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ABSTRACT 
We address the issue of the allocation of railway track maintenance (wear-and-tear) costs to traffic output 
classes and consider a very general function relating maintenance cost C to a set of technical production 
characteristics K used to produce traffic output vector T. We neglect other rail cost categories, such as traffic 
control and track renewal. 
 

The data base pertains to over 1 500 sections of the French rail infrastructure in 1999, representing about 90% 
of the total network of 30 000 km of lines in regular service. In addition to the maintenance cost C, it provides 
by track section 15 technical characteristics (both state S and quality Q) and 4 train traffic outputs T. Input 
prices, assumed to be uniform in space, disappear from the analysis, as in other national cross-sectional cases. 
 

With database subsets of approximately 1 000 observations, several functional forms are tested: Linear, Log-
Log, Trans-Log and Generalized Box-Cox. All are embedded in an unrestricted extension (U-GBC) of 
Khaled’s seminal restricted Generalized Box-Cox (R-GBC) functional specification. The U-GBC architecture, 
compared with its 4 principal nested variants, turns out to be by far the most appropriate, in particular when 
some observed zero Traffic sample values are included ─an issue rather neglected previously in the literature. 
 

It appears that several technical characteristics, such as maximum allowed speed and number of switches, are 
highly significant maintenance cost factors, which gives a hint that derived marginal costs are short term; also, 
the relation between maintenance costs and traffic is non linear and differs significantly by train category. 
Implications of different specifications for marginal infrastructure cost charges by traffic type are outlined. 
 

Key words: rail track wear-and-tear, cost function, CES, Trans-Log, Generalized Box-Cox, zero sample 
values, maintenance cost allocation by traffic class, marginal cost by traffic class, power axle 
weight damage laws, cross-sectional data, rail line sections, France, marginal cost pricing. 

 

SOMMAIRE 
Ce texte traite de l’allocation des coûts d’entretien de l’infrastructure ferroviaire, entendus au sens de « coûts à 
périodicité annuelle », aux divers types de trafic. Sont exclus de l’analyse les coûts de circulation (contrôle du 
trafic) et de renouvellement des voies dits « coût de régénération ». La fonction de coût utilisée, très générale, 
relie le coût C à un ensemble de caractéristiques techniques K et à un vecteur de trafics produits T.  
 

Les données utilisées proviennent d’une base de données relative à la France sur une décomposition en 1 500 
segments environ d’un réseau ferroviaire de 30 000 km de lignes en service en 1999. On dispose par segment, 
en plus du coût d’entretien C, de leurs 15 principales caractéristiques techniques (tant d’état S que de qualité 
Q) et du trafic T décomposé en 4 catégories de service. Les prix, supposés constants à travers le pays, 
disparaissent de l’analyse, à l’instar d’autres exemples construits à partir de coupes transversales nationales. 
 

À partir de sous-ensembles d’approximativement 1 000 observations, différentes spécifications de relations 
fonctionnelles sont testées et évaluées: Linéaire, Log-Log, Trans-Log et Box-Cox Généralisée. Elles sont 
toutes comprises dans un prolongement non contraint (U-GBC) de la formulation fondatrice Box-Cox 
Généralisée contrainte (R-GBC) de Khaled. La structure générale U-GBC, comparée aux 4 principales formes 
qui y sont emboîtées, ressort clairement comme préférable, en particulier lorsqu’on retient dans l’échantillon 
les observations nulles sur certains trafics  ─un sujet plutôt négligé à ce jour dans la littérature. 
 

Il appert que le coût dépend des caractéristiques techniques telles que la vitesse maximale autorisée sur le 
segment de ligne et le nombre de croisements de voies, ce qui laisse entendre, comme les caractéristiques 
techniques couvrent les plus importantes caractéristiques de l’équipement, que les coûts marginaux déduits 
des ajustements représentent correctement des coûts de court terme ; en outre, la relation entre le trafic et les 
coûts d’entretien est non-linéaire et varie par type de train. On étudie enfin les implications des diverses 
spécifications pour la tarification des infrastructures au coût marginal par type de trafic.  
 

Mots clés: voie ferrée, entretien, fonction de coût, CES, Trans-Log, Box-Cox Généralisée, observations nulles, 
classe de trafic, coût marginal d’entretien par catégorie de trafic, fonction de dommage des 
charges-essieux, données en coupe instantanée, France, sections de ligne ferroviaire, tarification 
au coût marginal. 
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1. The problem: form and the assignment of joint costs to multiple train classes1 
 
In this paper, we address the problem of the allocation of railway track maintenance costs, which 
exclude both traffic control (operation) and regeneration (reconstruction) costs, to different traffic 
classes. Of long concern to railways and their regulators, such as Nördling (1886) who states: 
 

“How should total expenses be split between passenger and freight services? A few engineers have 
admitted, without proof, that a passenger train caused the same expense per kilometre as a freight train. 
In Austria, as the passenger trains are 4 to 5 times lighter than the freight trains, this formula would 
imply that the gross ton from a passenger train is 4 to 5 times more expensive than the gross ton from a 
freight train. The most used formula in France treats a passenger-kilometre as equivalent to a ton-
kilometre of freight.” (Our translation from the French original), 

 

the question remains difficult to this day because the relationships are expected to be highly non 
linear, as theory (Borts, 1960) or practice (Fuss et al., 1978) suggest, and as pointed out in classic 
textbooks (e.g. Wilson, 1980), regulatory documents (e.g. Hariton, 1984) and best practice surveys 
(e.g. Thomas, 2002). Oum & Waters (1996, 1997) give a good account of the rise and persistence of 
simple regressions, linear in both parameters and variables (LIN), still found to-day despite the 
general expectation of non linearity: due to the lack of detailed analytic accounting data on 
maintenance costs and to the fact that traffic data by user class are confidential2 or just unavailable, 
analysts may be obliged to relate costs (often for each expense category), within a linear-in-
parameters model, to a linearly specified "service unit" such as ton-km, loaded car-km, or tons 
(Martland, 2001), making ad hoc adjustments for differences in passenger and freight ton-km mix. 
 
Within linear-in-parameter models of interest in this study, Log-Log (LL) forms are common, if 
only as special cases of the Trans-Log3 (TL) form. The latter, long dominant in the analysis of total 
rail cost, as surveys make clear (e.g. Jara-Diaz, 1982; Tovar et al., 2003), has recently emerged 
(Bereskin, 2000) and spread (Link et al., 2008) in maintenance cost studies as the dominant form 
there as well. We analyze maintenance costs here by comparing these known forms, all nested 
within the unrestricted Generalized Box-Cox (U-GBC) version of Khaled’s (1978) restricted (R-
GBC) applications. The U-GBC was first applied to rail costs in the exploratory version of this 
paper (Gaudry & Quinet, 2003) and the results, to be summarized below, prompted Wheat (Wheat 
et al., 2009) to promote and coordinate4 in 2008-2009 a series of Box-Cox (BC) applications with 
national data (Andersson, 2009a, 2009b; Gaudry & Quinet, 2009; Link, 2009; Marti et al., 2009) to 
which we will refer again as they contain comparisons of LL and BC forms. 
 
In the next section, we outline the characteristics of our database. We then turn more formally to a 
methodological strategy on form, in a short section. Results and their implications for cost recovery 
under hypothetical marginal cost charging régimes are finally discussed. 

                                                           
1 The authors thank Société Nationale des Chemins de Fer Français (SNCF) for providing the exceptional data base 
making this study possible and Bryan Breguet as well as Cong-Liem Tran of Université de Montréal for research 
assistance. The Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT) and the Natural Sciences 
and Engineering Council of Canada (NSERCC) supported the development of econometric tools used in this paper, an 
exploratory version of which (Gaudry & Quinet, 2003) was presented at the First Conference on Railroad Industry 
Structure, Competition and Investment at the Institut D’Économie Industrielle (IDEI), Toulouse, November 7-8, 2003. 
Some of the results included in this extensive new version were produced within the CATRIN (Cost Allocation of 
TRansport INfrastructure cost) project funded by the Sixth Framework Programme of the European Community. 
2 In the absence of explicit mathematical forms and parameters, the reader often has to infer the presence of non 
linearity from the results, for instance in Robert at al. (1997).  
3 This abbreviation of “transcendental in the logarithms of its arguments” was used in the first presentation of the 
function (Christensen et al., 1971), and the simplified Translog denomination in the second (Christensen et al., 1973). 
4 All carried out within the CATRIN (Cost Allocation of TRansport INfrastructure cost) project funded by the Sixth 
Framework Programme of the European Community. 
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2. The data: the French rail network sections in 1999 
 
We benefit from a high quality data base pertaining to about 1 500 sections of the French rail 
infrastructure for which wear and tear costs C, traffic levels and composition by user class T, and 
other technical segment-specific information on the state S and quality Q of the segment, are 
available for 1999 (Quinet, 2002). These data, covering about 90% of the total French network of 
30 000 km and described in Table 1, are of a quality sufficient to explore the issue of form and 
allow the data themselves, as opposed to the analysts’ presumptions, to determine the best fitting 
one for the explanation of the maintenance cost.  
 

