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Abstract 

This paper analyzes the costs of traffic incidents using a bottleneck model. A traffic incident 

results in queuing because of a sudden drop in road capacity. We derive the equilibrium 

departure rate. Equilibrium scheduling and queuing costs which are functions of the probability 

that an incident occurs can then be analyzed.  
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1. Introduction  

Congestion is one of the major problems in urban areas. It results in time losses and it is a key 

element in the accessibility of places. Different types of congestion have been identified. One 

distinction is between recurrent and non-recurrent congestion. Recurrent congestion is the 

regular day-to-day congestion caused by the fact that the number of road users is higher than 

what is the maximum for freely flowing traffic. Non-recurrent congestion is non-regular 

congestion, for example caused by traffic incidents. This paper analyzes recurrent and non-

recurrent congestion jointly, using a single origin, single destination bottleneck model where the 

expected queuing time depends on the expected number of drivers queuing at the bottleneck and 

the capacity of the bottleneck.      

Road capacities are not fixed but variable. Incidents such as bad weather conditions, accidents or 

temporary roadworks might decrease road capacity. As incident moments are generally 

unknown, individuals face stochastic capacity over the peak, and as a consequence stochastic 

travel times. Often, road users are not informed whether and when an incident occurs on a 

specific day. But due to experience, they can learn the incident probability, and can adjust their 

departure time in order to minimize their expected travel costs. In our model, these consist of 

cost related to travel time and costs related to arriving earlier or later than their preferred arrival 

time (scheduling costs). 

This paper makes two contributions to the literature. First, we analyze how capacity reductions 

caused by traffic incidents affect the departure time decisions of individuals during peak periods. 

Our paper differs from most other papers that study stochastic bottlenecks by the fact that 

capacity is not constant over the day. Instead, capacity drops can occur at any point in time 

during the peak period.    
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Second, we are able to find a unique equilibrium departure pattern under the assumption that 

traffic incidents occur with a certain probability per unit in time. Compared to the standard 

bottleneck model, we find that traffic incidents lead to an earlier equilibrium peak starting time 

and a steeper cumulative departure rate at the beginning of the peak. It also results in a flatter 

peak. As expected, an increase in the incident probability increases the costs of passing the 

bottleneck for all drivers.  

 

2. Prior literature   

The standard bottleneck model was developed by Vickrey (1969). A more structural formulation 

is given by Arnott et al. (1993) who explicitly take into account congestion technology and 

departure time decisions of travelers. In the bottleneck model, congestion occurs due to the fact 

that traffic demand exceeds the capacity of a bottleneck. As a consequence, a vertical queue 

develops.
3
 The length of the queue at the moment of joining in, together with the capacity of the 

bottleneck, determines the queuing time of a driver passing the bottleneck. In the un-priced 

equilibrium, each traveler faces equal costs. Travelers arriving close to their preferred arrival 

time face the highest scheduling costs. In the social optimum, no queuing takes place as the 

departure rate is equal to the capacity of the bottleneck. Decentralization of the social optimum 

can be achieved using a time varying toll.  

The basic model has been extended in many directions, among them the implementation of 

stochastic capacity. 

                                                           
3
 For an overview of other queuing models such as flow-congestion models and car-following models we refer to 

Verhoef (2003). 
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Arnott et al. (1996, 1999) and Fosgerau (2009) analyze a bottleneck where both demand and 

supply are variable. The probabilities of these fluctuations are expressed in the form of general 

distribution functions. Under this assumption, the authors compare various setups that differ with 

respect to which information drivers receive on the day-to-day realizations of demand and 

supply. Lindsey (1996) assumes that capacity is stochastic. If a time varying toll is implemented, 

he finds that the optimal departure is non-decreasing over the time of the peak. The according 

toll is concave in time. Under the assumption of a two-point distribution of capacity, the peak 

starts earlier, or at the same moment compared to the no-toll case. This is an indication that 

private costs are higher in the toll equilibrium than in the no-toll equilibrium.  

