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Abstract 
In search algorithms that use random utility theory it is important that random 
components of utility be stored, so that if elements of behaviour are reconsidered during 
the search they are evaluated consistently.  Directly storing each random component can 
easily overwhelm computer memory when many individuals, activity patterns, 
preference-commonality and destinations are considered.  This paper describes a system 
for effectively managing and assigning random components from a pool, to obtain a rich 
simulation of choice across multiple dimensions of land use and transport behaviour 
incorporated preference commonality between individuals and alternatives. 
In spatial choices, zones are aggregations of potential destinations.  To avoid biases due 
to arbitrary zone boundaries, it is important that individual (sub-zonal) destinations be 
considered, or that extreme value theory be used to assign appropriate random variation 
components to zonal aggregations.  This paper describes options for treating zonal 
destinations appropriately in a simulation model given random utility theory. 

Introduction 
In Random Utility Theory, individuals choose the option that has the highest personal 
utility, and the utility is represented with a function that includes random variables which 
follow a certain distribution, and represent variation in preference and perception 
between individuals.   
Choices are interrelated in that choosing an option in one dimension might constrain and 
influence the options available for another dimension.  For instance, in forecasting land 
use and related travel behaviour dimensions might include choices for: 

• home location (residential location), 
• how many automobiles to own, 
• where to work, 
• when to go to work, 
• whether to drive to work, 
• route if driving to work, 

Since these choices are interrelated (routes to work obviously depend on home and work 
location, but the choice of where to live and work also depends on the attributes of 
available routes), we wish to have a mathematical formula that describes the 
attractiveness of the full joint choice of all of these options.  Such a utility function might 
have the following general form: 
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where: 
cna = description of alternative a under consideration with regards to 

dimension n 
E = set of dimensions, 
Vi = a mathematical function measuring the expected utility of one 

dimension i for an individual decision maker,  
εi = a random variable for dimension i, representing the probabilistic nature 

of the choice model and the degree to which individual situations and 
individual’s perception differ from the deterministic function Vi 

Vij = a mathematical function measuring the expected value of the utility of 
the interdependencies between dimension i and j 

εij = a random variable for dimensions i and j, representing the degree to 
which individual joint situations across i and j and individual’s 
perception of joint situations differ from the deterministic function 
Vi +Vj +Vij  

Vijk = a mathematical function measuring any interdepencies across three 
dimensions 

εijk = a random variable for three dimensions, representing any special non-
deterministic dependencies across three dimensions.  

 
In allocation algorithms, often the logit model is used which obviates the need for 
sampling from the underlying distributions: if the non-random components of utility (Vi, 
Vij, Vijk …) of all of the alternatives can be calculated, and if the elements can be arranged 
in a hierarchical nest with a very specific assumptions regarding the random variables 
(specifically, independent and identical Gumbel distributions for various combinations of 
εi, εij, εijk, …) then the probability of each option can be calculated directly.  These 
probabilities are used to allocate the total amongst the options1. 

In simulation algorithms, where choice options are assigned to individual decision 
makers using sampling, there are generally two options: 1) assume the specific set of 
independent and identical Gumbel distrubtions for various combinations of εi, εij, εijk, …, 
and sample an option from the same resulting closed-form probability distribution used in 
allocation algorithms, or 2) sample the random components of utility εi, εij, εijk, … from 
appropriate distributions for each option for each individual and then assign the highest 
utility option to the individual. 

Methods for dealing with large choice sets 
When many dimensions are considered, the number of options can rapidly become large.  
For instance, in the example joint choice for a medium city there could be a 300,000 

                                                
1 Implying either an acceptance of the law of large numbers, or a model that forecasts the expected value 
and not one realization of the range of possible futures 



dwellings, 50,000 jobs for which an individual is qualified, the household could own up 
to, say, 5 automobiles, the person could depart to work perhaps up to 60 minutes early, 
could drive or not, and if driving could take perhaps 10 different reasonable routes.  This 
gives 3e5 * 5e4 * 6 * 60 * 2 * 10 = 1.08E14 alternatives for one individual, and if there 
are one million individuals there could be 1e20 alternatives under consideration by the 
citizens of a city.  When the number of options are very large, considering each option 
explicitly is unrealistic behaviourally (since in reality people can not evaluate so many 
options) and computationally infeasible (even computers using simplified representations 
can not evaluate many billion options for many million decision makers).  Three 
strategies are common for dealing with a large number of options, sample from amongst 
the options, group/nest the options and use a series of conditional models, or use a search 
algorithm to explore the set of options.   

Sampling of alternatives 
In a sampling algorithm, some simpler distribution is used to find a small group of 
options available to a decision maker.  Random utility theory is then used to choose from 
amongst the smaller set.  Behaviourally, this could be interpreted as decision makers 
using a simple system for determining a few options from amongst the many options, and 
then choosing from amongst those few options using more complete information as 
assumed in random utility theory.   Sampling is generally applicable to simulation 
algorithms, but can also be applied to allocation algorithms using sample enumeration 
approaches.  

