that end after their associated primary incidents, 
increasing the distance between the locations of primary and secondary incidents lessens 
the delays. 

DATA USED 
The incident database was provided by Hampton Roads Traffic Operations Center 
(HRTOC), located in Virginia Beach, VA. The data were vehicular based, covering the 
period from January 2004 to June 2007. For analysis, they were converted to incident-
based records, i.e. incidents involving multiple vehicles were aggregated into only one 
record with a unique incident ID, and a new variable, the number of incident involved 
vehicles, was created. The HRTOC data are based primarily on Safety Service Patrol 
(SSP) records.  SSP offer free assistance to motorists experiencing problems on freeways. 
They cover more than 100 miles, from Newport News to Virginia Beach, 24 hours a day, 
and 7 days a week. There are two main limitations of the HRTOC incident database: first, 
the exact positions of these archived incidents are not provided. The only available 
location information is the code of road segment (average 1 mile in length in HR) where the 
incident occurred. This creates difficulties in the secondary incident identification process 
since these segments are typically 1 mile in length. Therefore, the location of an incident 
was assigned randomly within the road segment in delay prediction. Secondly, the 
incident duration reported in the database is when the TOC staff opened/closed an 
“incident window”.  This is not the “true” incident duration since SSPs typically need 
response time before arriving on an incident scene. We recognize that the incident 
duration data may have measurement error in the direction of short incidents since 
incidents may not be detected for some time after they occur and it may take 2 to 3 
minutes on average (of course longer in some cases) to detect an incident, based on 
communication with incident managers at the HRTOC. Only incidents that occurred on 
freeways are considered; five major interstates freeway are considered: I-64, I-264, I-464, 
I-564 and I-664.  



METHODOLOGY 

Incident Duration prediction 

We estimate Ordinary Least Squares (OLS) regression model for incident duration, using 
detection sources, vehicles count, etc. as predictors.  

Incident Duration = β0 + β1 (TOD) + β2 (Weather) + β3 (Location) + β4 (AADT) + β5 
(Detection) + β6 (Vehicles) + β7 (Type) + β8 (Laneclose) + β9 (EMS) + β10 (Rt_shoulder) 
+ β11(Ramp) + β12(Lf_shoulder)  + ε  

Where: 
Duration = Incident duration (minutes) 
TOD = Time of day (1= Peak, 0 = Off-peak) 
Weather = Bad weather or not (1= Bad, 0 otherwise) 
Location= incident location (categorical variable) 
AADT = Average annual daily traffic (per 1000 vehicles)  
Detection = Incident detection source (categorical variable) 
Vehicles = Number of vehicles involved  
Type = Incident type (categorical variable) 
Laceclose = Whether lane closed or not (1=Yes. 0=No) 
EMS = Emergency management service responded or not (1=Yes. 0=No)  
Rt_shoulder = Right shoulder affected (1= Yes, 0 = No)  
Ramp = Ramp affected (1= Yes, 0 = No) 
Lf_shoulder = Left shoulder affected (1= Yes, 0 = No)  
ε = the error term.   

The prediction of incident duration can facilitate incident management, but most 
incident duration models have limited operational value since they require knowledge 
about all incident variables at the time of prediction. However, in most real-time 
situations, incident information such as the variables in the equation mentioned above 
cannot be obtained at the same time, instead, information is acquired sequentially. This 
makes it is difficult to reflect the time dimension in a model (Khattak, 1995), thus it is 
difficult to make dynamic predictions. Furthermore, the independent variables requested 
for the model are not always available. For instance, for a certain incident with few 
available details, operations managers may only know the weather conditions, incident 
location, time of day and detection source. An incident duration prediction model can be 
used, based on known incident information available at this time. But when more 
information about the incident becomes available, e.g., the incident type (accident or 
disabled, etc), and multiple vehicles involved, the incident duration needs to be updated. 
In some situations, the incident type, number of vehicles involved, etc., may be known at 
the outset.  Therefore, an ideal dynamic prediction model must be capable of accepting 
various combinations of predictors and allow users to update the predictions when more 
variables become available.   
 



