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In order to maximize profits and strengthen market position airlines use yield management. Product 

differentiation in airline economics, offering different fare types, different prices, services and 

qualities, is an important element of yield management. 

In this paper we address the strategic behavior of airlines regarding product differentiation using a 

non-localized competition random utility model. Here, the airlines are explicitly assumed to 

differentiate products in terms of price, quality, and number of fare types. The theoretical optimal 

patterns of product differentiation as well as the effects on airline profits and social welfare in a 

duopolistic market are analyzed. The purpose of the analysis is twofold: to make trade-offs in 

product differentiation explicit and subsequently studying the underlying factors of this trade-off. 

The analysis shows that airlines have an optimal number of variants (fare types) which is dependent 

on the underlying price-quality game, cost factors, the relative valuation of quality and the interfirm 

and intrafirm unobserved heterogeneity. Furthermore, we find that the patterns of product 

differentiation, as encountered in the real world, can only be explained in the random utility 

framework under strict assumptions about unobserved heterogeneity at the demand side of the 

model (not earlier indicated in the literature).   
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Section 1. Introduction 

In order to maximize profits and strengthen market position, airlines offer different fare types for the 

same flight, characterized by different prices, services, restrictions and qualities. In this way, product 

differentiation has become an integral part of revenue management of airlines. Yield management in 

transport economics is not only limited to the aviation sector, railway companies also apply product 

differentiation to maximize revenues. The most extreme result of this product differentiation, as well 

as real-life evidence of existence of the phenomenon, is the emergence over the last decays of low 

cost carriers while not all full service carriers left the market. The most classical way to differentiate 

between fare types is to use an economy and a business class, however, as Table 1 shows, 

differentiation is not only limited to these two fare types. Table 1 shows, for three major routes, the 

operating airlines, the number of fare types offered per airline, the price range, and the aspects of 

(quality) product differentiation. The three routes are among the busiest airline routes in the world in 

terms of aircraft movements. The price range indication is based on a one-way trip at 21 September 

2010 (half year from now), by checking prices for dates further away we avoid the problem of non-

availability of certain ticket prices and/or the price effect of the limited availability of seats. In the 

Sydney-Melbourne market, four airlines are competing, with Qantas being the traditional full service 

carrier and Tiger Airways the low cost carrier. 

 

Table 1 Overview of product differentiation in selected airline markets 

 
Number of 
fare types 

Price range 
(€) 

Quality differences between fare types 

Airline Sydney – Melbourne 
Qantas 5 67-355 Booking changes; Cancelations; FFP program 

Virgin Blue 5 60-290 Booking changes; Cancelations; FFP program; Luggage; Inflight personal 
space 

Jetstar Airways 3 26-182 Booking changes; Cancelations; Luggage 
Tiger Airways 1 26-53 - 

    
 Barcelona – Madrid 

Iberia 5 43-246 Booking changes; Cancelations; Luggage 
Spanair 4 29-244 Booking changes; Cancelations; Luggage; Check-in; Inflight personal 

space; Inflight catering; Lounge access 
Air Europa 2 38 – 180 Luggage; Inflight Catering 

Vueling 1 34-79 - 
    
 Amsterdam – London 

Air France KLM 5 86-310 Booking changes; Cancelations; Lounge access 
British Airways 4 77-413 Booking changes; Cancelations; Inflight personal space; Lounge access 

EasyJet 1 34-54 - 

 
As Table 1 shows, low cost carriers do not differentiate their product (Vueling and EasyJet) and offer 

one fare type, with Air Europa being the exemption. Besides the differentiation in marketing – names 

for the different fare types vary from Red e-Deal to JetFlex and from Euro Traveller to Club World – 
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the differentiation in quality is remarkable. The fare types differ in restrictions for booking changes, 

cancelations procedures, luggage handling (weight) and point earnings in the loyalty (FFP) program. 

Not only high quality inflight services are offered (space, catering and entertainment), also access to 

better ground facilities (preferred check-in procedure and access to lounge) are used to differentiate 

the product. It can be concluded, at least for the markets shown in Table 1, that in the oligopolistic 

airline market the different airlines offer a distinct number of fare types, however the amount of 

offered fare types seems to have a boundary. In the current paper we theoretically formalize the 

strategic behavior of airlines which can possibly explain the intrafirm product differentiation as well 

as the interfirm differences in product diversity.  