Daniel (1995) develops a stochastic bottleneck model for congestion at hub airports. He uses 

numerical methods to analyze the equilibrium. Also Li et al. (2008) use numerical methods to 

solve a bottleneck where daily capacity is distributed uniformly between an upper and a lower 

bound. However, existence of an equilibrium depends on the assumptions of the model 

parameters. Also Fosgerau and Jensen (2008) show that in a bottleneck with stochastic demand 

as well as supply an equilibrium not always exists. Their analysis applies for a general 

distribution of road capacity. Koster and Rietveld (2010) use a simple model with elastic demand 

to study the effects of incidents and reductions in incident durations, assuming that the 

probability and the time loss because of an incident are a function of the number of drivers 

passing the bottleneck. However, they do not derive an equilibrium departure pattern. 

Furthermore, they assume that free flow travel time prevails if no incident has happened. 

Therefore only non-recurrent time-losses are included.  

In contrast to the papers cited above, Fosgerau (2010) investigates road capacity changes that 

occur at random moments during the peak rather than on a day-to-day basis, again using the 
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bottleneck model. He considers incidents of fixed duration that may end before the peak is over. 

Properties of the Nash equilibrium and social optimum are derived under these assumptions. Due 

to mathematical complexity, Fosgerau uses a “pretty good toll” instead of the socially optimum 

toll to decentralize the social optimum. The “pretty good toll” assumes that the departure rate is 

equal to the maximum capacity of the bottleneck over the entire peak. 

Capacity changes within peak periods have also been studied using models other than the 

bottleneck model. For instance, Schrage (2006) uses a model of flow congestion to analyze the 

effects of accidents. She models the probability of accidents as Poisson process and assumes 

capacity to decrease sharply after an accident and to gradually return to its previous level 

thereafter. To derive the equilibrium traffic flow, she uses the Bellman-equation. She finds that 

the optimal toll captures future congestion costs. As these differ over the peak – they are higher 

in the early periods of the peak – the marginal social costs of congestion are not constant across 

the peak either. 

 

3. Model Setup 

3.1 Introduction 

The setup of the model used in this paper is based on the standard, deterministic bottleneck 

model developed by Vickrey (1969). We assume a fixed number of individuals N, who travel 

along the same route and have the same preferred arrival time (PAT), which we set equal to 0. 

This setup may represent typical morning peak traffic, with all individuals having the same work 

starting time and the same destination to go to.  

The cost function of each individual has three components. First the costs for travel time, second 

the costs of schedule delay early (SDE) and third, the costs for schedule delay late (SDL). In 
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Equation 1 we show the costs for an individual departing at time t with value of travel time α, 

value of SDE β, and value of SDL γ.  

 

 𝐶 𝑡 = 𝛼 ∙  𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + 𝛽 ∙  𝑆𝐷𝐸 + 𝛾 ∙  𝑆𝐷𝐿                                 (1) 

 

Following conventional assumptions, and empirical estimates by Small (1989), we assume 𝛽 <

𝛼 < 𝛾. The former inequality is required for an equilibrium without a mass departure in the 

deterministic model.  Furthermore we assume that the value of travel time and of schedule delay 

early (𝛽) and late (𝛾) are time independent. For simplicity, it is assumed that free flow travel 

time through the bottleneck is 0. Therefore, all costs related to travel time are due to queuing, i.e. 

the length of the queue at time t divided by the capacity of the bottleneck, denoted by s0 when 

there is no incident. The queue is equal to the difference between cumulative departures (R(t)) 

and cumulative arrivals (A) up to point t. In the standard bottleneck model, cumulative arrivals 

are equal to   𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 ∗ s0  . In this paper, we assume that the capacity of the bottleneck is not 

necessarily constant across the peak. 

