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ABSTRACT 

The Inventory-Routing Problem (IRP) involves a central warehouse, a fleet of trucks with 
finite capacity, a set of customers, and a known storage capacity. The objective is to 
determine when to service each customer, as well as what route each truck should take, with 
the least expense. IRP is a NP-hard problem this means that searching for solutions can take 
a very long time. A three-phase strategy is used to solve the problem. In the idealization of 
the strategy, the need to define algorithms that would solve more manageable problems in 
an easy and implementable way was every present. Thus in the second phase we uses 
Separable Cross Decomposition [1] to solve an Allocation-Distribution Problem, and a 
algorithm is obtained that produces a solution for two transport subproblems and their 
solution algorithms have a low order of complexity, O(n3 ). And the result is a very efficient 
algorithm for large cases of the IRP. 
 
Keywords: Cross Decomposition, Inventory, Routing. 
 

INTRODUCTION 

Many private and public organizations have realized that goods or services can be more 
valuable for a customer if there is good logistics management. The important concept of 
customer value can be created through the availability of the product in place and time by 
allocating orders, among other logistics services as part of the supply chain management. 
 

A combination of elements that can create logistic value is when the supplier manage 
inventory, because he saves on distribution costs with the possibility of improving the 
coordination of deliveries, while customers do not have to use resources on inventory 
management, since the transportation of the products and inventory management is the most 
expensive aspect of supply chains.  

 
In spite of this, this combination of elements has not been more widely applied because the 
fact that it is extremely complicated to device a distribution strategy to minimize transport and 
inventory costs. This is called the Inventory Routing Problem (IRP). These kinds of problems 
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are called NP-hard because the optimal solution in a reasonable running time is almost 
impossible. 
 
This paper deals with the distribution problem in the IRP and proposes a strategy to resolve 
this problem, by a solution of two transportation subproblems.  

LITERATURE REVIEW 

Over time different methods have been developed to deal with this problem of distribution, 
though in distinct scenarios or formulations. 
 
Baita et al. [2] developed a classification of solution methods into two main types: 1. 
frequency domain methods, and 2. time domain methods. In the former the decision 
variables are the frequencies of replenishment or time between deliveries. In the latter, the 
delivery schedule is decided with discrete time models and the amounts and routes are 
decided, using fixed time intervals. Time domain methods are the focus of the present study. 
 
The time domain methods are used in a number of papers by Dror and Ball [5], Dror and 
Levy [6], Dror and Trudeau [7], and Trudeau and Dror [8]. In each time interval only 
customers who have reached their inventory safety level are attended to. Just one product 
should be delivered from one warehouse to several customers, whose demands, different in 
each time period, are deterministic in [5] and [6]; stochastic in [8]; stochastic or deterministic 
in [7]. 
 

Dror and Ball [5] proposed a mixed integer program (MIP) model where the effect of current 

decisions on subsequent periods is taken into account as a factor of penalties and 

incentives. Trudeau and Dror [8] developed some heuristics which use linear MIP submodels 

to solve the problem. On the basis of these ideas, Dror and Trudeau [7] present a 

computerized distribution system for one product (heating oil), evaluated using real data for 

more than 2000 customers. 

 

Chandra and Fisher [9] follow two methods: In the first one a production planning and routing 

vehicle problem are solved separately, and in the second one the two problems are 

coordinated within one model. Some computational experiments show that such coordination 

can reduce costs. 

 

Hwang [10] demonstrates an interesting application for food distribution to deal with the 

famine in North Korea that independently solves the problems of inventory replenishment, 

distribution to sectors and routing scheduling using modified heuristics (Clarke and Wright 

and Sweep).  

 

Another interesting application, by Campbell et al. [11], demonstrates a solution method that 
individually solves the problems of customer attention and route scheduling, for a period of 
one day, using a combination of the GRASP heuristic and integer programming, for a real 
application of industrial gas distribution for the company PRAXAIR. 
 
Ouimet [12] applies the well-known metaheuristic Taboo Search to the IRP. Taboo Search 
has demonstrated very good results for VRP [13]. The application for randomly generated 
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items showed efficiency for multiple-customer problems and fleets of different sizes. 
However, it was limited in respect of the length of the planning period. 
 
The time domain method is ideal for situations where the conditions can vary significantly in 
time. However, this flexibility is counteracted by the need to recalculate different solutions in 
each time interval. 

