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Abstract: 

This study deals with the allocation of international and domestic flights (allocation of services) 
among multiple airports in a metropolitan area. We present a spatial model of the metropolitan 
area in which two airports provide services for two types of air transportation (international and 
domestic). The model incorporates the users’ heterogeneity in the value of time. We examine two 
types of policies, the optimal pricing and the regulation of the service choice. It is analytically 
shown that: i) the optimal airport charges are equal to the marginal congestion cost, and ii) the 
optimal allocation of services is equivalent to the no regulation. Moreover, by means of 
numerical simulations based on realistic parameter values, we obtained the result such that: i) the 
welfare gain of the regulation on the allocation is observed if two airports are relatively close; ii) 
the welfare gain of the regulation on the allocation of services is quantitatively smaller than the 
optimal pricing. 
Keywords: Allocation of services, users’ heterogeneity, location of airports, regulation 
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1. Introduction 

It is observed that several metropolitan areas have multiple airports, such as NYC, Tokyo and 

Osaka. Moreover, in some cases, each airport within the same metropolitan area has a different 

role. For example, in case of Osaka, Japan, Osaka International Airport provides only domestic 

flights while Kansai International Airport provides both international and domestic flights. We 

call such a division of roles among multiple airports as the allocation of services. The allocation 

of services is sometimes as a result of the regulation by the government. In case of Osaka or 

other East Asian cities, the central government directly regulates the services provided at two 

airports while, in NYC or other major cities in the U.S., the allocation of services is indirectly 

regulated through a perimeter rule, which prohibits the airport serving flights operating within a 

certain range of distance. Also note that the locations of airports might affect the regulation on 

the service choice. For example, the airport closer to the CBD is allowed to serve only domestic 

(or short-distance) flights while the airport further away from the CBD is allowed to serve both 

domestic and international (or both short-distance and long-distance) flights. 

Although the regulation of the service choice is implemented in several cities, Mun and Teraji 

(2010) show that the regulation of the service choice improves the economic welfare, but its 

welfare gain is quantitatively smaller than the regulation of the pricing. However, since Mun and 

Teraji (2010) assume that users are homogenous in the value of time, the homogeneity 

assumptions might underestimate the role of the pricing. Once incorporating the heterogeneity in 
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the value of time, the optimal pricing might improve the welfare of high value of time users, and 

the economic welfare more through the segregation of users by the pricing; i.e. users who have 

relatively high value of time utilize the airport where the levels of airport charges are higher, and 

can reduce the time cost to utilize airports. 

In many real cases, the shortage of the capacity at the existing airport leads to the construction 

of a new airport, and as a result, some of metropolitan areas have multiple airports: therefore, the 

congestion at airports is an essential factor to study about multiple airports in a metropolitan area. 

There is substantial literature about the congestion at airports (Brueckner (2002), Pels and 

Verhoef (2004), Zhang and Zhang (2006)), but most of them discuss about the effect of the 

congestion pricing at a single airport. Few literatures (Pels et al. (2000), De Borger and Van 

Dender (2006), and Basso and Zhang (2007)) studied about the setting of multiple airports in a 

metropolitan area. These literatures, however, mainly focus on users’ choice of airports or pricing 

and capacity choice of airport operators. Moreover, they assume that airports provide a single 

service, so the allocation of services is not a consideration. Van Dender (2005) developed the 

model where multiple airports provide multiple services, but he focuses on the case that each 

facility provides all types of services, and so does not examine alternative allocations. 

Our study extends Mun and Teraji (2010) by incorporating the heterogeneity in the value of 

time among users, and we construct a model in which two airports can provide two types of 

services (international and domestic flights), and the allocation of services is variable. By using 
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this model, we consider the following issues. First, we evaluate the welfare gain of the optimal 

pricing and the service choice. In addition, we measure the incidence of the welfare gain among 

heterogeneous users and the effect of the change in the degree of the heterogeneity on the 

optimal outcomes. Second, given the levels of airport charges, we evaluate the welfare effect of 

the regulation on the service choice by comparing the social surplus among alternative allocation 

of services. Moreover, we check the effect of the distance between two airports on the rationale 

for the regulation of the service choice. 

This paper is organized as follows: Section 2 explains the model. Section 3 formulates the 

social planner’s problems at the optimum and the second best. At the second best, we consider 

the case where the optimal pricing is infeasible, and the social planner chooses the allocation of 

services. Section 4 gives the results of the numerical simulation at the social optimum and at the 

second best. In this section, we show the results of the comparison between two alternative 

policy regimes and the results of sensitivity analyses. This section also provides the specification 

of the model and parameter values. Finally, Section 5 concludes. 

 

2. The Model 

2.1. Basic Settings 

Suppose a city which has the population n. The population is heterogeneous in the value of 

time, w. The distribution of w is represented by the density function ( )wρ , and this suffices: 
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 ( ) .w dw nρ =∫  

In addition, we assume that the value of time, w, is equivalent to the wage per hour. Each type of 

user makes two types of air trip, international and domestic trips, which are hereafter denoted by 

I and D respectively. Moreover, we assume that trips from/ to the city is generated from a single 

point, the city center; in other words, it is the origin of all trips. 