Table 1. Nature of information available by rail line section for the French network 

C maintenance Cost, drawn from the analytical accounts of Société Nationale des Chemins de Fer 
Français (SNCF), encompasses maintenance costs allocated to track segments and represents 81 % of 
total maintenance expenditure: the rest consists of triages, intermodal freight platforms and service 
tracks, none of which can clearly be assigned to a given track segment. It also covers catenaries, 
signalling, tracks, rails, sleepers, ballast, culverts and “works of art” (ouvrages d’art, i.e. bridges and 
tunnels). It excludes traffic control and renewal (regeneration/reconstruction) costs except for some 
Large Maintenance Operations (Opérations de Grand Entretien, OGE) which are conventionally 
assigned to maintenance accounts but are close to renewals5. 

S technical State variables such as the number of tracks (from 1 to 18), the number of switches, the type 
of control devices (automatic or not), the type of power (electrified or not), the length of the section. 

Q technical Quality variables such as the age of rails, the age of sleepers, the share of concrete (vs wood) 
sleepers and the maximum allowed speed in normal operation (in the absence of incidents or repairs in 
progress). Maximum allowed speed is effectively both a state and a quality technical factor.  

T train Traffic, measured by the number and average weight (tons) of 5 types of trains, namely long 
distance passenger (GL = Grandes Lignes), Île-de-France passenger (IdF), other6 regional passenger 
(TER = Trains Express Régionaux), freight (F) and track servicing (HLP = Haut-le-pied) trains. 

 
Due to various conditions imposed on variables of interest for our tests, we define 3 databases: (i) 
for the exploratory work, a LARGE database of 1146 observations extracted from the source; (ii) 
for the reference tests a MEDIUM database of 967 observations extracted from the large one; (iii) 
for special tests on the role of zero-output values, a SMALL database of 928 observations retained 
from the medium one. These three nested bases are of course very similar, as a comparison of Table 
2 and Table 3 for total and average segment length, or of relative traffic indicators, shows: for 
instance, segments add up to 20 397 km in the large extract and to 18 402 km in the small one. 
 
The important difference between the LARGE and MEDIUM databases is that the former includes 
some 18 high speed rail-only7 links excluded from the latter. But the main difference between the 
three databases occurs between the MEDIUM and the SMALL ones due to the exclusion of 
observations containing some 0 traffic: considering only two kinds of traffic, total passenger 
(T1+T2+T3) and freight (T4), the exclusion of 39 segments where total passenger traffic equals 
zero reduces the sample to 928 observations. 

                                                           
5 Renewal cost, incurred only every 20 or 30 years, should not be related to the current traffic but to a “proper” 
cumulative amount of traffic, measured in “equivalent-tons” (depending on the specific effects, if any, of the traffic 
classes), since the last renewal. Whence, yearly section repairs do not provide valuable information on the cost function 
for renewal expenses which raise issues of their own. 
6 The distinction between TER and IdF traffic deserves some explanation: IdF traffic is the local traffic around the 
extended Paris area (12 million inhabitants) and is mainly suburban while TER traffic corresponds to local traffic in 
other parts (50 million inhabitants) of France and is a mix of suburban (around large agglomerations) and rural traffic. 
7 High speed lines, representing about 1 500 km of total lines in 1999, are only used by high speed rail trains (TGV), but 
such trains also run on all classic electrified lines, albeit at lower speeds. 
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Table 2. Range of traffic and segment length values, LARGE database of 1146 observations 

 Trains types  Segments 
 GL TER IdF Freight Other Total Exact length
Average weight (tons) 5341 212 390 1 055 98 2 290 

17 798 m 
Number of trains 1 971 1 463 1 745 1 828 438 7 445 

Maximum  29 524 19 499 61 835 16 383 7 665 92 077 157 924 . 

Minimum 0 92 0 0 0 372 238 m 
1 Includes average weight of TGV trains (615). 

 
Table 3. Principal characteristics of the SMALL database of 928 observations 

Variable  Average Maximum Minimum 
Cost of maintenance 
      cost per km (1999 francs) 464 801 7 604 163 480 
State 
      switches per segment 22 345 1 
      length of line segments (metres) 19 197 157 924 238 
      power type (electrified or not) 0,68 1,00 0,00 
      type of traffic control (automatic or not) 0,77 1,00 0,00 
Quality 
      age of rail (years) 26 92 4 
      age of sleepers (years) 27 92 4 
      maximal allowed speed (km/h) 127 220 60 
      share of concrete (vs wood) sleepers 0,58 1,00 0,00 
Traffic indices by traffic category [(number of trains)x(average weight in gross tons)] 
      T1 : long distance passenger trains (tons) 1 116 095 16 809 701 0 
      T2 : regional passenger trains (tons) 426 421 4 476 021 0 
      T3 : Ile-de-France passenger trains (tons) 878 439 32 778 126 0 
      T4 : freight trains (tons) 2 478 063 16 442 960 281 

 
If it were desired to exclude all observations containing zero values on the basis of the 4 traffic 
service categories, the sample would be reduced further to only 208 observations. Hence, if traffic is 
required to be always positive, a 4-traffic model is not comfortably feasible: it is only possible with 
the first two database variants where observed null values of traffic variables are all retained, an 
issue to be addressed below. 
 
Everything considered, our source SNCF database is relatively rich in technical (S, Q) and traffic 
(T) information, as compared to what is publicly available in some other country analyses, e.g. for 
Sweden and Finland (Johansson & Nilsson, 2004), or to what is reported in European surveys (e.g. 
Abrantes et al., Table 5, 2007). It contains no information on input prices but we shall in any case 
assume that, in 1999, such prices were uniform throughout France, a reasonable assumption due to 
the fact that workers’ wages are uniform across the SNCF, that electricity is supplied through a 
nation-wide contract and that other input prices are not likely to differ much among the 23 SNCF 
administrative regions due to strong horizontal coordination organized by maintenance expense 
category. In these conditions, the absence of input prices from all of our models only implicitly 
rescales their regression intercepts, as also occurs since Johansson & Nilsson (2004) in other single-
year national cross-sectional analyses that make the same input price hypothesis for similar reasons 
(e.g. Andersson, 2009a, 2009b). 
 
Our baseline view is that all regression models should in any case always have intercepts because 
forcing the adjustment to go through the origin can change regression signs. The use of Box-Cox 
transformations only strengthens this position by requiring intercepts if the form parameters are to 
be invariant to units of measurement of variables, as demonstrated by Schlesselman (1971). 
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3. An econometric methodology allowing for a censored dependent variable 
 

To the extent that we are interested in rail costs, it is clear that innovations in cost functions were 
first applied to the analysis of total rail costs, typically with time series, and spread much later to the 
analysis of rail cost categories, principally with cross sections. 
 
To explain rail cost Cy, regression models use as explanatory variables factors belonging to three 
principal groups: input prices P ≡ (P1, …, Pn), traffic outputs T ≡ (T1, …, …TI) and service 
characteristics or qualities Q ≡ (Q1, …, QU); the regression may take one or more possible forms, all 
nested in the Unrestricted Generalized Box-Cox (U-GBC), to which we presently turn. 
 
It will then be convenient afterwards to formulate the modeling framework quite generally and to 
select proper statistical tools to evaluate the performance of the principal competing forms, popular 
or not, applied in rail maintenance cost analysis. 
 
3.1. The Generalized Box-Cox (GBC) idea and time-series explanations of total cost 
 

The U-GBC is obtained by simply requiring that, in the generalized flexible quadratic form studied 
by Blackorby et al. (1977), the unspecified 

i i
f (X )  and 

j j
f (X )  functions be Box-Cox transformations 

(BCT), and by transforming the dependent variable in similar fashion: 
 

y jk i

r r r
( ) ( )( ) ( )

y 0 k k ij i j
k i j

C X X Xλ λλ λ= β + β + β∑ ∑ ∑      (U-GBC) 

 

with the transformation of the strictly positive dependent or independent variables Varv defined as: 
 













→

≠
−

≡

.0,)(ln

,0,
1)(

)(

λ

λ
λ

λ

λ

ifVar

if
Var

Var

v

v

v

       (BCT) 

 

The U-GBC form generalizes the R-GBC specifications applied by Khaled (1978) and Berndt & 
Khaled (1979) to the first right hand side term of their cost function { }1 p 1 pC h(p ,..., p ) g(p ,..., p ;T)  = ⋅    , 

where T is a single-output vector and the vector of prices P appears twice. Their strategy consists in 
making the price term 1 ph(p , ...,p ) flexible with BCT while keeping the second term 1 pg(p ,..., p ;T ) 

fixed. To give make explicit, and give due credit to, this seminal use of BCT in cost functions, we 
have to momentarily neglect, for expository reasons, the second term of the product and write the 
remaining simplified function as: 
 

r r r
( ) ( ) ( ) ( )

0 k k ij i j
k i j

y X X Xλ λ λ λ= β + β + β∑ ∑ ∑ ,     (R-GBC) 

 

where the restrictions imposed on (U-GBC) are obvious. It suffices for our purposes that, firstly, 
one can obtain the Trans-Log (TL) case8 from (R-GBC) when 

i jC k p p( ) 0λ = λ = λ = λ → : 
 

                                                           
8 After imposing some restrictions on the coefficients and after absorbing in those pertaining to interaction terms the ½ 
coefficients of the formal TL. The TL is also obtained with the multiplication of functions effected in Berndt & Khaled. 
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r r r

0 k k ij i j
k i j

ln(y) ln(X ) ln(X ) ln(X )= β + β + β∑ ∑ ∑ .     (TL) 

 

But, secondly, we note that, in addition to a TL case, Berndt and Khaled in fact estimated another 
restricted variant called the Generalized Box-Cox (GBC), obtainable by imposing the restrictions 
� �

i jC k p p C
ˆ ˆ ˆ[ ; ( /2)]λ λ = λ = λ = λ  on a price expression 1 ph(p , ...,p ) of U-GBC form9. They compared this 

GBC formulation to the Generalized Square Root Quadratic (GSRQ) special case, specified as 

i jC k p p C[ 2 ; ( /2 1)]λ = λ = λ = λ = λ = , and to the Generalized Leontief (GL) other special case, specified 

as 
i jC k p p C[ 1 ; ( /2 1/2)]λ = λ = λ = λ = λ = , both introduced by Diewert (1971, 1973, 1974). 