DECOMPOSITION TECHNIQUES 

As part of the time domain methods, the Decomposition Technique has given good results. 
This technique, which is used to solve large-scale problems as well as problems of linear 
programming with special structure, is characterized by a decomposition of the original 
system into subsystems, each one with a minor or separate subproblem. The subproblems 
are considered manageable because of their size, unlike the case of the complete problem 
that exceeds the available computer capacity.  
 
The principles of decomposition, including the primal and dual forms are known as Benders 
Decomposition and Lagrangean Decomposition (Dantzig-Wolfe), respectively. These 
techniques make it possible to take advantage of the special structure of the problem by 
solving a sequence of simpler problems. Thus, the primal or dual substructure of the problem 
are exploited. In fact, such strategies are considered dual for each other and in each one of 
them the cycling occurs between the master problem and the subproblem. In particular, the 
decomposition techniques were proposed and used to solve the IRP, by authors such as 
Federgruen and Zipkin [1]; Chien, Balakrishnan and Wong [14] and Christiansen [15]. 
 
However, the major disadvantage in using only one of these techniques is the need to solve 
in all iterations a master problem, which is highly complex in a mixed-integer problem or 
large linear problem. To avoid this, Van Roy [16] proposes a new decomposition method 
called Cross Decomposition.  
 
This strategy is based on the relationship between Benders’ and Dantzig-Wolfe’s principles 
of decomposition. In fact, it is possible to establish that the Lagrangean dual subproblem is a 
relaxed master problem in the Benders’ decomposition and, at the same time, Benders’ 
subproblem can be considered a relaxed master problem for the dual decomposition. It is 
also known that both methods are dual pairs, i.e., if Benders’ algorithm is applied to an LP 
problem, it coincides with the Dantzig-Wolfe decomposition algorithm applied to the same LP 
problem [17]. 

 
The basic idea of Cross Decomposition is to use a “ping pong” method for both subproblems 
in a single solution procedure, exploiting the fact that in some cases both subproblems are 
simple to solve. Van Roy [16], applied Cross Decomposition to a set of standard MIP test 
problems and obtained a 20% (average) reduction in solution time compared to the best 
algorithms known at the time. 

DEFINITION OF THE PROBLEM  

A single product (boxes, containers) must be distributed from a warehouse to several 
customers in different geographic locations. The geographic position of the customers and 
the warehouse is known, as well as the distances between the warehouse and the 
customers and the distances between all the customers.  
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The data cost (storage and organization) are used to characterize the customers. It is 
assumed that every customer’s demand for the product is known and constant in time. The 
deliveries begin at the start of every day, using vehicles characterized by a given capacity, 
fixed costs and variable costs in regards to covered distance. Time is the main decision for 
the problem as it defines fixed time periods of one day. Moreover, it is assumed that the 
customer’s daily demand does not exceed their storage capacity.  
 
There is no limitation in the central warehouse’s supplying capacity. A mixed fleet of vehicles 
is available to take care of the customers in the time period. However, there are limitations in 
the capacity of the vehicles and their size is a decision variable that will be involved in the 
optimization process. 
 
The aim purpose is to serve the customers’ demand at the lowest cost, incorporate 
inventory-related costs (storage costs, supply costs and distribution costs), including fixed 
costs plus the costs involved in the distanced covered by the vehicles used. 
 
So, the problem is to find the defined supply and distribution strategies, based on the 
answers to the four following questions that at the start of each day: 
 

1. Which customers must be supplied? 
2. What vehicle will be used to supply each customer? 
3. What volume of the product is to be delivered to the customers when visited? 
4. What delivery route will each vehicle take? 

 

 PROPOSED STRATEGY  
 
The IRP is NP-hard for a context of NP-completeness, however, as the vehicle-routing 
component of the problem now includes inventory restrictions, is NP-hard [12], and 
generalizes the TSP [18]. The fact is, all the non-trivial vehicle-routing problems are NP-hard 
[19], so it is unlikely that an algorithm of polinomial time can obtain the optimal solution. 
Considering the previous, the revision of existing literature is developed with a three-phase 
strategy, which responds to the four questions for the solution of the treated IRP, these 
phases are presented as follows: 
 

Phase I answers the question:  which customers must be supplied that day?  
 
Applying an Optional Replenishment System (ORS) will force the review of the inventory 
level and replenishment orders at a fixed time frequency if the level has fallen below a certain 
amount. Thus, this is basically a fixed time period model. A demand level for day D  is 
forecast from historical data from daily demand, as supplying stock involves time and 
economic resources, a minimum order size Q  can be established. So, a good option for 

calculating Q  is to use the Economic Order Quantity (EOQ) equation. Therefore, when the 

product is checked, the inventory position I  is subtracted from the required level of 

restocking D  and the result is calledq . 