Grouping/Nesting  
When using grouping (also known as nesting) to manage large choice sets, the set of 
alternatives is partitioned (often repeatedly into a tree structure), with each partition 
containing groups of similar options.  The similar options can have similar deterministic 
terms (V terms) and/or correlated random terms (ε terms), perhaps because they share the 
same alternative in one or more dimensions of the choice.  The choice between options 
within a group is simplified because the number of options has been reduced.  The 
probability of choosing a group uses extreme value theory to calculate the expected 
maximum utility of the underlying alternatives within the group.   
One example of this technique occurs when aggregate combinations of individual 
locations are considered as a “zone”.  The alternatives within a zone are given the same 
values for ci, i=location choice and the εi is given an independent and identical Gumbel 
distribution.  Individuals choose the best option (for them) within the zone, and the utility 
of this best option from extreme value theory is:  

 Vi
z = Vi ci

z( ) + 1
λi
lnSz + ε j  (2) 

where: 
λ  = parameter for the Gumbel distribution, inversely related to its standard 

deviation 
Sz = number of alternatives (the “size”) of the zone z. 



ci
z  = the attributes of the zone z influencing its attractiveness with regards to 

choice dimension i. 
εj = a random variable with the same distribution as εi but associated with 

the zone choice j instead of individual location choice i. 
 
Grouping is applicable to allocation and simulation. 

Search Algorithm 
In a search algorithm, individuals explore the options available to them, without an 
exhaustive search of all options.  During the search it is possible to consider specific 
detailed options, or groups of related options.  If groups are being explored the utility of 
the group should be calculated using extreme value theory.  A system of determining 
when to stop the search process is required, and when the search process is complete the 
option with the highest utility is chosen.  Search algorithms are applicable to simulation 
but not to allocation. 

Sampling random terms in search algorithms 
In search algorithms, alternatives may be considered in any order.  It is also possible that 
alternatives will be reconsidered as the algorithm progresses.  One alternative in one 
dimension i would be considered early in the search process, then could be discarded, 
perhaps because it was being considered in conjunction with options in other dimensions, 
j and k, that were undesirable.  The option for dimension i is then likely to be 
reconsidered later in the process, when it may be accepted as the best alternative.  As a 
concrete example, a destination could be considered along with a transit mode trip, and 
rejected during the search process because of the difficulty of travel by transit.  Later the 
same destination could be accepted in conjunction with an auto trip. 
Each random term can be sampled from its underlying distribution, but once sampled 
must remain in memory and re-used if that element of the choice is reconsidered, 
otherwise the notion of a random term εi as specific to the individual option and the 
individual’s preferences is not respected. 
In the context of activity based travel demand modeling, I have developed certain 
implementations of search algorithms that did not store the random terms, but rather 
random terms were resampled when required.  This led to a destination choice model that 
always chose nearby large zones.  In early parts of the search, a nearby large zone (with a 
large Sz) could have been rejected because a smaller, farther away zone, had been 
associated with a larger sampled random component εj.  But as the search progressed, the 
nearby large zones would be reconsidered, and when they were reconsidered the random 
component was resampled.  Eventually the random component for the nearby large zone 
became large, and the smaller, farther away zones were no longer chosen.  Thus these 
implementations of search algorithm with dynamic (re)sampling of random terms was 
shown to be inappropriate given random utility theory. 

Behaviourally, the interpretation in destination choice is that there is a non zero 
probability that individuals will choose each destination specifically because there is 
something unique about that destination that makes it most attractive for one individual’s 



preferences and perceptions.  The sampled random components represent these 
preferences and perceptions.  Resampling the random components repeatedly, and 
throwing out the previous sample, was violating the purpose of the random components, 
and causing a malfunction in the destination choice model.   

Storing random components 
It is theoretically possible to generate random components as they are required, and to 
store them associated with the individual and the appropriate portion of the alternative.  
Thus, for instance, when an individual y first considers a particular mode m a random 
compoenent εm

y  can be sampled from the appropriate distribution and stored for reuse the 
next time individual y considers mode m.  This approach becomes infeasible, however, 
when large numbers of alternatives are considered, as in the example where 1.08e14 
alternatives are available.  Not all options would be considered for every individual, but 
still storing each individual’s random components for a destination choice model was 
deemed unrealistic. 

The model does not need that much detail in the random variation.  1.08e14 is a large 
number; we require an appropriate variation in the model results, but we should not need 
that much variation.  What is required is a system for generating and storing a reasonably 
large quantity of random numbers, and then assigning them to random components with 
minimal storage. 