 
This approach, consisting in multiplying the partially flexible form component 1 ph(p , ...,p ) by the 

fixed form component 1 pg(p ,..., p ;T ), was applied to U.S. manufacturing output with annual data 

from 1947 to 1971. The results, requiring at most estimation of a single BCT, made it possible to 
reject the TL and the GSRQ but not the GL, when compared to the GBC. 
 
On practical grounds then, and despite the fact that part of the cost function specification remained 
of untested fixed form, they demonstrated that the BCT makes it possible to choose among many 
known competing second order fixed form approximations to an arbitrary cost function. Their 
approach should have established the baseline of subsequent cost analyses, notably in transport 
where the TL form, applied straightforwardly to all variables at hand, became extremely popular. 
 
A rail extension: multiple outputs and qualities. But the only proper transport following we 
could find is Borger (1992) who, in a study of yearly railroad operations in Belgium from 1950 to 
1986, astutely extended the above Berndt-Khaled analysis by enriching the second term of the cost 
function, rewritten as 1 pg(p ,..., p ;T ; Q ), where T now contained two outputs (passenger and freight), 

and each output was related to various network qualities Q called “operation characteristics”. 
Variables found in T and Q vectors were regrouped in strictly positive “output aggregator” terms of 
fixed form with coefficients estimated independently. 
 
Borger did not modify the basic multiplication of functions at the heart of the Berndt & Khaled cost 
formulation, but may have considered the prospect when he included the exogenous estimates: 
“Note that we did not estimate the parameters of the aggregator functions simultaneously with the 
GBC model. Although this would have been preferable from a theoretical perspective, the 
complexity of the GBC model forced us to use a simpler alternative. We therefore used the [log 
linear] aggregates [previously] constructed in De Borger (1991) as independent variables in the 
estimation” of GBC, TL and GL forms. 
 
The Box-Tidwell patch of Trans-Log models with zero-output levels. Another special case of an 
application directly nested in the U-GBC form is the “Generalized Translog Multiproduct Cost 
Function” (GTMCF) proposed and discussed by Burgess (1974), Brown et al. (1979) and Caves et 
al. (1980b), and which consists in working directly on the TL specification. Caves et al. (1980a; 
1985) explain railway (total) cost with this slightly modified TL form departing from the similar 
treatment of all explanatory variables (input prices and two outputs in this case). This modification 
is described in the former study: “This cost function has the same form as the Trans-Log except for 
output levels, where the Box-Cox metric is substituted for the natural log metric. This 
generalization permits the inclusion of firms with zero-output levels for some products”: its 
                                                           
9 Their particular GBC case is obtained by effectively solving for Cy after applying the U-GBC format to price term 

1 ph(p , ...,p ) and then multiplying the result by the 1 pg(p ,..., p ;T ) term always assumed to be of fixed form. 
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implementation with freight and passenger traffic was required “since passenger service is zero for 
a substantial number of observations” (Caves et al., 1985). 
 
The use of the GTMCF did not spread much, as it “highly complicates the interpretation of 
parameters” (Tovar et al., 2003, Footnote 9) and consequently makes the imperative calculation of 
elasticities still more burdensome, a point we address shortly. It amounts to a very marginal change 
of the TL because a single BCT is used on two train service variables: it is therefore the most 
limited Box-Tidwell10 patch possible11. Why such parsimony? The note by Caves et al., (1980a, 
Footnote 3) states that a generalization to more than one BCT “needlessly complicates estimation”. 
As we shall see, transforming many traffic variables in a rail cost problem would often be a better 
choice, notwithstanding the real additional estimation complications, to which we turn shortly. 
 
3.2. Multi-product cross-sectional models of rail maintenance cost 
 

Studies of rail maintenance cost. The above mentioned studies of total rail cost making some use 
of BCT are all estimated from firm-wide time series data. But our specific interest is in studies of 
rail cost categories, such as maintenance cost, whether time series or pooled cross-sectional and 
time series. Studies of rail cost categories are relatively recent and predominantly use TL forms, for 
instance Bereskin (2000) or Sánchez (2000) with firm-level pooled data of an “aggregate” nature, 
and Link et al. (2008) for (a summary of) work done with detailed track-level data. 
 
Although time series make it possible to maintain input price variables in the specifications, we 
could find none that also included indices of track quality. By contrast, almost all single-firm 
studies based on detailed rail track segment data are cross-sectional or estimated as cross-sectional 
data sets because the number of available years of data on track segments is extremely short, e.g. 
Johansson & Nilsson (2004). In these models, price variables normally disappear and one is left 
with multiple outputs in T and track qualities in Q. 
 
Maintenance cost and the U-GBC form. The corresponding general U-GBC form is therefore:  
 

C q p q q
U I U U

1 1 1 1

( ) ( ) ( ) ( ) ( )
C Q T Q Q

0 i i j j ij i j
i j i j

λ λ λ λ λ
= α + α + β + γ∑ ∑ ∑ ∑

= = = =

p p q p
I I U I

1 1 1 1

( ) ( ) ( ) ( )
T T Q T u

ij i j ij i j
i j i j

λ λ λ λ
+ δ + ζ +∑ ∑ ∑ ∑

= = = =

 , (0) 

 

where, for simplicity, the regression coefficients have absorbed the ½ factor applied to all 
interaction sequences of the original Trans-Log and where, in addition to the required intercept, two 
vectors of explanatory variables Q ≡ (Q1, …, Qq, …, QU) and T ≡ (T1, …, Tp, …TI) are included 
and the parentheses again refer to Box-Cox transformations (BCT) of the strictly positive dependent 
or independent variables. 
 
This assumption of strictly positive values implies that no sample value of a variable is ever equal 
to zero. In these conditions, the U-GBC naturally includes the nested Linear (LIN) and TL forms; 
and the TL is easily compared, by dropping all interaction terms, with the well known competing 
Constant Elasticity of Substitution (CES) or Cobb-Douglas Log-Log (LL) form previously in 
common use for railway production functions (e.g. Baumgartner, 1978). 
                                                           
10 In the literature, applying one or more BCT only to explanatory variables is simply called a Box-Tidwell (Box & 
Tidwell, 1962) model because the dependent variable is not transformed as in proper Box-Cox (1964) models. 
11 We will address below the problem posed by this apparently innocuous practice, confirmed in an August 2003 
correspondence with one of Caves’ co-authors. The fact that, when λ ≠ 0,  the BCT is well defined for zero-output 
levels [the result equals -1/ λ] does not mean that any vector of observations on a variable Xz with some zeroes may be 
transformed as if it were strictly positive: in the presence of some zero values, the BCT will not be invariant to the scale 
chosen for Xz. We discuss below remedies to this lacking shift [of -1/ λ when Xzt = 0] that re-establish “invariance to 
units of measurement”, as it is commonly called. 
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In conformity with Table 3, consider that, in (0), the dependent variable C designates the rail Cost 
per kilometre to be explained, the Qq refer to track Qualities (neglecting the State variables, almost 
all of which are binary) and the Tp to jointly produced Traffic service classes. Also neglect, without 
loss of generality, potentially interesting a priori restrictions that could be imposed on the α and β 
coefficients, notably in the Trans-Log special case12, but retain the parsimonious and reasonable 
symmetry conditions on the matrices of γ, δ and ζ coefficients13. Finally, to simplify presentational 
notation without actual loss of generality, momentarily consider only as many λq as there are 
Qualities (q = 1, … , U) and only as many λp as there are Traffic service products (p = 1, … , I); and 
neglect specifications arising from interaction-specific combinations14 of λq and λp BCT powers 
despite their expected relevance in practice and use below. 
 
Our U-GBC form therefore allows multiple outputs in T and effectively replaces input prices of 
time series by qualities Q. It is considered here pragmatically, to quote Christensen at al. (1971) on 
the TL form, as a potentially valid “second order approximation to an arbitrary functional form” to 
be compared empirically to other popular forms in the absence of zero-output values. 
 
Below, we estimate many such nested variants of U-GBC directly in their natural “level” format, 
including the TL, simply assuming that the SNCF management minimizes short-run maintenance 
costs for a track system of given technical characteristics K ≡ (S, Q). We do not discuss whether the 
TL, either in cost level or in cost share format15, is as adequate for monopolies16 as it may be for 
competitive firms and do not use in the estimation input factor share equations which are neither 
necessary nor available. 
 