 
Formally establishing,  

IDq   

where 
 

D  : level of forecast demand 

I   : current inventory level 
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q   : shortfall for achieving the maximum level of inventory 

Q  :  amount of the acceptable minimum order 

 

And the rule is that only if QI  , q  is sent; if  0q  the customer is not served. Using an 

ORS for each customer, depending on their specific circumstances, the supplier decides if 
they should be supplied on that day or wait for the next review. We will obtain a subgroup of 
customers who will be visited that day.  
 

The information required during this phase consists in the specific qID ,,  and Q  for each 

customer depending on their demand, capacity, inventory levels, restocking costs, shortfall 
and storage. Once the question is answered, you go on to the next phase. 
 

Phase II responds to the questions: 2. what vehicle will be used to supply each customer? 
and 3. What volume of the product is to be delivered to the customers when visited?.  
 
These questions are answered by applying a decomposition technique called Separable 
Cross Decomposition [20], to a Facility Location (FL) problem that, by analogy, assumes that 
the services are vehicles that will be delivered to the customers. The use of Separable Cross 
Decomposition contains a result that is fundamental to the study of the problem’s structure, 
solving a problem that uses binary variables to allocate vehicles to customers. 
 
Therefore, the problem of Allocation of Vehicles and Distribution (AVD) with the following 
structure: 
 

 
 

where  
 
m   : number of available vehicles 

n   : number of customers  

jd    : customer’s demand j  

if   : fixed cost of the route i  
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ia    : vehicle capacity i  

ijc      : cost of distribution to customer j vehicle i , the cost is determined as a function of 

distance 

ijx    : fraction of the customer’s total demand that has been supplied j using vehicle i  

iy    = 1 if vehicle i is used, 0 if not. 

 
The restriction (1) ensures that the demand is totally supplied, (2) establishes distribution 
only with active vehicles, (3) considers the use of enough vehicles to attend to the demand 
and (4) avoids exceeding the capacity of the vehicle. 
 
There are some difficulties in optimizing these types of problem because of their size and 
combinatorial structure. In fact, logistic-type problems such as the IRP and AVD are usually 
very big considering their large number of variables and restrictions. The AVD is very 
complicated, since the single basic decision to use or not a vehicle becomes a problem with 
a complex combinatorial structure.  
 
This problem, in particular, has two types of inherent decisions: choosing the vehicles to be 
used and the best way of distributing the supply to the customers. This makes decomposition 
techniques an attractive option for dealing with them, if the discrete decision of choosing the 
vehicle has been done, the next distribution problem is, in general, easier to solve.  
 
Even if it is not possible to take advantage of this characteristic in the design of solution 
algorithms, decomposition can still be a very attractive option. If the AVD problem wasn’t 
affected by the discrete decision of choosing services and was formulated as a linear 
programming problem (relaxing the integrality restrictions for the problem’s variables), it 
would still be very big and difficult to solve. Fortunately this problem has a special structure 
that can be exploited by decomposition techniques [20].  
 

As a result of Van Roy’s research [21] and the structure of the AVD, we can confirm that 
when the cross decomposition strategy is applied to this problem the consequence is a 
solution produced for two subproblems, incorporating a process among them, reducing the 
number of master problems to be solved. Three facts are fundamental for the Cross: 
 
1. The relationship between the primal (Benders) and the dual (through Lagrangean 
relaxation) decomposition. 

2. The subproblems (SP 2x ) and (SD 2u ) can be considered master problems for each other. 

3. Considerations under which (P) can only be solved by iterating between both 
subproblems. 
 

The research developed by Aceves [20], incorporates into this cross process the strategy of 
Lagrangean Separable Relaxation, a special case that is very advantageous because, with 
this scheme, none of the original restrictions disappear and it isn’t necessary to choose 
between the quality of the bound obtained and the degree of difficulty of the problem that 
remains.  
 
When this strategy is incorporated, it establishes that it is not necessary to use the master 
problem in the solution, i.e., it can be solved just by iterating between subproblems, 
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completely avoiding the master problem. This procedure is called Separable Cross 
Decomposition and is the procedure applied to the AVD problem in this phase. 
 
Two subproblems are obtained when Separable Cross Decomposition is applied to the AVD 
problem.  
 
Using the Benders Decomposition to the (P) problem gives us: 
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This is a transportation problem, for which there are very efficient solution methods. 
 