A pool R of R random numbers can be stored in an array.  R should be sufficiently large 
to represent the random variation that is required in model behaviour – for example it 
could be larger than any one dimension in the choice set (e.g. with 2000 potential 
destination zones, R should be larger than 2000).  Each individual requires a different 
random component for each alternative for each dimension of the choice E.  Let ςe

y be an 
integer randomly sampled from the uniform distribution [1,R] and skipe

y be an integer 
randomly sampled in the range [0,Skip], where Skip << R. Then let random component 
εe,n
y , being the random component associated with the nth option of dimension e for 

individual y, be  

 εe,n
y = G(R[modulus(ςe

y + skipe
y * n,R)]) (3) 

where: 
G() = the appropriate transformation between the distribution used to sample 

the pool of random numbers R and the distribution required for random 
component εe,n

y .   
In other words, the random component for an element of choice e∈E for individual y is 
chosen based on a entry point into the array, ςe

y, and a skip value, skipe
y, that determines 

how many entries are skipped over while working through the array.   

The sampling of random terms when populating the array ensures that each element of 
each option has an appropriate random component.  The sampling of the entry point ςe

y 
for each individual y and choice dimension e ensures that random components do not get 
inappropriately assigned to the same alternative for multiple individuals.  The sampling 



of the skip value skipe
y ensures that sequences of alternatives do not get inappropriately 

assigned the same sequence of random components. 

Similar techniques can be used for any non-zero random terms which apply to more than 
one element of the choice, εij

y . 

The flexibility associated with adopting the G() function to transform one distribution to 
another suggests that the pool R should be sampled from well-used or easy-to-transform 
distributions.  The uniform distribution between 0 and 1, and the standard normal 
distributions are options.  It would also be possible to maintain multiple pools of random 
numbers, e.g. one pool from the standard normal distribution and one pool from the 
uniform distribution [0.1).   

This technique can be compared to an old technique, no longer in fashion, of assigning 
random components from a book of random numbers generated by a truly physical 
process (RAND corporation, 1955).  Modulus(ςe

y + skipe
y * n,R) would be the place in the 

book where the random number is found for element e and individual y. 

Destination choice random component distributions 
The system described above requires a function G(), which transforms the random 
number drawn from the pool R into an appropriate random component for element e for 
alternative a.  Given elemental choice options, with no grouping, the random component 
should probably be transformed into a normal distribution given the central limit 
theorem.  The variation of the normal distribution could be sampled separately for 
individual y, and for destination activity type α, and applied in the transformation, thus 
providing a mixed probit model of destination choice.   

For the choice of a destination zone, it is important to note that zones are aggregations of 
elemental choices.   Zones have different sizes, being the number of elemental choices 
that they include.  Thus the zone is a grouping of elemental alternatives.  To avoid biases 
due to the arbitrary nature of zones, the random component associated with a zone should 
be calculated using a method that respects the notion that individuals will choose the best 
option, for them, within the zone.   

Direct consideration of group of elemental alternatives 
The utility of a zone could be calculated directly by finding the maximum over the set of 
elemental alternatives within the zone.  Thus the destination choice alternatives could be 
constructed as individual discrete options within a zone (corresponding to individual jobs, 
homes, or blocks of 100 square feet of retail space).  If the deterministic parts of the 
utility are the same for all alternatives within the zone, the best option will be the one 
with the largest random component, so the random component of the attractiveness of the 
zone would simply the largest random component in the set of random components  
G(R[modulus(ςe

y + skipe
y * n,R] for n within the zone.  This would be not too difficult to 

calculate, would be direct and clear, and would support a future extension of the model 
into a sub-zone representation of destinations. 



Direct consideration of elemental alternatives 
Instead of calculating the maximum over the individual alternatives within the zone when 
considering a zone as a destination, the search algorithm itself could be modified to 
consider individual discrete options within the model region.  Thus the model would not 
use zones as destinations, but rather individual destinations within each zone.  If done 
cleverly, this may not require much additional calculation but could support eventual sub-
zone interactions with other variables – i.e. the deterministic part of the utility function 
could also vary across a zone (e.g. due to differences in parking cost or transit walk time 
for individual destinations within a zone).  Further, this supports the behavioural notion 
that individuals have to search within a zone for the best elemental alternative for them, 
and may not always find the best sub-zone alternative. 