Instead, an incident can occur at any time between the starting (tstart) and the end time of the peak 

(tend), causing the capacity to drop from its initial level (s0) to a lower level (s1). We assume that 

this decrease in capacity then prevails for the rest of the day and that at most one incident can 

occur. The probability of a capacity drop (p), is constant over time during the peak, and therefore 

p∙(tend-tstart) denotes the probability that an incident occurs during the entire peak period.  

 

Day-to-day variations in travel times occur, since both the occurrence of an incident and the 

incident moments are stochastic. We are interested in the case where individuals have no 
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information on whether and when an incident has occurred or will occur. Given these 

assumptions, we try to find an equilibrium departure pattern that is based on the individuals’ 

expectations of travel times and schedule delays. 

 

3.2 Probabilities and expected travel times 

Given the incident probability p, an individual with departure time t can end up in two different 

regimes. In scenario 0, the driver is not affected by any incident. Thus, neither before his 

departure nor during his queuing time in front of the bottleneck an incident occurs. The 

probability of this scenario is denoted by 𝑝0.  In regime 1, the opposite is true.  An incident 

occurs either before the road user has left from home or during his trip. The probability of this 

scenario is denoted by  𝑝1 . It is equal to 1 − 𝑝0 𝑡 . 

 

In the following section, we will derive the associated probabilities for both regimes as well as 

day-to-day and expected travel times.  

Regime 0: No incident  

The probability of being in regime 0 is the complement of the probability that there is an incident 

between tstart and the arrival time at the end of the bottleneck: 

𝑝0(𝑡) = 1 − 𝑝 ∙
𝑅(𝑡)

𝑠0
                        (1) 

So if p=0, the probability of being in regime 0 equals 1. In that case the model reduces to the 

standard bottleneck model. If there is no incident before and during the trip, the travel time is 

given by the following expression: 
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𝑇0(𝑡) =
𝑅(𝑡)−(𝑡−𝑡𝑠𝑡𝑎𝑟𝑡 )∙s0

s0
                           (2) 

Clearly, in this regime the day-to-day travel time is equal to the expected travel time. 

 

Regime 1: Incident before passing the bottleneck 

In this model, the cumulative probability that an incident happens before the driver has arrived at 

the end of the bottleneck depends on the time that passes between 𝑡𝑠𝑡𝑎𝑟𝑡   and the time the driver 

leaves the bottleneck. The latter is given by 𝑡 +
𝑅 𝑡 − 𝑡−𝑡𝑠𝑡𝑎𝑟𝑡  𝑠0

𝑠0
 if there is no incident before the 

bottleneck is passed. The probability that an incident occurs before a driver departing at t has 

passed the bottleneck is therefore proportional (with a factor p) to 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 +
𝑅 𝑡 − 𝑡−𝑡𝑠𝑡𝑎𝑟𝑡  𝑠0

𝑠0
. 

This expression simplifies to 
𝑅(𝑡)

𝑠0
.  Therefore, the probability of regime 1 (an incident before 

completing the trip) is given by: 

𝑝1(𝑡) = 𝑝 ∙
𝑅(𝑡)

𝑠0
                                       (3) 

This reflects that an incident must have happened before 𝑡𝑠𝑡𝑎𝑟𝑡 +
𝑅(𝑡)

𝑠0
 to affect the traveler 

departing at t. If an incident happens, travel time corresponds to the queue length at time t 

divided by the post-incident capacity level s1 and is given by equation 4. Cumulative arrivals 

consist of the cars served by the bottleneck before the time when the incident occurs ( ti ) at 

capacity s0 and the cars served after the incident moment at capacity s1. The equation can be 

shown to hold for both incidents that occur before t as well as incidents that occur between t and 

+
𝑅(𝑡)

𝑠0
 .  
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𝑇1(𝑡, 𝑡𝑖) =
𝑅 𝑡 − 𝑡𝑖−𝑡𝑠𝑡𝑎𝑟𝑡  ∙𝑠0−(𝑡−𝑡𝑖)∙𝑠1

𝑠1
               (4) 

To derive the expected travel time we integrate over all possible incident moments. The expected 

travel time is the integral of the day-to-day travel time function over all possible incident 

moments between 𝑡𝑠𝑡𝑎𝑟𝑡  and 𝑡𝑠𝑡𝑎𝑟𝑡 +
𝑅(𝑡)

𝑠0
. Conditional on departing at t and being in regime 1, 

incident moments are uniformly distributed during this time interval, implying a density of  
𝑠0

𝑅(𝑡)
. 