The city has two airports, named as airports 1 and 2: two airports can provide two types of 

services, I and D. Let us denote by aj (aj = I, D, ID, N) the type of services provided at airport j, 

where aj = I (D) means that the airport is specialized in international (domestic) flights, aj = ID 

indicates that the airport provides both international and domestic flights, and aj = N indicates 

that the airport is closed. The allocation of services is represented by the combination of services 

provided at two airports, (a1, a2). 

The locations of two airports are exogenously given, and airport 1 is located at the city center 

while airport 2 is located at the distance, x, from the city center. Figure 1 summarizes the 

geographic feature of the city: 

<<Figure 1: About Here>> 

Two airports are congestible and the congestion cost is incurred by users, such as delays of 

departures or arrivals. 

Finally, we set up the following sequence of decisions: 

i) Airport charges and the allocation are determined; 
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ii) Users choose the number of trips for each service S and the airport for each service if 

 the service is provided at two airports. 

Also note that we assume carriers are perfectly competitive, and we omit the formulation of 

carriers’ behavior. 

2.2. Users 

Each type of user makes two decisions, the number of trips and airport choice. Type w’s 

airport choice for service S is to minimize the generalized cost. Type w’s generalized cost for 

service S (S=I, D) at airport j (j=1, 2) is given by: 

 ( ) for ,  and 1, 2,S S S S
j j j jg w p f wt S I D jτ= + + + = =    (1) 

where Sf and S
jp  are the fare per service S trip and the airport charge for service S at airport j 

respectively1. The third term of Eq. (1), jτ , is the monetary cost to access airport j, and the last 

term is type w’s time cost to make a service S trip at airport j, and S
jt  is defined as: 

 1 1 1,
S St t c Q= +         (2-1) 

 2 2 2 .S St t c Q ax= + +        (2-2) 

In Eqs (2), the first term of the RHS, St , is the fixed amount of time for service S trip, which 

includes the time of flights, stays at the destination, etc. The second term of the RHS in Eqs (2) 

captures the time of delay due to the congestion at airports, and we assume airport 1 is more 

                                                 
1 Note that this formulation is equivalent to the case where the airport charges are imposed on carriers. 
Specifically, according to the assumption of the perfect competition of carriers, we can apply the zero profit 
condition on the fare setting by carriers. Consequently, carriers set the fare as the marginal cost plus the airport 
charges. In other words, the formulation (1) corresponds to both cases where the airport charges are directly 
imposed on users, and where the fare includes the airport charges. 
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congestible than airport 2; namely, 1 2c c> . The third term of Eq. (2-2) is the time to access to 

airport 2, and a>0. 

Let us denote by ( )S
j wδ  type w’s airport choice for service S: ( )S

j wδ  equals to one if type w 

uses airport j for service S, and equals to zero otherwise. According to the comparison of 

generalized costs for service S at two airports, type w’s airport choice is given by: 

 ( ) ( ) ( )1                        if ,

0                       otherwise.

S S
j kS

j

g w g w
wδ

 ≤= 


    (3) 

By using, ( )S
j wδ , type w’s generalized cost for service S, ( )Sg w , and the number of trips, 

( )Sg w , are derived as: 

 ( ) ( ) ( ),S S S
j j

j

g w w g wδ=∑  

In consideration of the airport choice, users maximize their utility ( ), ,I DU z q q  by choosing 

the consumption of composite good, z, and the number of trips for two services, Iq  and Dq . 

Since the value of time, w, is equivalent to the wage per hour, type w’s budget constraint is given 

by: 

 ( ) ,S S

S
wh z g w q= +∑        (4) 

where h  is the initial endowment of the time. According to Eqs (3) and (4), type w’s utility 

maximization problem is formulated as: 

 ( )
, ,
max , ,  subject to (3) and (4).

I D

I D

z q q
U z q q      (5) 

Solving the problem (5), we get type w users’ demand functions: 
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 ( ) ( ) ( )( ), , ,I Dz w z wh g w g w=       (6-1) 

 ( ) ( ) ( )( ), ,  for , .S S I Dq w q wh g w g w S I D= =     (6-2) 

Plugging these demand functions into the utility, type w’s indirect utility is derived as 

( ) ( )( ), ,I DV wh g w g w . 

According to Eqs (3) and (6-2), the aggregate demand for service S (S=I, D) at airport j (j=1, 

2), S
jQ , is computed by: 

 ( ) ( ) ( ) .
w

S S S
j j

w

Q w w q w dwρ δ= ∫  

 

3. Social Optimum and the Second Best 

This section formulates two types of the social planner’s problem. Subsection 3.1 considers 

the social planner’s problem at the social optimum, and characterizes the optimal outcomes. 

Subsection 3.2 considers the second best policy under the situation where the optimal pricing is 

infeasible. In this situation, the social planner chooses the allocation of services to maximize the 

social surplus. 