 

Product differentiation is a key issue in economic theory, in general three distinctive approaches 

have been developed over time (see Anderson et al. (1992) for an excellent review): random utility 

models (e.g. McFadden (1974), Perloff and Salop (1985)), representative consumer models (Dixit and 

Stiglitz, 1977) and the address models (Hotelling, 1929). Although the three frameworks show 

overlap, and are therefore not diametrical different, we use here the random utility approach. Using 

this approach has two major benefits compared to the other two. First, the random utility framework 

offers the advantage of relative simple, analytical tractable, expressions for demand systems, best 

reaction functions and equilibrium outcomes. Existence and uniqueness properties of this framework 

are therefore available in the literature or are relative easy to deduct. Secondly, the random utility 

framework offers excellent possibilities to combine theoretical insights with empirical estimated 

models (multinomial logit, nested logit and mixed logit models) and therefore to perform simulation 

exercises parameterized on real-life data. 

  

Product differentiation occurs if consumers include non-price characteristics of the products in their 

purchase decision. Therefore, competition in oligopolistic markets with differentiated products 

cannot result into Bertrand pricing, since the products in the market are not seen as being 

homogenous by consumers. This notion is very important, because it gives firms in an oligopolistic 

market an incentive to differentiate their products, in order to increase market power. The step to 

welfare analysis is therefore not surprising, since there seems to be a trade-off between more 

products in the market (more choice, higher consumer surplus) and higher costs for society (specific 

production costs as well as the market power effect). Product differentiation in oligopolistic markets 

can be regarded as localized (Kaldorian approach, Kaldor (1935)) or non-localized (Chamberlinian 

approach, Chamberlin (1933)) competition. Since the non-localized approach is better suited to study 

in the random utility framework, we use here this specific approach. The advantage of localized 
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competition is that consumers are not assumed to be identical but to be distributed in a product 

characteristics space, analogue to the geographical space. Therefore, consumers are more willing to 

buy products of the neighboring firm in the product characteristics space compared to products of 

more distant firms in the product characteristics space. A major drawback is that these types of 

models are deterministic in the sense that the utility function does not have a probabilistic term; 

unobserved heterogeneity across consumers is not present. In the non-localized framework observed 

consumer variation can be incorporated by constructing different consumer groups, latent classes, or 

applying continuous mixed multinomial  logit models, so that specific distributions of the valuation of 

product characteristics is allowed. In this paper we focus on the non-localized oligopolistic 

competition applying mainly nested logit models.  

 

While there is a huge pile of literature about oligopolistic competition and differentiated products, 

the airline specific literature, both theoretically and empirically, is not developed in line. However, 

yield management in airline economics has been studied in detail, mostly in a non theoretical way. 

McGill and van Ryzin (1999) provide a good example of such a study. One of the first studies using 

discrete choice analysis to understand the choice between different air carriers and fare classes is 

provided by Proussaloglou and Koppelman (1999). Based on stated preference data, they identify 

tradeoffs between service quality, fare levels, schedule convenience and market presence. Algers 

and Beser (2001) combine revealed and stated preference data to identify factors underlying the 

choice for fare category, in particular change and cancellation policies. Their results show that a no 

change policy makes the specific fare category more undesirable, but that the largest negative effect 

is caused by a Sunday rule (obliged Sunday night in the trip) dummy. One of the most recent 

contributions is given by Balcombe et al. (2009); they perform a choice experiment in which they 

identify the in-flight service and comfort levels. Using a mixed logit model, they estimate in a 

willingness-to-pay space the effects of price, leg space, seat width, availability of a screen, amenity 

pack and catering services. Their results indicate that effects are the largest for leg space and seat 

width, followed by screen availability. Catering services are less valued, while amenity packs have a 

negative willingness-to-pay. 

 

In the theoretical literature, Botimer and Belobaba (1999) are the first to point out that the airline 

revenue management literature describes and uses product differentiation models which assume 

that the demand for each of the fare types is independent of the price levels of the other fare types 

offered by the same airline or in the market. They come up with a static generalized cost model to 

include explicitly the trade-off airlines face when selling different types of products; cannibalization 
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effects and the other costs related to offering more than a single product. However, as in Botimer 

(1996) in which is stated that product differentiation can have beneficial effects for welfare, the 

authors neither use a random utility framework to model the demand for airline tickets nor include 

oligopolistic competition. Instead they use a linear demand model in which they assume that a fixed 

percentage of the expected demand for each fare type will be diverted to the other product types at 

given prices.  