3.3. Overcoming barriers to optimal form GBC estimation 
 

Forgetting the baseline. We asked above why the powerful demonstration by Berndt & Khaled 
was so little applied elsewhere, and notably in transport. To start with, as implicit in the remarks by 
Caves et al. (1980a) and Borger (1992) quoted above, generality requires an algorithm to estimate 
the Box-Cox power parameters, respecting at the same time any desired constraints imposed on the 
regression coefficients. Despite its limitations, for instance on the possibility of testing sum 
constraints on the regression coefficients, the fully documented L-1.5 algorithm (Liem et al., 2000) 
sufficed17 for our present purposes in the absence of price variables. We recall its key features 
needed for the estimation of a U-GBC form, nested cases (R-GBC, TL, LL and LIN) of interest 
included, and essential for the production of derived statistics comparable across models, as these 
matter as well. 

                                                           
12 For instance, if the true form is Trans-Log, Blackorby et al. (1977) and Denny & Fuss (1977) point out that output 
attribute functions embedded in the Trans-Log function must be log-linear. The former authors also remark that 
consistent aggregation also requires in that case that the output aggregator functions be Cobb-Douglas. 
13 Empirical credibility of the results naturally requires testing whether the data are compatible with the constraints or 
not, an often neglected test. For discussion of the constraints in the special TL case, see Denny & Pinto (1978). 
14 In practice, more general specifications allow the Box-Cox transformations for Quantities or Traffics to depend on the 
identity of the interaction terms on the right-hand side, which requires double indices, but this extension is unnecessary 
for present expository purposes. 
15 Cost share equations, which contain some of the regression parameters found in the TL form, are sometimes added to 
the cost level equation and jointly estimated in order to increase the precision of the TL parameter estimates: this may 
matter if samples are relatively small, as in Bereskin (2000) who had only 19 yearly observations (on 36 firms from 
1978 to 1997) and needed to add firm and year dummies to the TL specification, making it less parsimonious still. 
16 The regularity conditions of the Shepard theorem (1953) for cost and production functions needed for the first 
derivative of the logarithm of the level of cost with respect to the logarithm of each input price to yield the cost 
minimizing cost share of each input, a property known as Shephard’s Lemma, may not all hold for a monopoly firm 
where labour prices may not be exogenous and which may not always minimize total cost. 
17 In practice, we use the L-1.4 version (Liem et al., 1987) implemented in the TRIO software (Gaudry et al., 1993). 
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It is indeed important to note here that the user of BCT faces other barriers beyond the numerical 
one arising simply from the maximization of a multidimensional non linear function18, barriers that 
may have prevented implementation of the GBC baseline. We must focus additionally on (i) the 
nature of the proper likelihood function to use for the U-GBC, (ii) statistical impediments due to 
special requirements (often ignored until 1984) on the proper calculation of t-statistics and due also 
to the necessary development of appropriate measures of the quality of adjustment (or “fit”) based 
on expected values of the dependent variable; (iii) the burden of expressing19 coefficient results in 
terms of elasticities. For our own results to be intelligible, some explicitation of these difficulties, 
not to say pitfalls, and of their resolution, matters as they jointly constitute a barrier. 
 
The proper statistical model, an unweighted likelihood function? Simply stated, the classical 
Box-Cox regression model nesting all forms of interest for us is:  
 

( ) ( )
0

y k

t k kt t
k

y X uλ λβ β= + +∑         (1-A) 

 

where, neglecting for simplicity dummy variables (not transformable by a BCT), the Xk denote any 
regression term, including interactions of variables, and both the dependent and the transformed 
independent variables are strictly positive. Note also that (1-A) contains the necessary intercept. 
 
But this model presents a major challenge because the BCT on the dependent variable is defined 
only if yt > 0: for this reason, there exist a number of statistical interpretations of (1-A), all coming 
to terms with this downward truncation of the explained variable in that model. Two of the main 
approaches are centred on Bickel & Doksum (1981), who modify the BCT power transformation to 
allow negative20 values of yt, and on a group of like-minded formulations by Spitzer (1976), Olsen 
(1978), Poirier (1978) and Amemiya & Powell (1980), who require that the distribution function of 

( )
ty λ  contain no mass point. As the per kilometre maintenance cost can very well be extremely low, 

and even equal 0 for all practical purposes (for instance after reconstruction of the segment), the 
latter approach is not realistic for our problem. We use instead a third formulation extending the 
original single-limit Tobit model (Tobin, 1958). 
 
As discussed at length in Dagenais et al. (1987), for problems like ours where yt can be said to have 
both a lower limit (maintenance cost cannot be negative but can be close 0, implying the possibility 
of a mass point at - 1/λ when λ > 0, or in practice at a very small number ε) and an upper limit 
(maintenance cost cannot exceed the periodic reconstruction cost, called “renewal cost”), the proper 
statistical model to use is the Rosett & Nelson (1975) two-limit Tobit model where the exact 
likelihood of observing the vector y ≡ (y1, … , yt, … , yT) reduces, in the absence of limit 
observations in the sample, to the maximand Λ actually proposed by Box and Cox themselves: 
 

 
2T
t t
22

t 1 u tu

1 u u
exp

2 y2=

  ∂
Λ = − 

σ ∂πσ  
∏   (1-B) 

 

                                                           
18 There are also additional computational loads to guarantee that a global maximum has been found because the 
likelihood function of yt in (1-A)-(1-B) below is not necessarily unimodal. 
19 One could imagine software automatically calculating elasticities by numerical simulation, rather than analytically, 
but we have not found any.  
20 When the sample contains only positive observations, their Likelihood function is as in Box & Cox. 
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where, under the assumptions of normality and21 constancy of the variance σ2
u of the independent 

error term ut of zero mean, the Jacobian of the transformation from ut to the observed yt is 
y 1

t t tu / y y λ −∂ ∂ = . This is the rationale explicitly implemented in the L-1.5 algorithm which 

maximises the concentrated log-likelihood of (1-A)-(1-B) and provides derived statistics. As 
detailed values of all BCT are needed, it is not possible to dodge such maximization and simply find 
out whether one is closer to the Linear or the Log-Log case, as in Davidson & MacKinnon (1985). 
 
One of these statistics is the probability, calculated for every observation of the sample, that it be a 
limit observation in the sense just mentioned22 and that an unweighted likelihood function such as 
(1-B), apparently failing to recognize the truncation of the distribution of the ut , be inappropriate 
for the data and specification at hand. The strict normalcy of the error distribution is therefore 
assumed to hold ex ante and its applicability tested ex post by ensuring that the actual sample 
contains no limit observations. The first and third right-hand side terms of Equation (8) below are 
estimated according to the procedure defined in Equations (56)-(57) of Liem et al. (1987). This 
strategy follows the remarks by Draper & Cox (1969) concerning the original BCT model, 
reiterated by Olsen (1978), that “the reasonableness of the [above] assumptions can always be 
tested by an analysis of residuals”. 
 
It seems more appropriate to recognize the presence of real lower and upper limits in (1-A) and to 
test afterwards for the probability of being too close to them than to make very strong a priori 
positive and unscrupulous assumptions about their absence. A balance can be found between stating 
that, for a model of say GNP, the Box-Cox maximand is not strictly a likelihood function because it 
fails to recognize that yt is truncated (as GNP can be neither negative nor unduly high in a given 
sample) and the opposite stand consisting of always ignoring limits altogether. 
 
Likelihood Ratio and Student-t tests. Concerning other derived statistics, Likelihood Ratio tests 
based on the χ2 distribution are easily performed in the usual way, with standard information on the 
numbers of parameters estimated; but two Student-t tests are provided by the L-1.5 algorithm. 
 
To understand the reason for this double till, an example will help. Tables of results such as those 
found in Appendix 3 indeed present two kinds of t-statistics: for the BCT, unconditional values 
calculated with respect to both 0 (the logarithmic case) and 1 (the linear case) and, for the βk 
regression coefficients of transformed variables, t-statistics with respect to 0 that are conditional 
upon the estimated value of BCT form parameters. 
 

The reason for this reporting asymmetry is that, in the presence of BCT, the unconditional t-values 
of βk coefficients associated with transformed Xk depend on their “units of measurement” (Spitzer, 
1984). An intuitive way to understand this result is to consider that BCT effect a reparametrization 
of the model whereby, among other things, if a particular βk coefficient is assumed to be null, the 
regression constant cannot be assumed to remain unaffected, ceteris paribus, as in a standard linear 
regression conditions. But obtaining t-statistics23 that depend on units of measurement of the 
transformed variables would make them useless because one could decide on desired values and 
then adjust the scale of all Xk accordingly: therefore, computing conditional t-values provides a 
useful24 second best indicator for the βk unless one wishes, as many now prefer, to rely exclusively 
                                                           
21 The procedure allows, if necessary, for simultaneous corrections for heteroskedasticity and autocorrelation but they 
were not used for the models reported on here. 
22 And further explicated below in (8)-(9). 
23 This comes as a surprise to all of us who are used to the presumed invariance to units of measurement of t-statistics 
since their inception a century ago (Gosset, 1908). 
24 Consequently, all Box-Tidwell and Box-Cox results published before 1984, including all referenced above and below, 
as well as all computer programs currently available to estimate such models, have to be verified to make sure that their 
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on first best Log Likelihood ratio tests. These remain exact in the presence of BCT but are 
notoriously tedious to apply with large numbers of regressors25 in the absence of an automatic 
procedure unfortunately not provided in the current L-1.5 algorithm version. 
 