3.1. Social Optimum 

There are various formulations of the problem to obtain the social optimal allocation. This 

model has two kinds of agents, users and the airport operator. Users’ welfare is represented by 

the utility level that is not measurable by monetary unit. The operator’s welfare is represented by 
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the revenue from airport charges, measured in monetary terms. Therefore, we cannot define the 

social planner’s objective by aggregating the welfare of two kinds of agents. Furthermore, it is 

necessary to aggregate the utility of users having different value of time.  

In order to deal with these problems, we formulate the social planner’s problem as follows. 

First, we require that each type of users to achieve a target utility level, u(w). The social optimum 

attains when the social surplus is maximized under the utility constraint described above. The 

social surplus is defined by the total income of users minus the social cost, such as the 

consumption of the composite goods, the monetary access cost to airports, and the time cost to 

make air trips: i.e., 

 ( ) ( ) ( )( ) ( )
,

,
w

S S S
j j j

S jw

w wh z w w wt q w dwρ δ τ
 

− − + 
 

∑∫    (7) 

The utility constraint is: 

 ( ) ( ) ( ) ( )( ), , ,I Du w V wh b w g w g w= +      (8) 

where b(w) is the compensating variation to achieve the target utility level, u(w). Moreover, the 

optimal allocation must satisfy the following constraints on the airport choice and on the 

population: 

 ( ) ( )1 2 1,S Sw wδ δ+ =        (9-1) 

 ( ) ( )1 or 0,S S
j jw wδ δ= =        (9-2) 

 ( ) .w dw nρ =∫         (9-3) 
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Notice that at the optimum, type w’s budget constraint suffices: 

 ( ) ( ) ( ) ( ) ( )( ) ( )
, ,

.S S S S S S
j j j j j

S j S j

w p q w b w wh z w w wt q wδ δ τ− = − − +∑ ∑  

Summing over all types’ budget constraints, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

.
w w

S S S S S
j j j j j

S j S jw w

w wh z w w wt q w dw p Q w b w dwρ δ τ ρ
 

− − + = − 
 

∑ ∑∫ ∫  

          (10) 

The social surplus is equivalent to the airport charge revenue net of compensating variations. By 

replacing the objective function by using Eq. (10), we formulate the social planner’s problem as: 

 ( ) ( )
( ) ( )

, , ,

max   ,

subject to (8), (9-1), (9-2), (9-3),

T T
k k

w
S S
j j

p b w w S j w

p Q w b w dw
δ

ρ−∑ ∫      (11) 

where control variables are the levels of airport charges, S
jp , each type’s airport choice, ( )S

j wδ , 

and the compensation, b(w). The first order conditions are: 

 ( ) ( ) 1: ,b w w
V y

λ =
∂ ∂

       (12-1) 

 ( ) ( ) ( )
, ,

: 0,
S w S
jT T S S

k k j jT S T
S j S jk kw

dQ V gp Q p w w w dw
dp g p

λ ρ δ
 ∂ ∂

+ + = ∂ ∂ 
∑ ∑∫   (12-2) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

: 0 if 1,

0                if 0,

T
T T T T
k k kT T

k

T
T T

kT T
k

V gw w w w w w
g w

V gw w w w
g w

δ λ ρ µ µ δ
δ

λ ρ µ δ
δ

∂ ∂
+ − = =

∂ ∂

∂ ∂
+ < =

∂ ∂

  (12-3) 

where ( )wλ  is the Lagrange multiplier for type w’s utility constraint, (8). In Eq. (12-3), ( )T wµ  

and ( )T
k wµ  are the Lagrange multipliers for constraints (9-1) and (9-2) respectively. 

Plugging Eq. (12-1) into Eq. (12-2) and applying the Roy’s Identity, Eq. (12-2) is rewritten as: 



 10

 
,

0,  for ,  and 1,2,
S
jS S S

j j j j T
S j S k

dQ
p c w Q S I D j

dp
′ ′

′

 
− = = =  

∑ ∑    (13) 

where S
jw ′  is the average value of time among service S ′ users at airport j: 

 ( ) ( ) ( )
.

S Sw
jS

j S
jw

w w q w
w w dw

Q
δ

ρ
′ ′

′
′≡ ×∫  

Notice that, at the optimum, Eq. (13) must hold for two services at two airports. Let us denote by 

superscript * the optimal solutions, then the optimal airport charge for service S at airport j is 

derived as: 

 * * *,  for ,  and 1,2.S S S
j j j j

S
p c w Q S I D j′ ′

′

= = =∑     (14) 

Eq. (14) says that, at the optimum, the airport charge for service S at airport j should be equal to 

the marginal congestion cost at airport j. Moreover, at the optimum, the charges for two services 

at the same airport should be equalized. 

Substituting Eq. (12-1) into Eq. (12-3) and arranging Eq. (12-3), we have: 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

* *
* * * *1 and 0 ,

S S
jS S S S

j k j k

w w
w w g w g w

w
µ µ

δ δ
ρ
−

= = ⇔ = <  

 ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

**
* * * *0 and 1 .

SS
jS S S S

j k j k

ww
w w g w g w

w w
µµ

δ δ
ρ ρ

= = ⇔ > = +  

These two conditions solely request that, at the optimum, all users should minimize their 

generalized cost for each service S when they choose the airport. Moreover, since the optimal 

airport charge is identical between two services at the same airport, we have three kinds of the 

optimal allocation of services: i) two airports provide two services, (ID, ID); and ii) one of two 
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airports is closed, (ID, N) or (N, ID). Let us exclude the trivial cases, (ID, N) and (N, ID), which 

are single airport cases. Above results imply the regulation of the service choice such as, (ID, D), 

(D, ID), etc, are not necessary as long as the optimal pricing is feasible. 