 

More recent literature discusses the effect of dynamic price competition in airline revenue 

management. Zhang and Cooper (2009) formulate a model in which a Markov decision process 

formulation is chosen to represent the pricing behavior of airlines. Their main objective is to test the 

pooling of heuristics within the Markov decision process under different assumptions about 

consumer preferences and airline characteristics. The model setting cannot be compared one-to-one 

to the setting we apply, since they do not take into consideration an oligopolistic market setting and 

product differentiation is defined as different departure times for the same origin-destination pair. 

One could argue that a different departure time does not belong to product differentiation because 

in essence a different trip is offered. Lin and Sibdari (2009) apply a random utility framework and a 

dynamic duopolistic market setting to show that a Nash pricing equilibrium exists. Contrary to Lin 

and Sibdari (2009), we allow for more than only the price instrument in the oligopolistic competition. 

We explicitly address the quality choice per product type of airlines as well as the number of product 

types, thereby adding more insight into oligopolistic product differentiation. Furthermore we relax 

the implicit assumption of independence of irrelevant alternatives made by Lin and Sibdari (2009) by 

using a nested logit model instead of a multinomial logit model. To the best of our knowledge, we 

are the first to address explicitly the strategic behavior of airlines regarding product differentiation in 

terms of prices, qualities and number of fare types, in airline revenue management using a non-

localized competition random utility framework.  

 

Section 2 discusses the different ways to model the demand side, introduces the cost side of the 

model, and the manner to solve for the Cournot-Nash equilibrium. In Section 3 we apply the model 

to a duopoly, showing equilibrium outcomes in prices, qualities and number of fare types. Section 4 

provides numerical analyses for the duopoly market setting relaxing the symmetry assumptions used 

in the preceding sections. Section 5 provides a discussion and conclusions.  
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Section 2. Model 

 

2.1 Demand  

The nested multinomial logit model is used to analyze the behavior of multiproduct firms (see 

Anderson et al. (1992)). Suppose that in total n firms are present in the market, 1i n , and that 

each firm sells 
im products, 1i ik m . The demand for each product depends on the utility derived 

by person t , 1t T , from that product. We use the number of restrictions of a specific fare type as 

a proxy for the quality of the product. The utility depends on the price,
ikp , the number of 

restrictions of a fare type, 
ikr and an alternative specific constant:  

  

 2 .ikt ik t ik t ik kt iktV ASC r p         (2.1) 

 

In equation (2.1), t is the valuation of the proxy of quality by consumers and 
t is the valuation of 

price by consumers. In principal these utility parameters can differ across consumers, for now we 

suppress subscript t . The alternative specific constant captures the unobserved sources of utility of 

the specific alternative. The product specific and combined error terms (assuming   0iVar   ) are 

assumed to be independent and identically Gumbel distributed with scale parameters 
1 and 

2

respectively. So,   2 2

1 / 6ikVar    and   2 2

2 / 6kVar    .  

 

Based on a priori conjectures about the nesting of alternatives, two approaches are available, see 

Figure 1 and Figure 2. In the first approach, as followed by Anderson et al. (1992), each firm is 

associated with a specific nest, while in the second approach each fare type is associated with a 

specific nest. In this latter approach 
im looses the subscript, becomes m , and represent the total 

varieties available in the market. The outside alternative is represented by 
outV and can be handled as 

a degenerated alternative. In section 3 it becomes clear that the nest structure (as imposed by the 

modeler) is essential in describing the patterns of production differentiation.  