The expected travel time for this regime is given by Equation 5. 

𝐸𝑇1 𝑡 =  𝑇1 𝑡, 𝑡𝑖 ∙
𝑠0

𝑅(𝑡)
 𝑑𝑡𝑖

𝑡𝑠𝑡𝑎𝑟𝑡 +
𝑅(𝑡)

𝑠0

𝑡𝑠𝑡𝑎𝑟𝑡

                    (5) 

 

3.3 Expected travel costs 

The expected travel costs consist of expected travel time costs, scheduling costs and the time 

dependent toll. In the model we define three departure ranges being characterized by different 

costs functions. The first range indicates the range for which the individuals are early for sure, 

even if there is an incident. Even if an incident happens, they do not incur any schedule delay 

late. We denote te as the departure time of the last traveler in this departure range.  In the second 

departure range individuals depart before the moment tc and they might face either schedule 

delay early or late (depending whether and when an incident has occurred). Finally, in the third 

departure range (starting at time tc), individuals will face schedule delay late in any case, even if 

no incident takes place. In each of the departure ranges, individuals can be in either in regime 0 

or 1. 
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Departure range 1: tstart≤ t ≤te 

The individual can be in one of the two regimes describes in section 3.2. The costs for 

individuals leaving before te are given by Equation 7. 

𝐸𝐶1 𝑡 = 𝑝0 𝑡 ∙  𝛼 ∙ 𝑇0 𝑡 + 𝛽 ∙  𝑃𝐴𝑇 − 𝑡 − 𝑇0 𝑡   +  𝑝1

∙  𝛼 ∙ 𝐸𝑇1 𝑡 + 𝛽 ∙   𝑃𝐴𝑇 − 𝑡 − 𝑇1 𝑡, 𝑡𝑖  ∙
𝑠0

𝑅 𝑡 
𝑑𝑡𝑖

𝑡𝑠𝑡𝑎𝑟𝑡+ 
𝑅(𝑡)
𝑠0

𝑡𝑡𝑠𝑡𝑎𝑟𝑡

  

                                      (7) 

For this departure range travelers only face scheduling costs for arriving early. The expected 

costs for the first regime are therefore given by integrating over the possible incident moments. 

 

Departure range 2: te≤ t ≤ tc 

Within this departure range, road users always face schedule delay early for regime 0. If an 

incident has occurred, both schedule delay early and late are possible, depending on the incident 

moment. Therefore we need to solve for the incident moment at which an individual departing at 

t does not face any schedule delay. This is the case when the driver arrives exactly at the 

preferred arrival time (PAT). This moment is denoted by 𝑡𝑖 (𝑡). The travel time this person 

encounters has been given in equation 4 (travel time in regime 1). Given departure time t and 

PAT,  𝑡𝑖 (𝑡) is therefore given in equation (8b), which results from solving the expression in (8a) 

with respect to  𝑡𝑖 (𝑡). 

𝑡 +
𝑅 𝑡 − 𝑡𝑖 (𝑡)−𝑡𝑠𝑡𝑎𝑟𝑡  ∙𝑠0−(𝑡−𝑡𝑖 (𝑡))∙𝑠1

𝑠1
= 𝑃𝐴𝑇              (8a) 
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𝑡𝑖 (𝑡) =
𝑅(𝑡)−𝑃𝐴𝑇∙s1+s0∙𝑡𝑡𝑠𝑡𝑎𝑟𝑡

s0−s1
                                                                                                         (8b) 

If the incident occurs later than 𝑡𝑖  there will be schedule delay early, and if the incident occurs 

earlier than 𝑡𝑖 , there will be schedule delay late.  