3.2. The Regulation of the Service Choice as the Second Best 

This subsection formulates the social planner’s problem under the circumstance where the 

optimal airport charges are infeasible. Specifically, we treat the levels of airport charges as 

exogenously given, S S
j jp p= . In such case, the social planner maximizes the social surplus by 

choosing the type of services allowed in each airport, aj. In other words, the social planner 

maximizes the social surplus by regulating the service choice of the airport operator. 

As a result of the regulation, each type’s airport choice, ( )S
j wδ , is determined: if the service 

provided at airport j is regulated to the service T S≠ , 

 ( ) 0S
j wδ =  and ( ) 1S

k wδ =  for all w. 

In order to treat the allocation of services, (a1, a2), explicitly, let us denote by ( )1 2| ,S
j w a aδ  type 

w’s airport choice under the situation where the allocation of service is regulated to (a1, a2). For 

example, under the allocation (D, ID), where airport 1 is prohibited to provide service I, 

( )| ,S
j w D IDδ , must satisfy: 

 Service I: ( )1 , 0I w D IDδ =  and ( )2 , 1I w D IDδ =  for all w, 

 Service D: ( ) ( ) ( )1                        if ,
| ,

0                       otherwise.

D D
j kD

j

g w g w
w D IDδ

 ≤= 

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In other words, users’ airport choices for service I is restricted to airport 2 under the regulation of 

the allocation (D, ID) while airport choices for service D is not regulated and users can choose 

the airport to minimize the generalized cost. 

Therefore, the planner’s problem is equivalent to maximize the social surplus by choosing the 

regulation of the service choice, (a1, a2), with the constraint such that type w’s airport choice is 

regulated. Let us denote by 1 2( , )SB SBa a  the second best allocation of services, then it suffices: 

 ( ) ( ) ( ) ( ) ( )
1 2

1 2 1 2
, ,

, arg max  s.t. | , ,
w

SB SB S S SB S S
j j j j

a a S j w

a a p Q w b w dw w w a aρ δ δ
  = − = 
  
∑ ∫  

          (15) 

where ( )SBb w  is the compensating variation at the second best. 

 

4. The Numerical Simulation 

This section shows the outcomes at the social optimum and under the regulation of the service 

choice through the numerical simulation. Subsection 4.1 provides the specification of the model 

and parameter values. Subsection 4.2 reports the result of the numerical simulation at the 

optimum. This subsection also evaluates the effect of the change in the heterogeneity of users. 

Subsection 4.3 reports the result of the regulation of the service choice, and compares with the 

optimum. 

4.1. Specification and Parameter Values 
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We specify the distribution of the value of time as the log-normal distribution: i.e. the 

population of type w users are given by: 

 ( ) ( )2

22

log
exp ,

22

wnw
w

µ
ρ

σπσ

 −
=  

  
 

where µ  and σ  respectively represent the average and the standard deviation of the 

distribution2. The preference of users is represented by the Cobb-Douglas utility function: 

 ( ) ( )1, , ,
I D I DI D I DU z q q z q qβ β β β− +

=  

where Sβ  captures the expenditure share for service S (S=I, D). 

Parameter values are summarized in Table 1: 

<<Table 1: About Here>> 

The population, n, is equal to that of Osaka Metropolitan Area, in Japan. Parameters of the 

density function, µ  and σ , are chosen so that the distribution of the value of time in this 

model fits the distribution of the labor income in Japan. Figure 2 plots the probability density, 

( ) /w nρ  against the value of time, w: 

<<Figure 2: About Here>> 

The fare for each service, f S (S=I, D), is based on the realistic value. The value of St  

includes the time of flights (4 hours for service D and 30 hours for service I) and stays at 

destination (36 hours for both services). The distance between the City and Airport 2, x, is equal 

                                                 
2 Under the log-normal distribution, let us denote by mw  the average value of time, then ( )exp .mw µ=  The 
standard deviation, σ , measures the degree of the heterogeneity, and an increase in σ  implies that the 
degree of the heterogeneity increases. 
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to the one between the CBD of Osaka and Kansai Airport, and the time per distance, a, is equal 

to the ratio between the access time and the distance from CBD to Kansai Airport. 

The expenditure share for service S, Sβ , and the marginal delay time at airport j (j=1, 2), cj, 

are calibrated so that the outcome of the model fits the actual number of users at two airports in 

Osaka Metropolitan Area. In case of Osaka, however, since the allocation of service is regulated 

to (D, ID), we cannot calibrate four parameters ( Sβ and cj) according three observable data. In 

order to avoid this problem, we set the marginal delay time at airport 1 is equal to 1.7 times3 as 

the marginal delay time at airport 2. Table 2 summarizes the result of the calibration and the 

actual number of users in 2004: 

<<Table 2: About Here>> 

Hereafter, we call the result summarized in Table 2 as the benchmark case, and we set each 

type’s target utility level, u(w), as the level at the benchmark case. Figure 3 plots the differential 

of the generalized cost for service D, ( ) ( )1 2
D Dg w g w− , at the benchmark case against the value of 

time, w: 

<<Figure 3: About Here>> 

In Figure 3, ŵ  represents the type who is indifferent between utilizing airport 1 and airport 2. 