 

 

 

 

 

 
Figure 1 Nested logit set up with firm specific nests 
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The demand for variant k of firm i in the nested logit model as depicted in Figure 1 is as follows: 
 

   |; ; , 1 , 1 ,ik i k i iX p r m T k m i n      (2.2) 

with  

 

2

2

| 2

1 2

exp

,

exp
i

ik ik ik

k i m

ih ih ih

h

ASC r p

ASC r p

 



 



  
 
 

 
  
 
 



 (2.3) 

and 

 
 

   

1

1 1

1

exp /
,

exp / exp /

i

i n

j out

j

S

S V



 


 


 (2.4) 

and 

 
2

2

1 2

ln exp .
jm

jh jh jh

j

h

ASC r p
S

 




   
     

  
  (2.5) 

 

The probability of choosing a product of a certain firm is the probability that the specific firm is 

chosen multiplied by the conditional probability that product k is chosen. The demand function is a 

function of  1 np p p with  1 ii i imp p p , and  1 nr r r with  1 ii i imr r r  and 

 1 nm m m . We assume that all 
ip , 

ir  and 
im  are larger than zero. The probability that firm i is 

selected, equation (2.4), depends on the expected benefits of choosing firm i, which is based on all 

product varieties offered by firm i, the expected benefits of all n firms in the market, jS , see 

equation (2.5), and the utility derived from the outside alternative, 
outV . The scale parameters need 

to be restricted in order to satisfy the requirements of maximizing random utility theory: 
1 2 0   . 

This means that the unobserved heterogeneity of preferences at the higher nest is at least as large as 

the unobserved heterogeneity at the lower level. According to Anderson et al. (1992) a more specific 

Figure 2 Nested logit set up with fare type specific nests 
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and behavioral interpretation is possible: 
1  can be interpreted as measure of interfirm unobserved 

heterogeneity, whereas 
2  can be seen as a measure of intrafirm unobserved heterogeneity as well 

as the preference for diversity. Both interfirm and intrafirm heterogeneity are increasing in 
1  and 

2 respectively. Since 
1 2 0    applies, interfirm heterogeneity is larger compared to intrafirm 

heterogeneity implying that varieties produced by a firm are most similar to each other.  

 

The model as depicted in Figure 2 has a different assumption about the relative magnitude of 

intrafirm and interfirm hetergoneity: 

 

   |; ; , 1 , 1 ,ik k i kX p r m T k m i n      (2.6) 

 

 

2

2

| 2
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ik ik ik

i k
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jk jk jk

j
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ASC r p

 



 
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 
 

 
  
  
 



 (2.7) 

 

 
 
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1
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1
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exp / exp /

k

k m

h out

h

S

S V


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
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 (2.8) 

 

 
2

2

1 2

ln exp .
n

jh jh jh

h

j

ASC r p
S

 




   
     

  
  (2.9) 

 

Here, the probability choosing product ik is the probability of choosing fare type k multiplied by the 

conditional probability of choosing firm i (given fare type k ). From the definition of the nest 

structure it follows that 
2 1 0   must hold in order to satisfy the random utility maximization 

theory. So, here the crucial assumption is whether or not the interfirm heterogeneity outweighs the 

intrafirm heterogeneity, as is the case in Figure 1, or not, as depicted in Figure 2. In essence this is an 

empirical question, however we will continue in the next section with both models, since both 

models give diametrical insights in patterns of product differentiation. 

It is also possible to write down the demand model assuming individual (or group) specific utility 

parameters. The random parameters multinomial logit model is best suitable for this purpose (Berry 
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et al., 1995). In contrast to most econometric applications we do not assume that the mixture is 

continuous, but we assume here a discrete mixture. Therefore we have a latent class model as 

frequently applied in marketing and consumer behavior sciences (Swait, 1994). The model is in 

particular useful if G  segments are distinguished in the population, each of which has its own choice 

behavior of preferences. In the case of the aviation markets, airlines could segment the market based 

upon income, employment, travel purpose etc. The utility of individual t  belonging to the latent 

segment g  ( 1g G ) for alternative ik  (the firm – fare type combination) is defined as: 

 
| | .ikt g g kt ikt gV X    (2.10) 

 

g  is a row vector with the utility parameters for segment g , 
iktX is a column vector of alternative 

and individual characteristics and |ik g is the random component of the utility (IID Gumbel distributed 

with scale parameter g ). So, the demand for variant ik is:  

 

   |

1

; ; , 1 , 1 , 1 ,
T

ik ikt g tg

t

X p r m k m i n g G


       (2.11) 

 

with 
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 (2.12) 
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 
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 


 (2.13) 

 

The demand for variant ik  by person t  is the probability that person t  chooses alternative ik  

conditional on the segment g , equation (2.12), multiplied by the probability that person t  belongs 
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to segment g , equation (2.13). The total demand for variant ik  is the individual demand summed 

over all individuals or group of individuals. The scale factor, g , needs to be larger than 0, implying 

  2 2

| / 6kt g gVar    . The scale parameter  is larger than zero as well, g and 
tZ are the row and 

column vector representing the utility parameters of belonging to a segment, g, and individual 

characteristics respectively. 