Using extreme value theory 
Extreme value theory can be used to assign a distribution to the maximum value from a 
number of options.  Embrechts et al (1997) describe the appropriate distribution to use for 
the expected maximum of a set of elemental alternatives.  If the elemental alternatives are 
assumed normal, and there are enough elemental alternatives, the cumulative distribution 
of the expected maximum of the group is given by the Gumbel distribution.  Thus a 
number appropriately drawn from the random number pool can be transformed using a 
G() function that takes into account the size of the zone and the variation in the 
underlying distribution, which could be dependent on the individual i, the zone z and the 
size of the zone.  The Encyclopedia of Statistical Sciences (2004) and Gumbel (1958) 
explain the distribution of the maximum of a set of normal values.  The distributions are 
quite complicated, but approximations can be used or there are tables that have been 
published (or can be generated) to interpolate appropriate parameters.   
One approximation, shown in Hall (1979) but attributable to Fisher and Tippet (1928) is 
to let bn be the solution of the equation: 

 

where n is the number of elemental alternatives, let 

 

These are approximated by αn and βn  using 

 

And then the Gumbel distribution 

 

is used with  

 



to sample the extreme.   

Thus, given a random number ξ drawn from [0,1), an appropriate random term for zone z 
can be calculated as  

 

and then scaled according to the variance of the underlying normal distribution. 
For the purpose of activity based travel modeling, it would be computationally efficient 
and more accurate to use a direct sample of the maximum of individually pre-sampled 
normal distributions for zones with a small number of jobs, dwellings or other elemental 
alternatives (i.e use the method described above as Direct consideration of group of 
elemental alternatives when n is small).  The direct method should, perhaps, be used for 
zones with less than 50 elemental alternatives, and this Fisher and Tippet/Hall 
approximation to the Normal Extreme for larger zones.  Figure 1 and Figure 2 compare 
Halls approximation to a randomly generated extreme normal distribution for n=20 and 
n=2000, from which it can be seen that n should be quite high before the approximation 
is used, and if zones are quite small it would be better to use a direct sample. 
 

 

 
 

 
 

 

Figure 1: Halls approximation for N=20 (bars are a randomly generated extreme normal 
distribution) 



 
 

 
 

 

 

Assume an underlying Gumbel distribution 
If the underlying elemental destination alternatives in each zone are themselves given 
Gumbel distributions instead of Normal distributions, then the standard nested logit 
approach could be used, as in equation 2. This is a little bit simpler, but is less than 
satisfactory because there is little reason to believe that the underlying elemental 
destination parameters should have Gumbel distributed error terms, given the Central 
Limit Theorum.   

In particular, the expected maximum value of underlying Gumbel values is also Gumbel 
distributed, but with the same error term on the expected maximum as on the individual 
error term.  This is very different than the expected maximum value of Normal values, 
where the error term on the expected maximum is lower than the error term on the 
underlying distribution.  As groups of alternatives become larger, the expected maximum 
increases at a slower rate and with more certainty with an underlying normal distribution, 
as compared to an underlying Gumbel distribution.  
This is shown in Figure 3, which shows the calculated average extreme value and 
standard deviation based on a sample of 1000 extreme values for each group size.  Using 
an underlying Gumbel distribution causes larger alternatives to seem substantially more 

Figure 2: Halls approximation for N=2000, bars are a randomly generated extreme 
normal distribution 



attractive than using an underlying normal distribution.  This calls into question the 
standard practice of assuming an underlying Gumbel distribution for computational 
convenience, and in particular for assuming independent and identical distributions for 
zones (or other groups of alternatives) that have different sizes.  Larger options should 
have utilities that are not proportionally as large, and/or error terms should be smaller on 
the larger options. 

 

Conclusions 
Substantial errors can occur in modeling search processes using random utility theory.  
First, random terms must be stored so that they are not resampled if a dimension of an 
alternative is revisited.  Second, if the random terms are expected to be normal, then 
extreme normal distributions should be used for the expected maximums of a group of 
alternatives.  The extreme normal distribution can be calculated directly for small groups, 
or the Fisher and Tippet (a.k.a. Hall) approximation can be used for larger alternatives.  
The Gumbel distribution could be used for the expected maximum, but it does not seem 
to have much of an advantage over the Fisher and Tippet Extreme Normal distribution. 

The common alternative to search processes, involving nesting structures and aggregate 
alternatives with size terms, has some large potential pitfalls.  First, calculating the 

Figure 4 

Figure 3: Expected maximum value of Gumbel and Normal distributions, showing ±1 
standard deviations bands 



expected maximum value of a large group of alternatives is often not computationally 
feasible.  Second, the common approach of assuming independent and identical Gumbel 
distributions for the best option within different groups of options is not supported when 
the groups are of different sizes, unless the underlying distribution is thought to be 
Gumbel.  The Gumbel distribution looks like the Normal distribution when only one 
alternative is viewed, but the Extreme Gumbel distrubution is very different than the 
Extreme Normal distrubution for large n’s.  While it may be true that the extreme value 
of any underlying distribution is Gumbel distributed given a high enough n, it is a 
mistake to assume that the extreme value distribution for a group has the same standard 
deviation as the underlying distribution, as is commonly done in nested logit modeling. 
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