Figure 3 shows that, in the benchmark case, individuals who have relatively high value of time 

use airport 2 (located far away from the city center) while those who have low value of time use 

                                                 
3 This is the ratio of operating hours at two airports. 
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airport 1 (located close to the city center). This result stems from the fact that, as shown in Table 

3, the level of airport charge at airport 1 (more congestible) is lower than at airport 2 (less 

congestible), and as a result, airport 1 is heavily congested. Therefore, individuals who have 

relatively high value of time prefer to use less congested airport even though they need to incur 

the access cost. 

4.2. The Social Optimum 

In this subsection, we report optimal solutions computed through the numerical simulation. 

First, we report the results of the base case, in which parameter values are set as shown in Table 

1, and then we consider how the changes in the degree of the heterogeneity affect the optimal 

solutions, and the incidence of the welfare improvement among heterogeneous users. 

The Base Case 

Table 3 below summarizes the optimal levels of airport charge and the number of users at each 

airport for two services: 

<<Table 3: About Here>> 

Figure 4 plots the differentials of the generalized cost for service D, at the social optimum, 

( ) ( )* *
1 2
D Dg w g w− , and at the benchmark, ( ) ( )1 2

D Dg w g w− , against the value of time, w: 

<<Figure 4: About Here>> 

In Figure 4, *ŵ  is the type who is indifferent between utilizing two airports at the optimum. 

According to Figure 4, individuals who have relatively high value of time utilize airport 1 at the 
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optimum. This result is referred from the fact shown in Table 4: i.e. the levels of airport charge at 

airport 1 (more congestible) are higher than at airport 2 (less congestible). Consequently, the 

congestion at airport 1 is relaxed, and the delay time at airport 1 is shortened. Therefore, 

individuals who have relatively high value of time prefer to use airport 1, the more easily 

accessible airport. 

To measure the change in the economic welfare, we compute the social surplus according to 

Eq. (11). Table 4 compares the social surplus between the benchmark case and the social 

optimum: 

<<Table 4: About Here>> 

As shown in Table 4, the social surplus is improved through implementing the optimal policy. 

Notice that the value of compensating variation is negative in the row of Social Optimum in 

Table 4. This implies that in order to achieve the benchmark utility level, u(w), the most of users 

are willing to pay; in other words, the most of users are better off by the optimal policy. 

Therefore, the improvement of the social surplus stems from the fact that the improvement of 

users’ welfare, measured by the compensating variation, dominates the loss of the operator, the 

decrease in the sum of revenues. 

Although the welfare of users is improved at the aggregated level, the incidence of the welfare 

improvement among users varies with types. In order to measure the incidence of the welfare 

improvement among users, we use the optimal level of the compensating variation, b*(w). If the 
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optimal policy reduces the generalized cost for trips, ( )Sg w , the compensating variation, b*(w), 

takes the negative value. Figure 5 plots the compensating variation, b*(w), against the value of 

time, w: 

<<Figure 5: About Here>> 

As shown in Figure 5, since b*(w) is negative for all types, the optimal policy improves the 

welfare of all users. 

The degree of the improvement, however, varies with types, and we can divide the population 

into several groups according to the change in the airport utilization. Let us denote by Group (i, 

j) a group of users who change to use airport j at the optimum from airport i at the benchmark 

case, then we have Groups (1, 2), (2, 2), and (2, 1) according to Figure 4. Group (1, 2) users have 

the relatively low value of time ˆw w< , and within this range of the value of time, the 

compensating variation, b*(w), is decreasing for low value of time while it is constant for high 

value of time. This is explained by the comparison of Tables 3 and 4: for low value of time users, 

the improvement of the welfare is generated from the reduction in the level of airport charge for 

service I (from 5.70 to 2.07); for high value of time users, although the reduction in the airport 

charge for service I improves their welfares, the increase in the number of users at the same 

airport as their airport choice (from 9,742 to 12,169 for service D and from 7,684 to 12,169 for 

service I) reduces the welfare improvement. 

Group (2, 2) users have the value of time *ˆ ˆw w w< < , and their welfares are improved through 
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the optimal policy. However, for this range, the compensating variation, b*(w), increases as the 

value of time, w, increases. According to the comparison of Tables 3 and 4, we can conclude that 

this result stems from the increase in the number of airport 2 users (from 7,684 to 12,169). Due 

to the increase in the number of users, the delay time is lengthened, and as the value of time 

increases the time cost, 2
Swt , increases. 

Group (2, 1) users have relatively high value of time, *ˆw w> , and their welfares are also 

improved at the social optimum. Also note that, for this range, the compensating variation, b*(w), 

is monotonically decreasing as the value of time, w, increases. Through the comparison of Tables 

3 and 4, this result is generated from the decrease in the number of users at the same airport as 

their airport choice (from 7,684 to 5,896). 