 

2.2 Supply 

In order to analyze the pattern of product differentiation, we need to include information about the 

supply side of the model. Equation (2.14) shows the profit function which we use to describe the 

supply side.   

 

     
1

; ; , 1 .
im

i ik ik ik ik ik i

k

p r m p c r X F K i n


      (2.14) 

 

We assume that  ik ik ikc r c r  . So, for each restriction added, the cost per passenger declines. In 

order to guarantee an equilibrium, the costs are linear in quality (the number of restrictions) while 

strictly concave in the utility of the alternative. The  parameter represents the constant marginal 

cost per restriction. Furthermore, we assume that each airline faces quality-independent fixed costs 

per variant, F , and fixed (sunk) costs, K .  

 

The airline optimizes profit in two stages. In the first stage, the airline determines the number of 

products, 
im , to offer, whereas in the second stage the airline determines the quality, 

ikr , and 

optimal price,
ikp , simultaneously. This two-stage game ensures that each firm takes into account the 

effect of their actions in the first stage (number of varieties) on the second stage, the price and 

quality competition stage. We use backward induction to solve this optimization problem, finding 

optimal prices and qualities for 
im  varieties first and use these outcomes to determine the optimal 

im . We use the Cournot-Nash equilibrium concept in both stages of the game. In the second stage 

airlines optimize their profits by setting prices and quality, given the prices and qualities set by their 

competitors. While in the first stage the number of varieties is optimized given the number of 

varieties offered by their competitors. So, given number of varieties m in the first stage, the 

corresponding simultaneous price quality subgame, assuming quality is a continuous variable, is 

solved by    * *

1 ; ;np r m p r m and    * *

1 nr m r m  ensuring that: 
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    * * * * * *, ; , ; , ; , ; .i i i i i i i i i ip p r r m p p r r m      (2.15) 

 

 * *;p r m
 
and  * *

;r p m  are the resulting optimal price and quality vectors at which point profits 

need to be evaluated in the next stage, denote this profit function as    **; ;i im p r m  . The 

second-stage game equilibrium is then characterized by * *

1 nm m , satisfying the following condition:  

 

    * * *ˆ ˆ, , .i i i i i im m m m    (2.16) 

 

So, the subgame perfect Nash equilibrium is characterized by *m ,  * *
;r p m  and  ** ;p r m . If *r

and *p are evaluated at  *m , we have found the corresponding equilibrium path. 

 

The nested multinomial logit model as presented in equations (2.2) until (2.5) offers a natural 

manner to construct a welfare measure. The so-called log-sum, or the expected maximum utility of 

all alternatives in the market, is an approximation for the consumer surplus in this model, while the 

combined profits of all firms form the producer surplus. Within the framework of the utilitarian 

(indirect) welfare function, a component representing aggregate income, Y Ny , should be added. 

So, total welfare becomes: 

 

       1 1 1

1 1 1

1
ln exp / exp / .

imn n

j out ik ik ik ik ik i

j i k

W T S V Y p c r X F K   
  

 
       

 
   (2.17) 

 

Here,   is the marginal utility of income, so all parts of the welfare functions are in monetary terms. 

In case we use the nested logit model as depicted in Figure 2 , we replace the first part of equation 

(2.17) by the natural logarithm of the denominator of equation (2.8) multiplied by  1 1/N  . 

 

 
Section 3. Duopoly 

We consider a duopoly with two firms, i and j . As already indicated in the last section, the airline 

maximizes profits with respect to number of fare types, prices and qualities. The profit functions in a 

duopoly market structure are firm specific:   
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    
1

; ; , 1,2.
im

i ik ik ik ik ik ik i

k

p r m p c r X F K i 


       (3.1) 

 

With 
ikX

 
as defined in equations (2.2), (2.6) and (2.11) respectively. Successively we show the first 

best response functions in prices, qualities and number of fare types for each of the three defined

ikX .   

 

 

 

 

 

 

 

 

In the first stage, the best response functions in prices and qualities in the demand model of 

equation (2.2) and as depicted in Figure 3 are as follows: 
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And applying equation (3.2) 
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 (3.3) 

 

The absolute markup, as given in equation (3.2), is the same for each of the m varieties. 