Fitted values and measures of overall adjustment quality. Another difficulty arising with model 
(1-A)-(1-B) pertains to measures of the quality of adjustment, or “fit”, in the presence of Box-Cox 
transformations on the dependent variable. Consider both the adjustment with respect to individual 
observations and the overall measures of fit that are needed. 
 
In evaluating the goodness-of-fit with respect to each observation, our interest: 
 

 (i) is, first and foremost, in how observed y, not transformed y in (1-A), is accounted for. We 
cannot therefore use any statistic that simply relates calculated and transformed sample values of 
the regressand, as Ordinary Least Squared based programs applied to transformed variables 
automatically do. We must therefore focus on the “unrolled” value from (1-A):  

 

 yt = f-1[ g(Xt) + ut ];         (2) 
 

 (ii) is also, secondly, in comparing the observed y with the value produced by the full model, which 
requires recognition of the fact that y is a random variable due to the presence of the random 
error. This demands that the level of observed y be compared to its expected value, not simply to 
a calculated value yt = f-1[ g(Xt) ] that would ignore the residual ut and pretend that only the fixed 
(in a statistical sense) or deterministic part of (1-A) matters. And we will in any case presently 
note that such a calculated value is neither defined without problems nor separable and 
extractable from (1-A). The necessary calculation is therefore of: 

 

  E( yt ) = E{ f-1[ g(Xt) + ut ] } .       (3) 
 
The habit of neglecting the residual ut comes of course from the Linear model where, as is well 
known, E(yt) = [ g(Xt) ] because E(ut) = 0 and the expected value expression (3) reduces to: 
 

( )
∧

| =t tE y X y  .         (4) 
 
But this convenient simplicity vanishes with Log-Log, Trans-Log and Box-Cox models. In the 
former two cases, the expected value of y derived from (3) is simply:  
 

 E( yt ) = { exp[g(Xt)] * [exp(ut)] } = k*exp[g(Xt)]     (5) 
 

where exp(ut) is a log-normal random variable whose mean is a constant k over the sample and for 
which the maximum likelihood adjustment provides an estimate. In the more tricky Box-Cox case, 
we have, if λ denotes in (1-A) the BCT on the dependent variable: 
 

 E( yt ) = E{ 1 + λ [ g(Xt) + ut ] }
1/λ        (6) 

                                                                                                                                                                                                 
t-statistics computed for βk regression coefficients are conditional upon their estimated form parameters. Otherwise, as 
unconditional values, they depend on the scale of the transformed variables and are therefore arbitrary. Before 1984, 
many authors (e.g. Gaudry & Wills, 1978) estimated their models with grids for the BCT and, given estimated form 
values for the variables in (1), used OLS to derive the βk and their conditional t-statistics: they were involuntarily in the 
right. Others estimated all model parameters jointly, without iterating between form and regression parameters, and 
calculated t-statistics unconditionally using first or second partial derivatives of the Log Likelihood. For instance, 
Berndt and Khaled (1979) themselves, already suspicious for using a cost share model without intercepts in the 
presence of a BCT (op. cit., Equation 28), further calculate unconditional t-statistics (op. cit., Table 4), making their 
t-tests on βk coefficients unreliable as well. 
25 For instance, the Trans-Log model found in Column 3 of Annex 3 has 55 βk coefficients. 
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where, by contrast with the previous case, the ratio between E(yt) and f-1[ g(Xt) + ut ] is not constant 
and needs to be calculated for each observation because the error term is unfortunately not 
separable from a calculated value term defined as: 
 

yt = { 1 + λ [ g(Xt) ] }
1/λ        (7) 

 

and the solution of which for yt would raise problems of its own, notably with imaginary numbers, 
for certain values of λ. This problem would remain had one rejected the original Box-Cox model 
(1-A) in favour of an ad hoc approach consisting in adding an error term to (7) in order to separate 
the error. Due to these two impediments (solving the calculated value term for yt and the 
impossibility of separating the error term from it in (6) as was done in the Log-normal case (5) 
above), it is best to avoid (7) and perform with the original Box-Cox model a proper calculation of 
the expected value in accordance with (3), as is generally, and unavoidably, done in other non linear 
models. 
 
But we are not home free yet in calculating (6) because the fact that the domain of yt is limited must 
still be accounted for in the determination of the expected value, even if the exact likelihood is 
(1.B): the calculation procedure must recognize both domain limits for yt and Gaussian errors for ut. 
Even in the absence of limit observations in the sample, if any observation yt is assumed to be 
censored both downwards and upwards, ε ≤ yt ≤ ν, where ε and ν are respectively the strictly 
positive lower and upper censoring points common to all observations26 in the sample, the 
generalization of the Tobit model to a doubly censored dependent variable formulated by Rosett and 
Nelson yields for the expected value of yt defined in (3) the following expression: 
 

 
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
t t

t t

u u

t t

u u

E y u du y u du u du
ε ν

ε ν

ε ϕ ϕ ν ϕ
∞

−∞

= + +∫ ∫ ∫ , (8) 

 

where φ(u) is again the normal density function of u with 0 mean and variance σ2
u :  

 

 ( )
2

2
2

1
( ) exp

2 u

u

u

u
σ

ϕ
πσ

= − . (9) 

 
Concerning now overall goodness-of-fit, the implemented algorithm provides two extensions of the 
usual single-equation R2 measure of multiple correlation. 
 

i) The first, the Pseudo-(E)-R2, substitutes E(yt) from (8) for yt in the well known and frequently 
used Pearson coefficient (e.g. Laferrière, 1999) consisting in the square power of the simple 
correlation coefficient between two variables, denoted Yt and E(Yt) below. It is computed in 
unadjusted and adjusted (for degrees of freedom) variants, respectively (A) and (B), in:  
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, (10)  

 

                                                           
26 The original Tobin (1958) paper had limits that varied by observation. 
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where K is the total number of estimated parameters in (1-A) and T the number of observations. 
This R2

E will always give values within the range [0 , 1] and be identical to the usual measure if 
the dependent variable yt is linear.  

 

ii) The second, the Pseudo-(L)-R2 long ago specified by many authors (e.g. Aigner, 1971, pages 85-
90) and based on logarithms of the likelihood function, is also computed in unadjusted and 
adjusted variants, respectively (A) and (B) in:  

 

 
{ }2

0 max2

*2 21

1 exp 2( ) / , ( )
( )

1 (1 ) , ( )

L

L L
T
T K

R L L T A
Pseudo L R

R R B−
−

 = − − 
− − ≡  

= − −  
 (11)  

 

which is also within the [0 , 1] range since L0, the sample maximum of the Log Likelihood 
associated with the constant β0 as only regressor, is necessarily smaller than the maximum Lmax 
obtained with more regressors. This R2

L collapses to the previous measure R2
E if (1-A) is linear.  

 
Elasticities and marginal costs. Concerning difficulties specific to BCT, note finally that the βk 
regression coefficients of variables transformed by a BCT have lost the intuitive contents they 
retained in simpler linear or logarithmic fixed forms. This increases the importance of elasticities as 
indicators of the reasonableness of results used in conjunction with indicators of the statistical 
significance of the βk: significance never implies reasonableness.  
 
For this reason, our detailed table of results found in Appendix 3 presents the classical (also called 
sample27) elasticities for all variables, including dummy variables28. Classical elasticities ignore the 
presence of the random term, treat y  as deterministic, and are usually written:  
 

k
t k

k
kt tt

y X
( y , X )

X y , ,y XX

∂
= ⋅

∂
η

�

      (12) 

 

where the vertical line simply means that the derivative is « evaluated at » y yt=  , at ktk XX =  for 

the variable of interest and at tXX
��

=  for other right-hand-variables belonging to (1-A).  

 
Expression (12) makes it clear that, even if (1-A) is linear, the value of this point sample measure of 
elasticity depends on the reference levels at that point and is therefore not constant across 
observations. The sample mean is used as reference point in Appendix 3: 
 

k t k

kt k t = t

( y , X ) ( y , X )
X X , y y , X X

η = η
= =

� �

   (13) 

 

                                                           
27 The expression “sample elasticity” is preferred to the less misleading “deterministic elasticity”. It can be evaluated 
anywhere, notably at the sample means, in which case it is the “sample elasticity evaluated at sample means”. 
28 In Appendix 3, code names of variables that are not underlined denote ordinary strictly positive variables and code 
names that are underlined twice denote dummy variables. Such underlines imply distinct formulas to compute the 
associated elasticity: one for ordinary strictly positive variables and one for dummy variables. We will not provide here 
the analytical expressions for the “elasticities” calculated for the dummy variables, describing in percentage terms the 
impact of the presence of the dummy, but the documentation of the algorithm referenced above is easily consulted. In a 
few words, they imply multiplying the standard formulas documented here by the ratio of the mean of the dummy 
variable computed over its positive values (typically 1) to the sample mean of the dummy variable (zeroes included). 
The adequacy of this approximation of the discrete jump in E(y) implied by the presence of the dummy variable, as 
compared with its absence, is discussed at length in Dagenais et al. (1987) where other measures of “percentage 
changes of y or E(y) due to the presence of the dummy variable” are also provided. 