The Effect of the Degree of the Heterogeneity 

The degree of the heterogeneity is measured by the standard variation, σ , of the density 

function, ( )wρ , and the degree of the heterogeneity expands as σ  increases. We evaluate the 

effect of the degree of the heterogeneity by increasing σ  from 0.3 to 0.5. By increasing σ  

from 0.3 to 0.5, the value of time at 99 percentile rises from 6.5 thousand yen to 9.6 thousand 

yen. Table 5 compares the optimal outcomes at 0.3σ =  and 0.5σ = : 

<<Table 5: About Here>> 

As shown in Table 5, although the levels of airport charges at both airports rise as σ  

increases, the number of users at airport 1 decreases while the number of users at airport 2 
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increases. This is explained by the difference in the rise of airport charge at two airports. The 

distribution of users’ value of time directly is affected by the difference in the levels of charges in 

absolute value. Therefore, since the increase in the airport charge at airport 1 is much larger than 

the increase at airport 2, the distribution of users’ value of time at airport 1 shifts rightward as σ  

increases. Moreover, this shift explains the rise in the level of airport charges. At airport 1, since 

the distribution of users’ value of time moves rightward4, the average value of time, 1
Sw , 

increases, and consequently the level of airport charges rises. This distribution shift at airport 1 

induces the change in the distribution of users’ value of time at airport 2; this leads to the rise in 

the charges at airport 2. 

The changes in the social surplus shown in Table 5 are qualitatively similar to the base case: 

i.e. the social surplus is improved through implementing the optimal policy. However, at 0.5σ = , 

the degree of the improvement of users’ welfare is lower than at 0.3σ =  while the decrease in 

the revenue is mitigated. This is explained by the change in the levels of airport charges. As σ  

increases, the optimal level of the airport charge rises due to the change in the distribution of 

users’ value of time at both airports. As a result, the improvement of the users’ welfare shrinks 

and the decrease in the revenue is mitigated. 

Figure 6 compares the compensating variations, b*(w), at 0.5σ =  and 0.3σ = : 

                                                 
4 At each case, *ŵ  is given by: 
 * *

0.3 0.5
ˆ ˆ3.4 3.9.w w

σ σ= =
= < =  
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<<Figure 6: About Here>> 

As shown in Figure 6, at both cases, all types of users are improved through implementing the 

optimal policy, and the incidence of the welfare improvement is qualitatively similar. However, 

most of users are less improved when σ  changes from 0.3 to 0.5; this is induced by the rise in 

the levels of airport charges. In contrast, top 10% of the population is more improved when σ  

changes from 0.3 to 0.5. These users, who have relatively high value of time and utilize airport 1, 

receive the benefit from the reduction in the number of users at airport 1. 

4.3. The Regulation of the Service Choice 

In this subsection, we report the results of the numerical simulation for the regulation of the 

service choice. The regulation of the service choice is characterized by the situation where the 

social planner chooses the allocation of services while the levels of airport charges are 

exogenously given. In the numerical simulation, we set the levels of airport charges as the 

current level. Also note that, although there are 16 types of allocations, based on the results of 

Mun and Teraji (2010), we limit our focus on two types of the allocation, (ID, ID) and (D, ID). In 

Mun and Teraji (2010), we show that the allocation of services changes from (ID, ID) to (N, ID) 

via (D, ID) as the distance between two airports decreases. 

This subsection is organized as follows: first, we compare the outcomes under the no 

regulation, (ID, ID), and the regulation, (D, ID), at the base case where parameters are given is 

Subsection 4.1. Then, we consider how the distance between the city center and airport 2 affect 
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the social surplus under two types of allocation; finally, we compare the social surplus among 

three alternative policies, the optimal pricing, the regulation of the service choice, (D, ID) ,and 

the no regulation, (ID, ID). 

The Base Case 

Table 6 compares the results under the regulation of the service choice, (D, ID), and of no 

regulation, (ID, ID), at the current level of airport charges: 

<<Table 6: About Here>> 

According to Table 6, the social surplus is improved through the regulation of the service choice. 

Since the revenue increases through the regulation, the operator is better off through the 

regulation of the service choice. In contrast, since the compensating variations take negative 

value at no regulation, (ID, ID), the regulation of the service choice worsens the welfare of the 

uses. However, since the gain of the operator dominates the loss of users, the regulation of the 

service choice improves the social surplus. This result indicates that when the optimal pricing is 

infeasible, regulating the allocation to (D, ID) has some rationale. 

Figure 7 plots the compensating variations at no regulation, (ID, ID), against the value of time: 

<<Figure 7: About Here>> 

In Figure 7, ˆ ( , )w D ID  and ˆ ( , )w ID ID are the types who are indifferent between using two 

airports under corresponding allocations. Figure 7 shows that all users are better off through the 

removal of the regulation of the service choice. According to Figure 7, users are divided into 
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three groups according to the change in the airport choice: Groups (1, 1), (1, 2), and (2, 2). By 

changing the allocation from (D, ID) to (ID, ID), the welfare improvement among Group (1, 1) 

users is generated from the reduction in the airport charge for service I (from 5.7 to 5.0 according 

to Table 6). In contrast, the welfare improvement among users in Groups (1, 2) and (2, 2) stems 

from the decrease in the number of users at the same airport as their choice. 