Furthermore, since 
1 2  , the absolute markup is necessarily positive. Note that both the price and 

quality of a fare type depend on all other 1im  varieties. Anderson et al. (1992) observe that the 

absolute markup is constant across all variants supplied by one firm and that this property still holds 

when the model allows for different (exogenous) costs and qualities of the product. This implies a 

Air 1 

 

Air 2 
outV  

 

1 
ik  

 

im  

 Figure 3 Nested logit set up with firm specific nests in duopolistic market 
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major drawback of the model as depicted in Figure 3. If this model is applied to determine the 

simultaneous price and quality setting of a firm, an obvious solution to the set of first order 

conditions is the symmetric one in which the firm sets multiple products in the market which are 

identical in observed effects (and the instruments used by the firm) but still non-identical in the 

unobserved effects. In equilibrium, different prices and qualities can only be obtained via exogenous 

changes in the cost parameters 
ikc and 

ik . So, this model can only predict product differentiation in 

which the products are not differentiated by endogenous characteristics. However, it is still attractive 

to offer multiple (identical products) because individuals have a preference for variety (
2 ) and it is 

easy to see that 
i increases in the number of varieties in a nest. In determining the number of fare 

types, the fixed costs per variant play a major role2.  

 

Introducing symmetry, 
ik ih ip p p  , 

ik ih ir r r  , 
ik ih ic c c  , 

ik ih i     and | |

1
k i h i

im
    ,  the 

optimal prices and qualities for both firm i and j become:  
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So, the profit function in the symmetric case becomes: 
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 (3.6) 

 

Given (3.6) we can determine the first stage outcome of the game as

     max 1 2i i i i i im m m         . We need to define the derivative of the profit function 

with respect to 
im to find the optimal number of varieties, taking 

im as a continuous variable. 

Appendix A shows in an intuitive way that the equilibrium in *m exists and is unique, taking m as a 

                                                           
2
 Based on simulation. These simulations exercises are not included in this paper neither for the nested logit 

model as depicted in Figure 3 nor for the random parameter model, since both models do not overcome the 

constant markup property. However, the simulation results are available upon request. The numerical analysis in 

section 4 is totally devoted to the nested logit model as depicted in Figure 4. 
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continuous variable. Unfortunately the derivative cannot be written down in an analytical expression 

for 
im , due to implicit definitions of the best response functions in prices and the non-linearity of the 

demand model. 

 

As already mentioned in the last section, the latent class discrete choice model can be used to check 

whether or not the constant markup property still holds when the preferences for quality and prices 

are distributed across (groups of) individuals. Again, in the first stage the airline maximizes profits by 

optimizing the profit function with respect to the price and number of restrictions: 
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 (3.7) 

 

While analytically it is not that easy to see whether or not the random parameter model overcomes 

the constant markup property, a very simple numerical analysis shows that the property still holds. 

Assume that T (groups of) individuals are distinguished, each with a different income, and that two 

latent classes are defined by the airline (researcher): business and leisure traveler. The utility 

function of the conditional probability is defined as in equation (2.10). The scale parameters as well 

as the utility parameters in the conditional choice probability differ over the two defined classes. 

Simulation in Matlab shows that, using numerical values for all unknown parameters, independent of 

the number of varieties per firm supplied, each variety of the same firm has the same (constant) 

markup and the same number of restrictions. So, the assumption about different elasticities of 

demand, the elasticity of the market share of the outside alternative with respect to a change in the 

price of the outside alternative is calculate for each (group of) individual(s), across individuals does 

not play a role in the pattern of product differentiation.   
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Figure 4 Nested logit set up with fare type specific nests in duopolistic markets, r=1..5. 
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As noted earlier, the assumption that unobserved intrafirm is smaller compared to unobserved 

interfirm heterogeneity is the major reason that there is a pattern of product differentiation which is 

predicted to have similar prices and qualities over all products of the same firm. The nested logit 

model as introduced in the equations (2.6) until (2.9) and depicted in Figure 4 provides a different 

assumption about the heterogeneity and therefore, as will become clear now, a different pattern of 

product differentiation. 