 13

In the TRIO program L-1.4 algorithm, the user can also request the Expected value elasticity: 
 

tkt

k
t k

k ,
t

,

XE(y)
( E (y) , X )

X E(y)
E ( y ) XX

∂
= ⋅

∂
η

�

,    (14) 

 

where the partial derivative of (8) is required and evaluation is effected at the sample means. 
However, in tables and graphs forthcoming below, the elasticity of E(yt) with respect to traffic, and 
the marginal (Expected) cost obtained by multiplying it by E(yt)/Xkt, will be calculated as means of 
individual values obtained for each observation according to an approximation29 of (14), rather than 
at the means of the sample. The mean elasticity *η so obtained from approximations at all sample 
points, and the mean marginal cost *µ  derived from it, are then simply, in turn: 
 

T
*

k t k
t 1

( E (y) ,X ) ( E (y) ,X ) T
=

= ηη ∑       (15) 

and 

[ ] [ ]
T

*
k t k t kt

t 1

( E (y) , X ) ( E (y) , X ) E (y) / X T
=

= η •µ ∑ .    (16) 

 
A feasible following for Khaled’s 1978 innovation? These remedies show that the “needless 
complications” evoked by Caves et al., (1980a) for proper Box-Cox models and the derived 
“interpretative difficulties” of BCT pointed to in high level surveys (e.g. Jara-Diaz, 1982; Tovar et 
al., 2003) exist but constitute insufficient barriers to prevent the seminal Berndt & Khaled (1979) 
baseline demonstration from having a following. 
 
The remedies of interest here make it possible to recognize that track cost measured on small 
network sections differ from firm-wide total costs in that they are relatively small and have non 
negligible chances of including limit observations, a matter of smaller concern if one is dealing with 
total U.S. manufacturing output or even with the total yearly transport output of very large 
American or Canadian rail companies. They also make it possible to use proper common statistics 
to compare the competing forms. 
 
An important additional barrier, related to the treatment of zeros in variables subjected to a BCT, 
remains to be addressed in the next section but will not invalidate this approach. 

                                                           
29 There are therefore two differences between the cost elasticities with respect to traffic listed in Appendix 3, calculated 
according to (13), and those used in forthcoming graphs and tables, calculated by (15), an approximation of (14). The 
first difference is between an evaluation at sample means and the mean of evaluations at each sample point. The second 
is that in (15) we use an approximate expected value measure, not an exact one. What does the approximation consist 
of? We did not calculate E(yt) for each observation exactly according to (14) but approximated it by multiplying the 
“unrolled” calculated value term (7) by the average ratio (across all observations) between (6) and (7) and not by the 
observation-specific ratio. As the latter actually differs across observations, our time saving approximation assumes that 
the difference is stable across observations for a given regression specification and stable across regression variants 
whose elasticities (or derived marginal costs) are to be compared. We performed numerous comparisons of (7) and (6) 
vectors to verify that this is in fact a weak assumption in our problem. 
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4. Design of form tests and selection of maintained hypotheses from exploratory work 
 
Developments above show that it is possible to develop a common statistical framework built on a 
maximum likelihood estimator and its derived results, such as elasticities and measures of 
goodness-of-fit, in order to compare the U-GBC to simpler nested forms. Before proceeding to full 
trials in Section 5, including tests pertaining to the level of output aggregation, competing forms 
must be specified; in addition, we take advantage of previous exploratory work to formulate 
“maintained hypotheses” as guides to the by-the-book formal sequel of Sections 5 and 6. 
 
4.1. The neglected problem of zero values and the selection of competing forms 
 

Abstracting for the moment from the question of the number of train traffics (the level of output 
aggregation), the structure of forthcoming tests, found in Table 4, respects two sets of constraints. 
 
First, forms matter more for some groups of variables than others: for instance, as State variables S 
consist almost exclusively in dummy variables, we prefer to ignore their interactions with other 
variables. This limits in practice to 6 the number of candidate groups of variables for the general 
U-GBC form: we designate them as S, Q, T, Q*Q, Q*T and T*T, where single letters denote 
vectors of appropriate length and stars denote products of 4x1 vectors to be fleshed out in Table 9. 
The 4 forms nested into U-GBC and mentioned earlier are those defined on lines 1-4 of Table 4. 
 
Second, it is not possible to select the forms to be compared without simultaneously raising the 
issue of zeroes to ensure that chosen candidate specifications are all invariant to changes in “units of 
measurement”, strictly understood as scale changes, of the transformed variables. This second 
requirement, applied in the Z-0 to Z-3 columns of Table 4, requires further explicitation. Only 
alluded to above in a footnote to our presentation of the Generalized Translog Multiproduct Cost 
Function (GTMCF), the requirement has yet received insufficient attention in the literature but is 
now addressed as a systematic dimension of the design of detailed specifications to be tested. 
 
Table 4. Feasibility of competing forms according to the rule adopted for the transformation of zeroes 

 Simplified model specificationsA Feasibility of the form under 

Form C = f( S , Q , T , Q*Q , Q*T , T*T ) Z-0 Z-1 Z-2 Z-3 
 1 Linear C    =  lin [ S ;    Q   ;   T   ] Yes Yes Yes Yes 

2 Log-Log ln C  =  ln  [ S ;    Q   ;   T   ] No Yes Yes Yes 

3 Trans-Log ln C  =  ln  [ S ;    Q   ;   T       ; Q*Q  ;   [T*Q]    ;  (T*T)     ] No Yes NoB Yes 

4 R-GBC C(λ)   =   bc [ S ;   Q
(λ) ;  T

(λ)     ;  ----    ;  [T*Q]
(λ)   ;  (T*T)

(λ)   ] No Yes Yes Yes 

5 U-GBC C(λy)  =  bc [ S ; Q
(λx1) ;  T

(λx2) ;  ----   ; [T*Q]
 (λxk) ; (T*T)

 (λxK)] No Yes Yes Yes 
 A On lines 3-5, the few continuous variables found in S are transformed as required by the definition of each form and the 

interaction terms written as X*X include only off-diagonal terms XiXj (i ≠ j) because diagonal terms XiXj (i = j) are subsumed30 
in the Xi terms due to the fact that [ Xi

(λλλλii)))) Xi
(λλλλii)))) ] = [ Xi

2 ] (λλλλii)))) = [ Xi
(λλλλi)))) ] = [ Xi

N ] (λλλλii)))). On Line 5, the four BCT indices of the U-
GBC do not denote the exact number of distinct BCT actually used (as many as 10 in cases reported here, and more in some 
unreported cases) but simply express the generality of the U-RBC, as compared to its constrained single-BCT origin. 

B Impossibility due some interaction terms that cannot be defined because they contain ratios of zeroes. In that case, an associated 
dummy variable cannot be a remedy, as it can be in a simpler case containing only products of zeroes. 

 
Invariance to scale of measurement when strictly positive variables are transformed. The 
double-limit “Box-Cox Tobit” statistical framework documented in the previous section noted the 

                                                           
30 The implicit rescaling of the βk coefficient is not indicated in Note A. The proof that the Box-Cox transformation is 
invariant to a power transformation of the transformed variable even in the absence of a regression intercept can be 
found in Gaudry & Laferrière (1989). 
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importance of the invariance to units of measurement (of transformed strictly positive dependent 
and independent variables) of two critical sets of estimates: (i) the BCT form estimates themselves, 
which impose a regression intercept (Schlesselman, 1971); (ii) the estimates of the t-statistics of βk 
regression coefficients which, in contrast to those of the form parameters, need to be computed 
conditionally upon (duly invariant) values of the BCT form estimates (Spitzer, 1984). We now 
focus on a third invariance pitfall arising with transformed variables containing zero values. 
 
In our application, transformed traffic output levels are sometimes null for some types of trains, a 
quite frequent situation in other contexts with some particular explanatory variables31 (e.g. 
snowfall). The issue has long been recognized, for instance in Winston (1985, page 63):  
 

“To be sure, the Trans-Log approximation runs into difficulty for zero values of output. In this case, a 
transformation using the Box-Cox metric (Caves, Christensen & Tretheway, 1980a) can be used to apply 
this functional form.” 

 
If it is obvious that zero values are not easily handled when a logarithmic transformation of a 
variable is required, it is less obvious that, contrary to what the quotation implies, the same problem 
can arise in models making use of BCT where, depending on how it is handled, it might 
compromise form estimates and invalidate the desired comparisons among competing model forms. 
 
Invariance to scale of measurement when transforming variables that contain zeroes. In order 
to avoid this new pitfall, we distinguish in Table 4 between four ways, or Z-rules, of handling a 
variable Xk containing observed zero values, namely: 
 

- Z-0. Transform all observations on the variable, zero values included, by a BCT; 
- Z-1. Replace the zero values by a very small value before applying a BCT to the variable;  
- Z-2. Add an associated dummy variable to a transformed variable that contains some zero values; 
- Z-3. Remove all observations containing zero values before applying a BCT to the variable;  
 

only two of which (Z-1 and Z-2) provide an invariant BCT form estimate, short of avoiding the 
difficulty altogether with (Z-3). We comment on the first three and will apply the last three below. 
 
The Z-0 “ignore the difficulty” rule32 fails to “compensate” for the –1/λ shift at zero values resulting 
from the application of the transformation to these values33. This rule unfortunately produces BCT 
estimates that depend on the scale units of the variable, a pitfall demonstrable by a simple numerical 
exercise on the computer. All form estimates resulting from the application of Z-0 are then dubious, 
as are also any unconditional t-statistics derived from matrices of partial derivatives of the Log 
Likelihood with respect to all parameters including the scale dependent BCT estimates. Curvature 
of a cost function should not depend on arbitrary units of measurement. 
 