The Effect of the Distance between City Center and Airport 2 

At the Base Case, the regulation of the service choice is justified since the social surplus under 

(D, ID) is greater than the social surplus under (ID, ID). In this part, we evaluate the effect of the 

distance between the city center and airport 2, x, on the justification of the regulation. Figure 8 

plots the social surpluses under two alternative allocations: 

<<Figure 8: About Here>> 

As shown in Figure 8, the social surplus under (ID, ID) exceeds the one under (ID, ID) for ˆx x> , 

and for this domain, the regulation of the service choice cannot be justified. This result is 

qualitatively similar to Mun and Teraji (2010). In Mun and Teraji (2010), we show that the 

optimal regulation of the service choice varies with distance between two airports. Moreover, as 

the distance between two airports increases, the optimal regulation changes from (D, ID) to (ID, 

ID). 

Also note that Figure 8 shows that the social surpluses under two allocations move differently: 

the social surplus under (D, ID) is relatively constant over the distance, x. In contrast, the social 
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surplus under (ID, ID) fluctuates over the distance, x; for x<35, the social surplus under (ID, ID) 

decreases as the distance, x, increases while for x>35, the social surplus under (ID, ID) increases 

as x increases. The movement of the social surplus under (D, ID) is explained as follows. As the 

distance between the city center and airport 2, x, increases, the number of service D users at 

airport 2 decreases. This decrease in the service D users induces the increase in the number of 

service I users, and service D users at airport 1. In summary, although the loss of the revenue 

from service D at airport 2 increases as x increases, it is recovered through the increase in the 

revenue from service I at airport 2 and service D at airport 1. 

The fluctuation of the social surplus under (ID, ID) is generated from the changes in the sum 

of revenues at two airports and the compensating variations. As x increases, the more users 

utilize airport 1, where the levels of the airport charges are lower, and consequently the sum of 

revenues decrease. In contrast, the increase in the number of users at airport 1 induces the 

decrease in the compensating variation for high value of time users since they are improved more 

as the number of users at the same airport as their choice, airport 2. As a result, the compensating 

variation in absolute value increases as x increases. For x>35, the increase in the compensating 

variation dominates the decrease in the sum of the revenue, and the social surplus increases. 

The Comparison with the Social Optimum 

Return to the Base Case, Table 7 compares the outcomes at the social optimum, the regulation 

of the service choice, (D, ID), and the no regulation, (ID, ID): 
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<<Table 7: About Here>> 

Table 7 shows that changing the allocation from (D, ID) to (ID, ID) always improves the welfare 

of users. Without the optimal pricing, the gain of users cannot recover the loss of the operator, 

and consequently, the social surplus at the no regulation becomes smaller than that of the 

regulation of the service choice. In other words, the regulation of the service improves the social 

surplus compared to the no regulation case. However, once implementing the optimal pricing, 

the welfare gain of users dominates the loss of operator, and as a result, the social surplus at the 

optimal pricing exceeds that of the regulation of the service choice. To put it differently, the 

welfare gain of the optimal pricing dominates that of the regulation of the service choice. This 

indicates that the regulation of the service choice is justified if the optimal pricing is infeasible. 

 

5. Conclusion 

This paper extends the model of Mun and Teraji (2010) by introducing the heterogeneity 

among users with respect to the value of time. We consider two types of policies, the optimum 

and the regulation of the service choice. The optimal policy is characterized by the following: i) 

the optimal airport charge is equal to the marginal delay cost, and it is identical between services 

at the same airport; ii) it is unnecessary to implement the regulation of the service choice. 

Moreover, in Subsection 4.2, by means of numerical simulation, we show that the optimal policy 

improves the welfare of users and worsens that of the operator. Also note that the levels of the 
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optimal airport charges rise as the degree of the heterogeneity increases. As a result, the welfare 

gain of users shrinks and the loss of the operator is mitigated. 

At the regulation of the service choice, we consider the case where the optimal pricing is 

infeasible. In Subsection 4.3, we show that the regulation of the service choice improves the 

economic welfare. However, the welfare gain of the regulation of the service choice is observed 

as long as the distance between two airports is relatively close. Moreover, the welfare gain of the 

regulation is quantitatively smaller than that of the optimal policy. These results are qualitatively 

similar to Mun and Teraji (2010), and suggest that the regulation of the service choice is justified 

if the optimal pricing is infeasible. 
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<<FIGURES>> 

 

 

 

Figure 1: The Geographic Feature of the City 
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Figure 2: Distribution of the Value of Time 
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Figure 3: Differential of the Generalized Cost for Service D at Two Airports (benchmark) 
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Note: The dashed line graph indicates the cost differential at the benchmark case while the continuous line 
corresponds to the cost differential at the optimum. 
 