Suppose there is an individual who departs early and will arrive early if there is no incident. This 

individual will arrive on time if the incident occurs at 𝑡𝑖 . This implies that there is a possible 

benefit in terms of scheduling costs for this traveler because of the incident. However, because 

we assumed β < α  the incident will always result in higher overall travel costs.  

The expected costs for this departure range are then given by: 

𝐸𝐶2 𝑡 =

𝑝0 𝑡 ∙  𝛼 ∙ 𝑇0 𝑡 + 𝛽 ∙  𝑃𝐴𝑇 − 𝑡 − 𝑇0(𝑡 ) + 𝑝1(𝑡) ∙

 

 
 
 
 𝛼 ∙ 𝐸𝑇1 𝑡 + 𝛽 

𝑃𝐴𝑇−𝑡−𝑇1 𝑡,𝑡𝑖 

 𝑡𝑠𝑡𝑎𝑟𝑡 + 
𝑅 𝑡 

𝑠0
−𝑡𝑖  

𝑑𝑡𝑖

𝑡𝑠𝑡𝑎𝑟𝑡+ 
𝑅 𝑡 

𝑠0

𝑡𝑖 

+ 

𝛾 ∙  
𝑇1 𝑡,𝑡𝑖 − 𝑃𝐴𝑇−𝑡 

𝑡𝑖 −𝑡𝑠𝑡𝑎𝑟𝑡
𝑑𝑡𝑖

𝑡𝑖 

𝑡𝑠𝑡𝑎𝑟𝑡  

 
 
 
 

+  

                                                                                 (9) 

 

Departure range 3: tc≤ t ≤tend  

If an individual departs after tc, he will in any case face schedule delay late for all departure 

ranges, even if no capacity reduction occurs. The cost function for this departure range is given 

by equation 10. 
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𝐸𝐶3 𝑡 = 𝑝0 𝑡 ∙ (𝛼 ∙ 𝑇0 𝑡 + 𝛾 ∙  𝑇0 𝑡 −  𝑃𝐴𝑇 − 𝑡  )  +  𝑝1 𝑡 

∙  𝛼 ∙ 𝐸𝑇1 𝑡 + 𝛾 ∙  (𝑇1 𝑡, 𝑡𝑖 −  𝑃𝐴𝑇 − 𝑡 ).
𝑠0

𝑅(𝑡)

𝑡𝑠𝑡𝑎𝑟𝑡+ 
𝑅 𝑡 
𝑠0

𝑡𝑠𝑡𝑎𝑟𝑡

𝑑𝑡𝑖  

                                                     (10) 

 

 

3.5 No-toll Equilibrium Conditions  

In this section we describe how the model can be solved for equilibrium given specific values of 

the value of time, value of schedule delays, incident probability and pre- as well as post-incident 

capacities. In equilibrium the expected costs must be equal for all drivers, so there is no incentive 

to change departure time. We use the cost functions derived in equations (7), (9) and (10). For all 

three departure ranges, we are able to find closed form expressions. We can therefore find the 

equilibrium using an analytical approach with the following conditions:  

We try to find that peak starting time 𝑡𝑠𝑡𝑎𝑟𝑡  that minimizes costs. Given a specific peak starting 

time, the following calculations are done: 

1. Expected Costs for each Departure Range 

Expected costs must be equal for all drivers. Since the costs of the first driver are deterministic 

and equal to 𝛽 ∗  𝑃𝐴𝑇 − 𝑡𝑠𝑡𝑎𝑟𝑡  , the problem reduces to maximize 𝑡𝑠𝑡𝑎𝑟𝑡  subject to equality of 

costs for all drivers. 
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2. Cumulative Departures 

The expected costs of each departure range are set equal to the costs of the first driver. 