The zero replacement rule Z-1, an approximate approach, is a satisfactory option adopted in most of 
our tests. We will show that the implications of this rule vary to some extent across models forms 
                                                           
31 The possibility of zero values of the dependent variables constitute a distinct issue that we will not address beyond 
what was summarily said (the discussion of the full issue takes up many pages in the published references) in the 
discussion of the calculation of the expected value of y with equation (8). 
32 It was applied in the GTMCF single-BCT Box-Tidwell tests carried out by Caves et al. (1980a, 1980b and 1985) 
mentioned earlier and referred to by Winston. From what we could determine, the estimated value was found by a non 
linear search without using analytical first derivatives: as the derivative of a variable V transformed by BCT with 
respect to λ involves the natural logarithm of the observations (it is equal to {[1/λ]•[Vλln(V) – V(λ)]} if λ ≠ 0 and to 
{(1/2) ln2(V)} if λ = 0), the maximization would have aborted if analytical derivatives had been used.  
33 For a positive BCT, the transformation is defined at zero output as [ (0λ -1)/λ = -1/λ ]. But this shift of -1/λ is clearly 
unaffected by a scalar transformation of the Xk vector of values, hence the lack of invariance: being well defined does 
not imply being invariant to scale changes. 
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but have more impact on LL and TL than on R-GBC and U-GBC forms. This may be due to the fact 
that, under Z-1, the logarithmic transformation generates very large negative values that can behave 
as outliers, a bias that is avoided when the optimal BCT differs from zero, as it typically does 
below. It would not be a satisfactory option for LL and TL forms if, contrary to our case, there were 
too many zeroes in the sample.  
 
The “add a dummy” rule Z-2, the strict approach, is used in a sub-section below where the influence 
of zero values is specifically explored: it is a tedious but exact remedy in all Log-Log, Trans-Log 
and Box-Cox models (but, as indicated in Table 4, not in the special case of our Trans-Log models 
as specified because they involve ratios of zero values). It requires, for each standard variable that 
includes such values (and may conveniently be called for this reason a quasi-dummy variable), 
building an associated dummy variable that compensates for the missing shift at 0 when the scale of 
the variable transformed by a BCT34 is modified. 
 
The L-1.4 algorithm35 that we used (Liem et al., 1993) generates such additional dummy regression 
variables automatically and defines them conventionally as equal to 1 if the quasi-dummy variable 
is positive36 and to 0 otherwise. Naturally, only one such associated dummy is admissible if two or 
more transformed variables have zero values in the same locations, lest one wished to live with 
exact collinearity! In our most general U-GBC model, only 4 associated dummies will be in fact be 
needed despite the much larger number of quasi-dummy variables transformed. 
 
In addition to this scale invariance preservation role, an associated dummy variable provides an 
unexpected benefit, documented in Appendix 4, because it amounts to a decomposition of the effect 
of the quasi-dummy variable between a qualitative (e.g. the effect of the presence of snow) and a 
quantitative (e.g. the effect of the amount of snowfall) component: this decomposition is a 
substantive issue of general relevance in regression analysis involving quasi-dummy variables. 
 
4.2. Maintained hypotheses from explorations on LARGE database with pared down models 
 

The test structure design found in Table 4 represents a tall order, especially if aggregation of traffic 
classes is also considered. It is therefore both relevant and useful to report on exploratory work 
carried out with pared down 5-traffic model specifications because such tests based on minimal sets 
of explanatory variables lead to the formulation of “maintained hypotheses” for further use. 
 
We therefore first summarize the main results37 drawn from the exploratory version of this paper 
(Gaudry & Quinet, 2003) where a first analysis was made using the LARGE database under rule 
Z-1 after the following choices were imposed on the possibilities implied by Table 1: 
 

                                                           
34 In practice, the zero values are then left untransformed in our Log-Log and Box-Cox models, both of which having 
associated dummy variables added: the procedure is documented in Appendix 4. Strictly speaking one should 
distinguish between changing the scale and changing the units of measurement of a variable, but they are here 
confounded because “changes in units”, as commonly designated loosely, are assumed to simply modify the scale of 
variables: clearly, it is easy to imagine changes in units of measurement that are not equivalent to scale changes, e.g. 
transforming Fahrenheit into Celsius degrees. 
35 The three invariance pitfalls are also found in Box-Cox Logit estimation. For instance, the very recent BIOGEME 
software (Bierlaire, 2003, 2008) calculates unconditional t-statistics for all parameters of this model, βk included. In this 
case, an additional iteration should be effected conditionally upon the estimated BCT values in order to obtain 
conditional t-statistics of the regression coefficients. 
36 But using the complementary definition would simply change the regression sign of the associated dummy variable 
coefficient and have no effect on other parameters and on the Log Likelihood. 
37 This widely circulated paper, available from a number of web sites indicated in the reference, gives the full set of 
final regressions on all forms but the summary presented here is self-standing. 
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 i) Variables: the only Q variable included was the maximum allowed speed, assumed to be a good 
indicator of the standing of a line, but five T variables were included, thereby treating the (input) 
track maintenance trains on the same basis as the passenger and freight (output) services;  

 

ii) Models: only 12 explanatory variables were retained for each form, in the hope that selecting 
only the most significant ones would give fair clues to the nature of the form problem. The 
models were effectively pared on statistical grounds, without due consideration for economic 
theory or engineering practice. 

 
U-GBC form dominance. The results in Table 5 show a clear pattern: the LL and TL models are 
roughly equivalent, but the LIN model is massively inferior, and the GBC models are massively 
superior, to them. 
 

Table 5. Exploratory One-Quality, Five-Traffic, Twelve-Variable models (1146 observations) 
Model A B C D E 

Specification of form LIN LL TL R-GBC U-GBC 
Log likelihood LL -16 069.7 -15533.9 -15 535.8 -15 359.7 -15 322.9 
Beta regression coefficients 12 12 12 12 12 
Box-Cox transformations 0 0 0 1 7 
Cost elasticity with respect to traffic (*) 0,42 0,07 0,34 0,36 0,36 
(*) Calculated with respect to weighted traffics and evaluated at the sample means of observations. 

 
As one expects significant non linearity, the surprise is not the poor performance of the Linear form 
but that of the current workhorse of maintenance cost analysis, the Trans-Log. As the Trans-Log 
specification retained was not kept whole in the paring down exercise, it became almost 
indistinguishable from a Log-Log (CES) model. Retaining only the most significant terms of the 
Trans-Log form biases the comparison in its favour here, as it then has about the same number of 
estimated parameters as the other forms. Despite this generosity, the 1-parameter R-GBC dominates 
it by 176 Log likelihood points (with one degree of freedom of difference) and the U-GBC, 
allowing for a specific BCT on the dependent variable C and for 5 additional train-specific BCT, 
raises the advantage to 213 points (with a difference of seven degrees of freedom). It remains to be 
seen in Section 5 whether a less Procrustean and less parsimonious procedure yields otherwise. 
 
Identifying maintenance requirement power functions by traffic class. This last difference of 
36.8 Log Likelihood points between the R-GBC and the U-GBC pointed to the need for more 
details on the BCT. In consequence, the path of generalization from the former to the latter form is 
made explicit in Table 6 where, from model B to model G, each train output measure successively 
obtains its own BCT. As the Log Likelihood increases from 15349.0 to -15322.9, a gain of 26 
points (for 5 degrees of freedom), the evidence suggests that each train type generates specific 
maintenance costs. All train-specific BCT are positive and between 0,46 and 1,08. 
 
Further refinements. Further refinements of model G carried out involved: (i) searching for 
various specifications of potential interactions among Traffic types, (ii) including regional dummy 
variables to account for systematic cost differences among 19 administrative divisions (out of 23) of 
the French National Railways (SNCF) performing track maintenance represented in the sub-sample; 
(iii) distinguishing between the number of trains by category and their average weight instead of 
using gross tonnage by train type as the relevant Traffic output measurement variable.  
 
Generally speaking, the most sophisticated refinements won easily in terms of statistical fit, 
although this was somewhat less decisive for (iii), but no trial modified the general bearing of the 
results of Table 5 and Table 6, at least in statistical terms. Derived results from (iii), based on a 
specification containing 9 BCT (2 more than the number used in Column G of Table 6 due to the 
break-up of Traffic indicators between numbers of trains and their average weight), were: (a) that 
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the elasticity of cost with respect to traffic level (evaluated at the mean value of the observations) 
was equal to 0,37; (b) equivalence coefficients between types of traffics were as shown in Table 7. 
 