 

Figure 1: Methodology of Real-time Incident Duration Prediction  

Dynamic incident duration prediction methodology is shown in Figure 1. To 
develop such operational models (for use in TOCs) which can be adaptive to different 
temporal and variable combinations, we used statistical techniques to estimate a set of 
models using different variable combinations. In this tool, there are five temporal stages 
(counting past the start of the incident, e.g., 10 or more minutes since the incident began). 
These include the initial incident occurrence stage, longer than 10 minutes, longer than 
20 minutes, longer than 30 minutes, and longer than 45 minutes. For each stage, there are 
28 models to deal with different variable combinations. The variable combinations are 
shown in Table 1. The tool uses an initial model from the beginning based on the 
available variables at that time. Within each temporal stage, if more information arrives, 
then the user can insert it and update the duration prediction.  Even without additional 
information, the user can update the prediction as time goes by since the tool will 
automatically switch from the initial (or previous) model to the next stage model. For 
example, the model (> 10 minutes) is based on the historical incident data which excludes 
those incidents whose durations are less than 10 minutes.  

Dynamic incident duration models predict incident duration more accurately since 
different time stages will support successively more information as an incident 
progresses. The methodology accounts for the dynamic nature of the information 
acquisition process at a TOC. Both Ordinary Least Squares and truncated regression 
models were tested. Truncated regression models were found to under-predict durations. 
Therefore, OLS models were embedded in the module. In this study, the dynamic models 
are based on data from the Hampton Roads area for 2006.  

Secondary incident probability prediction 

Secondary incidents were identified based their temporal and spatial proximity to 
primary incidents. If an incident occurs within the duration of the primary incident and 
within the queue created by it, then it is categorized as secondary incident (Khattak et al 
2010). Secondary incidents can occur in the same or opposite directions, and a primary 
incident can be associated with multiple secondary incidents. A new variable was created 
in the incident dataset, identifying if the incident was a secondary or not.   

Duration Prediction Module 

Determine the temporal Stage 
based on the update time and 
incident start time 

Determine model based on the 
variable available 

Initial model 

>10 minutes model 

>20 minutes model 

>30 minutes model 

>45 minutes model

28 different variable combinations 



Given all or partial independent variables (incident characteristics such as type, 
lane blockage, truck involved, road geometry and traffic information), the possibility of 
secondary incident is estimated from the binary Logit model (Khattak et al. 2010). The 
dynamic model provides the probability of a secondary incident occurring when a limited 
set of variables are available. Similarly, 28 models with the same data structure as in the 
Table 1 are used for secondary incident occurrence prediction.   



Table 1 Variable combination for incident duration model 
  Cons.  time  Weather  Location  AADT  Detection souce  # of veh 

involve 
Incident type  Lane 

close 
EMS  Lane affected 

   _cons  tod  Bad 
weather 

I264  I464  I564  I664  aadt  aadt_dy  cctv  vsp_radio  phone  other  vehicles  Dis.  Acci.  Aband.  laneclose  ems  Right 
shoulder 

ramp  Left 
shoulder 

1               
2                                             
3                                             
4               
5                                             
6                                             
7               
8               
9                                             
10               
11               
12                                             
13                                             
14               
15                                             
16                                             
17               
18               
19                                             
20                                             
21               
22                                             
23                                             
24               
25                                             
26                                             
27               
28               

 

 Mandatory input       Optional input     Note: Cells with white color means that the corresponding variable is not included  



Dynamic Incident delay prediction (Queuing model) 

The main inputs to the dynamic incident delay prediction model are: 1) incident severity 
which is directly related to incident reduced capacity, 2) incident duration, which affects 
the length of time it takes to clear the incident, 3) arrival rate (traffic demand) and road 
geometry information such as the number of lanes. The predictions include: clearance 
time, total delay, and maximum queue length. Currently, a simple D/D/1 (deterministic 
queuing) model has been implemented in the tool.   

The queue length at a given time and the remaining total delays on a specified freeway 
segment are illustrated in Figure 2. Traffic arrives at the incident location according to curve

)(tAc . The departure curve )(tDc  shows the departure from the incident bottleneck. The 

departure flow rate is initially *μ , the reduced capacity of the bottleneck and then after the 
incident is cleared at time cT , is the restored capacity, u . The variables nn tt ,1−   represent the (n-
1) th and nth time intervals from the incident start (the time interval usually is 15 minutes, 
representing the minimum period when a traffic arrival rate remains steady). The traffic arrival 
curve consists of a number of small time-dependent arrival rates at small time intervals.  