Subsequently, we can solve for cumulative departures in each range. The kinks (thus, the 

changes from one into the next range) occur where cumulative departures are equal. 

 

3. Expected Travel time of the last driver 

In the case that no incident occurs over the entire peak,  𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡  ∗ 𝑠0 is be equal to the 

number of drivers N. This equivalent to stating that also if no incident happens during the entire 

peak, equilibrium departure rates are sufficiently high to make the bottleneck operate at its 

maximum capacity throughout the peak. Therefore, in the case of no incident during the entire 

peak, the last driver does not face queuing time. Since the probability of an incident is assumed 

to be larger than 0, the expected queuing time is positive as well. This also corresponds to the 

findings by Li et al., 2008.  

Thus, all drivers must have departed at 𝑡𝑒𝑛𝑑 . This condition, together with 𝑡𝑒𝑛𝑑  being equal 

to  𝑡𝑠𝑡𝑎𝑟𝑡 +
𝑁

𝑠0
  , enables us to solve for 𝑡𝑠𝑡𝑎𝑟𝑡  and 𝑡𝑒𝑛𝑑 .  

An example of how cumulative departures look like is shown below. The cumulative departures 

are given by the lower envelope of the three curves. Compared to the deterministic bottleneck 

model, which only exhibits one kink, the slope is smoother in the stochastic model.  
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Figure 1: Example Cumulative Departures 

 

4.1 No-toll Results 

This section presents some results on equilibrium departure patterns. We use the equilibrium conditions 

described above to find the equilibrium departure time and departure pattern. Since the expected costs are 

required to be equal for all drivers, they need to be equal to the costs of the first drivers. These are given 

by  𝛽 ∗  𝑃𝐴𝑇 − 𝑡𝑠𝑡𝑎𝑟𝑡  . Thus an earlier 𝑡𝑠𝑡𝑎𝑟𝑡   is equivalent to higher costs for all drivers.  

 

1) Comparing different relative capacity decreases (s0-s1) 

The graphs below show a situation where the pre-incident capacity 𝑠0 is equal to 60, and 𝑠1 assumes 

values between 1 and 59. The difference between 𝑠0  and 𝑠1 is plotted on the x axis. As expected, we find 

that a higher capacity drop leads to an earlier begin of the peak and hence higher costs for all drivers. 

Also, it can be shown that the second departure range is longer in this case indicating that the phase when 

drivers do not know whether they will arrive early or late is extended. This intuitively makes sense since 

day-to-day travel times exhibit a higher variability if the capacity drop in case of an incident is larger.  
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Figure 2: The effect of capacity reduction on (expected) costs/driver 

                                     

 

2) Comparing different incident probabilities  

A higher incident probability leads to similar effect as an increase in the capacity drop in case of an 

incident. Higher incident probabilities lead to an earlier start of the peak, a longer second departure range 

and higher costs for all drivers. As figure 3 shows, there is a linear relationship between 𝑡𝑠𝑡𝑎𝑟𝑡  (and hence 

also the costs) and the incident probability.  

Figure 3: The effect of probabilities on (expected) costs/driver 
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      5.1 Conclusions and Extensions 

The framework developed in this paper is useful for analyzing the effects of incidents and offers 

a good basis for future work. It clearly shows that higher incident probabilities and higher 

capacity drops in case of incidents lead to higher costs for drivers.  

In future work, an optimal pricing regime shall be derived for the stochastic bottleneck. As stated 

also by Fosgerau (2010), this results in quite a complex mathematical problem.   

Extensions other than tolling are also feasible. For example, the incident probability can be 

modelled such that it depends on the number of cumulative departures or the queue length, 

meaning that p is dependent on the number of drivers and therefore is not constant over the peak. 

Another extension could be to include the incident duration as a variable in the model. Also 

various information regimes (where drivers are informed on the incident occurrence and the 

incident moment) can be analyzed.  
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