Therefore, the Benders master problem or primal can be expressed like this: 
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Where TP  is the index set of all basic feasible solutions of the dual constraint, ie, they are 

Benders cuts. 
 
Now apply the following process for the Lagrangean Separable Relaxation schemes, for the 
problem AVD we have: 
 

 Copy d x d xj i j j i jjj
 '

  and  y yi i '  on the restriction (4). 

 Duplicate the restriction (3). 

 Dualize equality constraints. 
 Separate the problem to obtain two subproblems, each with the following sets of 

constraints: ((1), (2), (3)) and ((2), (3), (4)). 
 
The problem AVD can be formulated as: 
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When we incorporate restriction 4 to the subproblem S to reinforce it, it can be formulated as: 
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Which result is Q = 0. This allows to establish that the origins i, for i = 1,...,m, that satisfies 
the demand also solves the S transportation problem, and minimizes the dual Lagrangean 
subproblem. With this result it has been possible to develop an algorithm simpler that those 
previously obtained [20]. 

SEPARABLE CROSS DECOMPOSITION ALGORITHM 

Using the primal ySP  and dual SD  subproblems and iterating between their solutions with 

the purpose of fixing the values of the primal 
iy  or dual i  variables it is possible exchange 

the following stages:  
 

i) fix iy  at its current value and solve the Benders subproblem ySP  that is a transport 

problem, in order to generate a new value for the upper bound of (P) and, 

 ii) fix i  at its current value  and solve the Lagrangean subproblem 
SD   to generate a new 

value for the lower bound of  (P). 
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An analysis of the convergence of the Cross Decomposition algorithm developed by 
Holmberg [22] indicates that the cross decomposition algorithm has finite convergence for 
problems where the Dantzig-Wolfe decomposition algorithm or the Benders decomposition 
algorithms have finite convergence. Thus, it is necessary to see if the algorithm used to solve 
the transport problems has finite convergence.  
 
In subsequent iterations of the Separable Cross Decomposition the most economic routes 
gradually get cheaper and, in consequence, we will be able to allocate greater flow until they 
are saturated, either by using the higher capacity of the vehicle or meeting the demand, i.e.: 
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Thus, the vehicles that satisfy the demand obtained from the solution of the Lagrangean dual 

subproblem SD can be used as active vehicles; i.e. the 1iy , with  mi ,...,1 , that were 

fixed in the primal subproblem ySP . 

 
So the separable cross decomposition algorithm ends in a finite number of iterations and 
obtains the solution to the FL problem of Phase II. Thus it is known:  which vehicle looks after 
each customers and what amount of product is delivered to them. 
 
From this result you go on to the next phase. 
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Phase III responds to the question: 4. what delivery route will each vehicle take?  
 
This is answered with the solution used at Salesman Problem (TSP) for each vehicle? 

 
According to Castañeda [23], the idea of hybridation arises as a result of the 2-Opt theory 
and mentions that this method is better when begins with a good route. So the Adaptation of 
Prim’s Algorithm is used to find this initial route that will be used by the 2-Opt method, thus, 
we obtain the Adaptation-Prim-2Opt-Hybrid method. 
 
The proposed algorithm is the Adaptation-Prim-2-Opt-Hybrid heuristic method, whose 
components are the 2-Opt Method and an Adaptation of Prim’s Algorithm Method. The use of 
this heuristic obeys the initial supposition of a great number of customers for each vehicle to 
visit. Castañeda [23] has an interesting study where she compares heuristic and exact 
methods for the TSP and proposes the aforementioned hybrid as highly advantageous in 
respect of other heuristics for very large TSP cases. 
 
The 2-Opt algorithm and Prim Adjustment are generally presented below.  
 
The 2-Opt procedure is an approximate solution to the symmetric TSP problem, with n nodes 
and an adjacency matrix W. The initial cycle is forms by a set of edges H= (            ). Let 

X = {     } be the set of two edges in H, which will be removed and replaced by the edges 

Y={      }, if there is an improvement. This is,    (   )    is a new and improved route. 

Note that the two edges         in X can’t be adjacent and when the set X has been selected, 

the set Y is determined.  
 

So we’ll have 
 (   )

 
 possible routes     for a given  . For either of these routes improvement 

will be denoted with  , obtained by: 
 

   ( )   (  )   (  )   (  )   (  )   (  ) 

 
If        , the corresponding solution is used as the initial route and the whole process is 

repeated, i.e., the improving of the route is continued until       becomes a negative number 
or zero.  
 