 

In the first stage, the best response function in prices is as follows: 
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In contrast to equation (3.2), it can be now readily verified that the markup is not constant anymore 

across the varieties of the same firm. The first order condition for each variety is different because 

the interfirm heterogeneity (or intra fare type heterogeneity), 
k , is different for the different 

varieties. The way to determine the optimal number of restrictions per variety differs compared to 

the former approach. We assume that the range of restrictions (and therefore possible nests) is 

limited, in this case 1 5r  , as depicted in Figure 4. The airlines determine in which of the nests 

(with accompanying number of restrictions / service level) they position their product(s) with the 

constraint that an airline can just position one product in each nest. So, both airlines choose the 

strategy defined as: 

 

        max 1, 1 1, 2 1, 5 5, [1,2,3,4,5]i i i i i i i im r m r m r m r               (3.9) 

 

Without loose of generality we can also assume that both 
im and 

ir are less restricted and that they 

are in the range  1  , however that would increase the complexity of the model without 

increasing the insights in the model. In the next section we show a numerical example to illustrate 

the pattern of product differentiation implied by this model.  

 

 

 



Optimal Differentiation and Number of Airline Fare Types. DRAFT VERSION, PLEASE DO NOT CITE  

May 25, 2010 

 
Section 4. Numerical analysis 

Here we show the simplest, and very restrictive, set-up needed for a numerical analysis to get a 

better understanding of the model as depicted in Figure 4. In later versions of this paper, the 

numerical analysis will be extended.  

 

Here we only show that if the number of nests (and number of varieties supplied) are exogenous 

determined, product differentiation in prices occurs, this in contrast to the nested logit model as 

presented in Figure 3. We assume that there are two nests, one with a fare type with only one 

restriction (high quality), and the other nest with a fare type of four restrictions (low quality).    

 

Table 2 and Table 3 show the supply and demand parameters used as input for this small numerical 

analysis. The constant part of the marginal costs per passenger, 
mc , is in the range as reported by 

Brueckner and Spiller (1994). The fixed costs per variant, F , are chosen in such a way that combined 

with the number of potential passengers in the market, T , the optimal number of products are 

between zero and five.3 Since we are here not interested in the optimal number of firms, the fixed 

costs per firm K can be set at zero without affecting the relative profit and welfare results. The 

demand parameters as stated in Table 3 are based on literature, in particular Pels et al. (2000), Algers 

and Beser (2001), Balcombe et al. (2009) and Adler et al. (2010). Since parameter estimates cannot 

be directly compared over studies, we calculate in our numerical analysis the accompanying price 

elasticities of market share and compare these with the values of the elasticities as reported in the 

literature. Note that we distinguish two airlines, airline 1 and airline 2, in which airline 1 is a 

conventional carrier (higher average cost, less cost advantage from more restrictions, but lower fixed 

costs per variety) and airline 2 is a low cost carrier. Furthermore, we assume that the products with 

more restrictions are more similar (higher competition) than fare types with less restrictions. 

  

Table 2 Cost parameters 

Parameter 1F  2F  1c  2c  1  2  K  

Value 30000 60000 150 140 10 15 0 

 

Table 3 Demand parameters 

Parameter     1  2, 1nest  
2, 2nest  ASC  outV  T  Y  

Value 1.2 0.04 1 0.6 0.8 10 1 10000 0 

                                                           
3
 Based on simulation exercises, not shown here.  
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For this scenario, the pattern of product differentiation for both airlines is characterized by Figure 5: 

 

 

 

 

 

 

 

 

As can be noticed from the figure, the way the nested logit model now is defined results in intrafirm 

product differentiation. As expected, the higher costs of airline 1 result in higher prices, and 

therefore lower market share. Further (numerical) research should, using this set up, focus on taking 

both the nest structure as well as the number of restrictions and fare types as endogenous. 

Furthermore, the way how to deal here with degenerated alternatives should be clarified. 

 

5. Conclusion 

A quick scan of airline pricing nowadays, shows that airlines use product differentiation in their yield 

management policies, resulting in different airlines offering a different number of products with 

accompanying prices and qualities. In the current paper we studied three different models to study 

this strategic behavior of airlines. The model we use can be described as a non-localized competition 

random utility model, to the best of our knowledge we are the first to study yield management in 

this framework, explicitly addressing prices, qualities and number of products as instruments of yield 

management. 