Figure 4: Differentials of the Generalized Cost for Service D at Two Airports 
 (The Optimum and the Benchmark Case) 
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Figure 5: the Compensating Variations (unit: Thousand Yen) 
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Figure 6: the Comparison of Compensating Variations (unit: Thousand Yen) 
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Figure 7: the Compensating Variations under (ID, ID) (unit: Thousand Yen) 
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Figure 8: the Comparison of Social Surplus (unit: Billion Yen) 
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<<TABLES>> 

 
Table 1: Parameter Values at the Base Case 

 
Parameter Explanation Value Unit 

n  Population of the City 1,640,000 persons 
µ  Average of the Log-Normal Distribution 3.40  
σ  Standard Deviations of the Log-Normal Distribution 0.30   

Iβ  Expenditure Share for Service I Trips 21.10 10−×   
Dβ  Expenditure Share for Service D Trips 20.88 10−×   

h  Initial Endowment of Time 4,380 hours 
If  Fare for Service I Trips 199.86 thousand yen 
Df  Fare for Service D Trips 29.63 thousand yen 

1τ  Monetary Access Cost for Airport 1 0.8 thousand yen 

2τ  Monetary Access Cost for Airport 2 1.5 thousand yen 
It  Fixed Amount of Time for Service I Trips 66 hours 
Dt  Fixed Amount of Time for Service D Trips 40 hours 

x  Distance b/w the City and Airport 2 30 kilometers 
a  Travel Time per Distance 11.67 10−×  hours/kilometers

1c  Marginal Delay Time at Airport 1 71.30 10−×  hours/persons 

2c  Marginal Delay Time at Airport 2 70.73 10−×  hours/persons 
 
 
 
 
 

Table 2: The Results of the Calibration 
 

Data in 2004 Calibration 

Airport Charges 

(Thousand Yen) 

Number of Users 

(Thousand Persons) 

Number of Users 

(Thousand Persons) 
 

International Domestic International Domestic International Domestic 

Airport 1 

(Osaka) 
- 1.90 - 9742 - 9742 

Airport 2 

(Kansai) 
5.70 2.60 5596 2088 5596 2088 
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Table 3: The Optimal Airport Charges and the Number of Users 
 

Optimal Airport Charge 

(Thousand Yen) 

Number of Users 

(Thousand Persons)  

International Domestic International Domestic 

Airport 1 4.02 4.02 2140 3997 

Airport 2 2.07 2.07 3756 8172 

 
 
 
 
 
 

Table 4: The Social Surplus at the Optimum and the Benchmark (unit: billion yen) 
 

 Social Surplus 

Revenue 

,
S S
j jS j

p Q∑  

Compensating Variations

( ) ( )
w

w

w b w dwρ∫  

Social Optimum 62.02 49.36 -12.66 

Benchmark 55.84 55.84 - 

Differentials 6.18 -6.48 12.66 
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Table 5: The Results at 0.3σ =  and 0.5σ =  
 

0.3σ =  0.5σ =  
 

Optimum Benchmark Optimum Benchmark

Airport 1 2140 - 2131 - 
I 

Airport 2 3756 5596 3763 5232 

Airport 1 3997 9742 3784  

Number of Users 

(Unit: thousand persons)
D 

Airport 2 8172 2088 8282 2757 

Airport 1 4.02 - 4.60 - 
I 

Airport 2 2.07 5.70 2.20 5.70 

Airport 1 4.02 1.90 4.60 1.90 

Airport Charge 

(Unit: thousand yen) 
D 

Airport 2 2.07 2.60 2.20 2.60 

Social Surplus 62.02 55.84 63.93 54.76 

Revenue 49.36 55.84 53.71 54.76 

Compensating Variation -12.96 - -10.22 - 

 
 
 
 
 

Table 6: The Results at Two Alternative Allocation of Services 
 

(ID, ID) (D, ID) 
 

No Regulation Regulation 

Airport 1 2871 - 
I 

Airport 2 1897 5596 

Airport 1 6189 9742 

Number of Users 

(Unit: thousand persons) 
D 

Airport 2 3783 2088 

Airport 1 5.00 - 
I 

Airport 2 5.70 5.70 

Airport 1 1.90 1.90 

Airport Charge 

(Unit: thousand yen) 
D 

Airport 2 2.60 2.60 

Social Surplus 54.58 55.84 

Revenue 53.89 55.84 

Compensating Variation -0.69 - 
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Table 7: The Results at Three Alternative Policies 
 

Optimal Pricing 
Regulation of the 

Service Choice 
No Regulations 

 

(ID, ID) (D, ID) (ID, ID) 

Airport 1 2140 - 2871 
I 

Airport 2 3756 5596 1897 

Airport 1 3997 9742 6189 

Number of Users 

(Unit: thousand persons) 
D 

Airport 2 8172 2088 3783 

Airport 1 4.02 - 5.00 
I 

Airport 2 2.07 5.70 5.70 

Airport 1 4.02 1.90 1.90 

Airport Charge 

(Unit: thousand yen) 
D 

Airport 2 2.07 2.60 2.60 

Social Surplus 62.02 55.84 54.58 

Revenue 49.36 55.84 53.89 

Compensating Variation -12.96 - -0.69 

 