Prim Adjustment method can be applied to TSP, because it produces a minimal spanning 
tree T. At each stage the algorithm searches for a lower-cost edge that connects a vertex of 
T with a new vertex outside T. That edge and the vertex are added to T and the process is 
repeated. This is called a glutton or greedy algorithm because it always adds the minimum 
cost edge and removes the oldest. 
 
The algorithm makes minimal set, while keeping connected and acyclic subgraph. Is doesn’t 
need the edges of G to be ordered in advance. The adjustment is to take the vertices of the 
minimum spanning tree and produce a Hamiltonian cycle.  
 
 
 

EFFICIENCY OF THE STRATEGY  
 
In the idealization of the strategy, the need to define algorithms that would solve more 
manageable problems in an easy and implementable way was very present. As we already 
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mentioned, the essential part of the strategy is the application of Separable Cross 
Decomposition in Phase II.  
 
Thus, an algorithm is obtained that produces a solution for two transport subproblems. It’s 
interesting to note the enormous advantage of having this type of problem as their solution 
algorithms have a low order of complexity, O(n3 ) [13] and moreover, any type of commercial 
software can be used to solve them.  

 
The proposed strategy consists in three aforementioned stages. Each phase’s process has 
the following runtime: 
 

Table I – Order of the phases 
Phase of the 

strategy 
Order of the 

algorithm 

Phase I O(n) 

Phase II O(n2) 

Phase III O(n3) 

 
In such way that the order of the proposed strategy is O(n3), which makes it extremely 
efficient. 

 
In order to assess the strategy’s efficiency, 9 problems were constructed: 4 small problems 
with less than 10 customers, 2 medium-sized with 30 and 35 customers respectively and 3 
large problems with 150, 200 and 250 customers. The fixed costs, capacities and demands 
were taken from the examples given in Aceves [20].  
 
 
The data generated as random variables were the customers’ demands, the matrices for 
distance between customers and between customers and central warehouse. The variables 
were obtained by means of the statistical package STATGRAPHICS. The capacities of the 
vehicles (m3) took the values 24,16,8 and 4. The fixed costs varied between 50, 40, 35, 30, 
25 and 20.  
 
Every problem was solved by obtaining the optimum solution using the Branch and Bound 
(B-B) algorithm by means of the LINGO package. Afterwards, each problem was solved with 
the proposed algorithm by means of a computer program developed in Pascal. The system 
used was Pentium 4, 2.00Ghz-256 MB RAM. 

RESULTS 

The results table for the problem’s solution is the following: 
 

Table II – The results obtained 

Problem 
Number 

of 
customers 

Vehicles 
Solution with 
the sugested 

strategy 
Time 

Optimal 
solution 

B-B 
 

Time 

Deviation 
from the 
optimal 
solution 

% 

E005-03 4 3 9819     2 sec 9819     3 sec 0 

E006-04 5 4 16724   2 sec 16724   3 sec 0 
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E008-02 7 2 21256   2 sec 21256   3 sec 0 

E009-04 8 4 13114   2 sec 13114   3 sec 0 

E031-09 30 9 4332     2 sec 4332     28 days 0 

E036-11 35 11 3120     2 sec 3120     35 days 0 

E151-08 150 8 14770   2 sec Unknown - - 

E201-16 200 16 44586  3 sec Unknown - - 

E251-20 250 20 72123  3 sec Unknown - - 

 
 
Some of the results obtained were: 1. - an extremely short solution time, with three iterations 
at most used to find the solution and, in every case, the results were obtained in less than 2 
seconds; 2. - the quality of the solutions was excellent, the optimum was obtained in all of the 
problems that were assessed. 
 

Among the advantages of the proposed strategy we have: 

 Speed, 

 quality of the solution, 

 possibility of dealing with large numbers of clients, 

 simple implementation and low cost. 
 
 

 

CONCLUSION 

An order strategy O(n3) was obtained of easily implementation and application that gives 
good quality results and is efficient in computational effort even for large problems. 

 

This strategy has low order of complexity, which is more efficient than the methods used to 
solve the IRP. Thus, this work demonstrated the superiority of the proposed strategy as it 
can handle bigger problems with less computational effort. 

 

It is necessary to promote and continue the research into the methodology for optimal 
solutions to different instances of the problem and reduce their computational complexity. 

 

System’s optimization is very recommended as a proposal that can consider the economic, 
social, political and technological challenges which the decision-makers are faced, this 
makes business more competitive. This is important for every type of organization and 
enterprise that wants to be updated and successful in their field of action and contributes to 
their own economic development and the one of their surroundings. 
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