The current queue length for a given time it  can be expressed as: 

      ( ) ( ) ( )( )*
11 μλ −−+= −− nnini tttqtq          for cin Ttt <− ,1           

      ( ) ( ) ( )( )μλ −−+= −− nnini tttqtq 11           for cin Ttt >− ,1           

As long as all of the queue lengths for eni ttt L,,  are calculated, the remaining total delay 

for a given time it   is the shaded area between it  and eT , (in the figure) which is the summation 

of small trapeziums between arrival and departure curve right after it . The areas of the first three 
trapeziums can be written as:   

        ( ) ( )( ) ( )inin tttqtqA −×−=
2
1

1     

        
( ) ( )( ) ( )nnnn tttqtqA −×−= ++ 112 2

1
 

        
( ) ( )( ) ( )12123 2

1
++++ −×−= nnnn tttqtqA

 

         L   

Thus the remaining total delay at it  = 
∑

=1k
kA

 

  



 

 

 

 

 

 

 

 

Figure 2: Illustration of the Queue Length and Remaining Total Delay at Time ti.  

ONLINE DSD PREDICTION TOOL  
The online DSD (Duration-Secondary incident-Delay) prediction tool includes three 
major components: incident duration prediction module, secondary incident probability 
prediction module, and delay (and queue length) predication module. Microsoft Visual 
Basic for Applications (VBA) in Excel was used to develop the tool. The framework of 
the tool is shown in Figure 3. Given that an incident has occurred, the key inputs of the 
tool include incident information such as start time, weather conditions, and incident 
location; additional inputs include type of incident (accident, disabled, abandoned, other), 
lanes closed, number of vehicles involved, detection sources, whether EMS (Emergency 
Medical Service) present, and the start and end time of lane closure. The key outputs 
include predicted incident duration, the chances of secondary incident and associated 
delays caused by the incident. The tool output window is shown in Figure 4. 
 

 

 

                              

 

 

 

 

Figure 3 Illustration of prediction modules 
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Incident characteristics 
Date, start time weather  
Incident type  
Number vehicles involved, 
Lanes affected … 

Segment information 
Route and direction 
Segment length 
The number of lane 
… 

Traffic information 
Average traffic daily 
distribution curve 
Traffic composition 
… 

 AADT  Incident Reduced Capacity  Segment Capacity  Traffic Demand

Incident Duration Prediction Chance of Secondary Incidents 

Queue length and remaining total delay Prediction 



 
The tool shows a duration prediction when the user presses the “update” button, 

which will start the duration prediction (shown in Figure 4). The remaining duration 
based on the current time, will be displayed in the predicted incident duration window. 
The tool will keep counting down the remaining duration until the next “update” is 
requested. This is typically when new information about the incident arrives.  

 

Figure 4 Predicted Results Output Display 

Further statistics summary of the prediction results include four different graphs 
generated by the program (shown in Figure 5), which are respectively the average 
incident duration for each route, the predicted remaining total delay by different routes, 
the average queue lengths by different routes  and the average probability of secondary 
incident in each routes. These graphs provide quantitative information to traffic managers 
about incident impacts based on existing conditions, and support their operational 
decisions regarding assigning response vehicles and other resources efficiently.  



 

Figure 5(a) Predicted Incident Durations (b) Predicted Remaining Total Delay  

 

(c) Predicted Queue Lengths at Choke Points (d) Predicted Secondary Incidents Probability 
Note: These graphs are for demonstration only and do not reflect the actual conditions at these choke point 
locations. 

SUMMARY OF FINDINGS 

Based on freeway incident and roadway inventory data in Hampton Roads Area, the 
research team estimated incident duration and secondary incident occurrence models. The 
results were translated into an online tool that can be used in any traffic operations center 
to instantaneously predict important performance measures that include incident 
durations, chances of secondary incident occurrence, and delays.  Specifically, the online 
DSD prediction tool can dynamically predict incident duration, the probability of 
secondary incident and the remaining delay based on the known information of the 
observed incident, which can aid in monitoring the frequency and durations of secondary 
incidents on freeways at the planning level. In an operational real-time setting, they can 
help develop effective incident management strategies to mitigate the impacts of 
secondary incidents. Although the tool is currently calibrated using the Hampton Roads 
incident data, the methodology is transferable to other regions. 
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