 

The theoretical model shows that, using the nested multinomial logit model with fixed consumer 

preferences for price and quality, and applying non-cooperative game theory, the equilibrium, given 

a certain parameterization, in prices, qualities and product varieties is existent and unique. 

Conditional on the assumptions about the unobserved heterogeneity, we find that the markup for 

each product variety is constant, even under different marginal costs and qualities. This property 

results in non realistic prediction of the pattern of product differentiation: each firm produces 

multiple products with the same price and quality characteristics. This seems to be contradicting with 

what we observe in reality. This somewhat unexpected results, forced to rethink the model in order 

to avoid the constant markup property as is captured in the multinominal logit model and the nested 

logit model as advocated by Anderson et al. (1992). 
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1r   

 

outV  

 

Airline 1 
*

11 164p   

Airline 2 
*

21 158p   

Airline 1 
*

12 153p   

Airline 2 
*

22 144p   

Figure 5 Simulation results for nested logit model with exogenous number of fare types and restrictions 
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A quick simulation exercise shows that this constant markup cannot be avoided using a random 

parameter logit (latent class) model allowing consumer preferences to be distributed across 

consumers. The reversed nested logit model, with fare types as nests and airlines as elemental 

alternatives, turned out to be the only model circumventing the constant markup property.  

 

Further research should be devoted to two main topics. First, the applied cost functions used for the 

numerical analyses need to be improved and made more realistic. Secondly, and more important, a 

next step to circumvent (or to understand) the reasoning behind the constant markup property 

should be in the research agenda. 
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Appendix A 

In order to show that the symmetric simultaneous price quality equilibrium exists, two conditions 

need to hold4:  
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where     2

21 1 2 1             and     
2

22 1 .         

 

In words, the second order derivative of the profit function with respect to prices needs to be 

negative, equation (A.1), while the product of the second order derivative with respect to prices and 

qualities minus the square of the second order partial derivative to prices and qualities, equation 

(A.2), needs to be positive. In the first case, it is obvious that the condition as mentioned in equation 

(A.1) holds. In the latter condition it is less obvious, however it is observed that if 1  , 0  and 

the absolute value of   1 1     should be larger than   for the condition in equation (A.2) 

to hold. There is no strict expression for this condition, although we can infer that the condition holds 

as long as   is sufficiently large (not near zero) and  is not too large.  

As it is shown that the symmetric price quality equilibrium exists, we conjecture that the asymmetric 

equilibrium is existent and unique as well. Unfortunately it is unwieldy to write down the appropriate 

second order conditions and the resulting Hessian of the determinants in case of asymmetric 

equilibriums. Therefore, in our numerical analysis we calculate the determinants of the Hessian, in 

order to be sure that the outcomes represent an equilibrium.  

                                                           
4
 Note that we here specify quality as a continuous variable increasing in q, in order to follow Anderson et al. 

(1992) more closely. This is the mirror case compared to the definition used in section 3, however, without loose 

of generality, the reasoning about existence and uniqueness of the equilibrium are the same.   
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We now use the above analysis and the arguments as provided by Anderson et al. (1992) to show 

that the equilibrium in prices, qualities and number of products exists. There exists a markup 

 ˆ ˆ
k k kp c q   for product ik  which is large enough compared to the markup of all other 1j m

products to ensure that the derivative with respect to prices becomes negative, even accounting for 

the fact that the probability |k i goes to zero. So, if  ˆ ˆ
k k kp c q   is large enough:  
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We know that profit is a function of the m dimensional vectors, hp  and hq with the components 

, 1...jp j m
 
and , 1...jq j m . Furthermore, the profit function,  ; ;h hp q m , has a global maximizer 

 ;M M

h hp q in the compact set  ˆ ˆ ˆ, ;
m

kc q p q    . 

 

Suppose that  ;M M

h hp q is a boundary solution, than at least one component of  ;M M

h hp q (one of the 

product prices) needs to be equal to ˆ
kc q  or p̂ . It can be shown that (Anderson et al., 1992): 
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So, equations (A.3) and (A.4) show that at the boundary solutions the derivate with respect to prices 

is not equal to zero, so both of the boundaries cannot be a profit maximizing equilibrium. Hence 

 ;M M

h hp q must belong to  ˆ ˆ ˆ, ;
m

kc q p q    and is therefore the existent and unique solution to the 

first order conditions with respect to prices , 1...jp j m
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