Table 6. From R-GBC to U-GBC by successive addition of specific BCT to traffic classes 
 Model A B C D E F G 
Variables Box-Cox transformations and their unconditional t-statistics with respect to 0 and 1 
Cost per km 
(C) 

λλλλ estimate 0.255 0.240 0.240 0.243 0.245 0.246 0.247 
t-stat. w.r.t. 0 [26.69] [25.96] [25.47] [26.00] [26.85] [25.91] [26.53] 
t-stat. w.r.t. 1 [-77.86] [-82.01] [-80.73] [-81.00] [-82.55] [-79.38] [-80.66] 

 

Intercity trains  
(GL) 

λλλλ estimate 

As 
above 
and 

below 

As below 

0.617 0.520 0.546 0.530 0.469 
t-stat. w.r.t. 0 [5.12] [4.93] [4.96] [4.82] [4.34] 
t-stat. w.r.t. 1 [-3.18] [-4.55] [-4.12] [-4.28] [-4.92] 

Regional trains  
(TER) 

λλλλ estimate 

As below 

1.074 1.114 1.059 1.098 
t-stat. w.r.t. 0 [5.28] [5.51] [5.21] [5.31] 
t-stat. w.r.t. 1 [0.36] [0.57] [0.29] [0.47] 

I-de-France trains 
(IdF) 

λλλλ estimate 

As below 

0.735 0.742 0.706 
t-stat. w.r.t. 0 [5.87] [5.79] [5.67] 
t-stat. w.r.t. 1 [-2.12] [-2.01] [-2.36] 

Freight trains 
(F) 

λλλλ estimate 

As below 

1.348 0.979 
t-stat. w.r.t. 0 [2.46] [1.91] 
t-stat. w.r.t. 1 [0.64] [0.04] 

Maintenance trains 
(HLP) 

λλλλ estimate 
As below 

0.813 
t-stat. w.r.t. 0 [1.47 
t-stat. w.r.t. 1 [-0.34] 

 

All Xk variables, 
 including traffics 
without specific λ  

λλλλ estimate 0.255 0.430 0.372 0.325 0.213 0.138 0.122 
t-stat. w.r.t. 0 [26.69] [10.66] [7.75] [7.15] [4.78] [2.91] [2.24] 
t-stat. w.r.t. 1 [-77.86] [-14.15] [-13.11] [-14.84] [-17.66] [-18.10] [-16.13] 

General statistics 
Log Likelihood value -15359.7 -15349.0 -15347.1 -15339.7 -15330.4 -15323.8 -15322.9 
Number of estimated ββββk coefficients 12 12 12 12 12 12 12 
Number of estimated λ λ λ λ powers 1 2 3 4 5 6 7 

 
Table 7. Relative marginal cost and virtual revenue from marginal cost charges by user class 

Type of traffic Long distance 
passenger 

Regional 
passenger 

Ile-de-France 
passenger 

Freight 

Relative marginal cost equivalence coefficient 1 5,5 1,9 0,4 
Cost recovery rate under marginal cost pricing 0,07 0,11 0,15 0,06 

 
Maintained hypotheses for more thorough trials. The main criticism made of this exploratory 
work was that the paring down had been arbitrary and too exclusively done on statistical grounds, 
an approach that made the proper detection of interactions among variables difficult. It was also 
stated that the presence of track maintenance trains, an input to production, in an equation used to 
derive the marginal costs of 4 user services, was questionable. Finally, the fact that maximum 
allowed speed was very statistically significant argued for new tests making full use of the 3 other 
Quality factors present in the database, even at the cost of a moderate reduction in the number of 
available observations (from 1146 to 985 observations). 
 
Overall, these results suggest maintained hypotheses to be tested in the extensive trials: 
 

(a) the U-GBC form is overwhelmingly dominant (Table 5); (H0-1) 
   

(b) axle-load power damage functions, identifiable only if traffic is broken down by 
class, vary by traffic class (Table 6); 

(H0-2) 
   

(c) distinct user class damage functions imply different marginal costs and recovery 
rates from a potential marginal cost pricing régime (Table 7). 

(H0-3) 
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5. Form, aggregation and zero-output values: a preferred Four-Traffic U-GBC model 
 

5.1. Maximal detailed contents: a Four-Quality, Four-Traffic, Full Trans-Log model 
 

The groups of variables (S, Q, T, Q*Q, Q*T and T*T) included in the five competing forms of 
Table 4 and their detailed contents in terms of variables must be determined. We aimed first at 
having as a reference the richest Trans-Log specification possible in terms of groups and their 
detailed contents and then at defining other forms by nesting restrictions on the presence of the 
reference TL groups, as follows:  
 

i) Variables  
S: use all 11 available State variables, all Boolean except for Number of track apparatus and 

Length of section, both of which are transformed in accordance with the form requirement; 
Q: use all 4 available Quality factors;  
T: use the 4 traffics that correspond to outputs and neglect the 5th, an input factor;  

 

ii) Interactions38 
Q*Q: keep interactions among qualities Q in the Trans-Log reference form but remove them 

from the Box-Cox forms because, in background tests, they add nothing within these models. 
This will slightly affect the strict nesting of the Trans-Log form in the Box-Cox forms: if 
necessary, use non-nested tests to compare such models; 

Q*T: define interactions among track qualities Q and traffics T (i) as products of Age of rails or 
Age of sleepers (traverses) and traffic levels; and (ii) as ratios of traffic levels and Maximum 
allowed speed or Proportion of concrete sleepers. The reasons for defining ratios, as opposed 
to products, are discussed in Appendix 1. Note in passing that the ratio form of interaction is 
only identifiable with Linear and Box-Cox forms: in Log-Log and Trans-Log forms, ratios 
cannot be identified and distinguished from products; 

T*T: use all interactions among traffics T. 
 
Contents being clarified, Table 8 presents results according to three dimensions: functional form, as 
defined in Table 4; level of traffic aggregation; rules adopted for the handling of zero values. 
 
Comments in the forthcoming sub-section 5.2 (a) establish our 4-traffic preferred model on the 
basis of an examination of the doubly framed first line values and of the triply framed last column 
of Table 8; (b) probe the advantages of our chosen model in comparison with all other non linear 
results in Table 8. Sub-section 5.3 explores the role of interaction terms across TL and GBC models 
to understand the reasons for the better performance of the GBC models. Sub-section 5.4 reconciles 
our implied cost recovery results to other European results. 
 
5.2. Form, aggregation and the key role of zero handling rules 
 

A. Embarras de richesse : a tridimensional table 
 

Two sets39 of parallel test were carried out to establish the reference model series indicated in Table 
8: the first one, with 985 observations, included the 18 high speed only links and the second one, 
with 967 observations, did not. As both series gave extremely close results, only those obtained 
with the MEDIUM database of 967 observations are shown in Part I of Table 8 where rule Z-1 is 
applied, as it was for the exploratory model of Table 5. In Part I, one also finds results obtained with 
only 2 traffics (passenger and freight) as well as results obtained with a 1-traffic aggregate. Part II 

                                                           
38 In Section 4.1, we have already excluded interactions among state variables S and all other variables. 
39 The results are described in full in Gaudry & Quinet (2009). It was decided not to retain the 18 high speed links, 
insufficiently numerous to be treated separately and insufficiently homogeneous with the rest of the links in terms of 
technical characteristics and traffic mix, thereby probably reducing the precision of overall estimates. 
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presents some of the same models under rule Z-2, as does Part III for estimates under rule Z-3 with 
the SMALL database. 
 
The table dimensions (namely form, aggregation and the handling of zeroes) impose some 
discipline on our comments. We will start with a focus on the first line and last column to establish 
our choice of a preferred model. Afterwards, we will extend the comments to the rest of the table 
results. Note that, in Table 8, all models are labelled “A” to mean that they are specified with the 
maximum number of variables just allowed above for the 5 forms in Table 4. Other less complete 
models will be examined later and their corresponding series of results labelled “B” and “C”. 
 

Table 8. Core model Log Likelihood values under varying form, aggregation and handling of zeroes 

Model A B C D E 
Form as specified in Table 4 LIN LL TL R-GBC U-GBC 

Part I. Zero replacement rule Z-1 (967 observations) 
I.4 Series A: [4 Traffics]                                              Reference model series                                           Preferred 

Log-Likelihood -13 547,642 -13 129,267 -13 092,508 -12906,375 -12 866,366 
Number of parameters estimated 19 19 55 42 51 

Difference w.r.t. Log 0 0 36 23 32 

I.2 Series A: [2 Traffics] 
Log-Likelihood -13 576, 284 -13 137,707 -13 099,112  -12903,667 

Number of parameters estimated 17 17 38  35 
Difference w.r.t. Log 0 0 21  18 

I.1 Series A: [1 Traffic] 
Log-Likelihood -13 600,709 -13 118,611 -13 097,894  -12 921,412 

Number of parameters estimated 16 16 31  29 
Difference w.r.t. Log 0 0 15  13 

Part II. Zero maintenance rule Z-2 with associated dummy variables (967 observations) 
II.4 Series A: [4 Traffics] 

Log-Likelihood -13 547,642 -13 119, 643 n.a.  -12849,541 
Difference w.r.t. Log - 4 0 n.a.  37 

II.2 Series A: [2 Traffics] 
Log-Likelihood -13 576, 284 -13 122,034 n.a.  -12 900,967 

Difference w.r.t. Log -2 0 n.a.  19 

II.1 Series A: [1 Traffic] 
Log-Likelihood Same as in part I 

Difference w.r.t. Log 

Part III. Zero removal rule Z-3 (928 observations) 
III.4 Series A: [4 Traffics] 

Log-Likelihood Not feasible reliably: only 208 observations 
Difference w.r.t. Log 

III. 2 Series A: [2 Traffics] 
Log-Likelihood -13 037,526 -12617,078 -12593,371 -12420,669 -12 396, 476 

Difference w.r.t. Log 0 0 21 10 18 

III. 1 Series A: [1 Traffic] 
Log-Likelihood  -12610,610 -12592,016 -12421, 338  

Difference w.r.t. Log  0 15 6  
Note: series A contains the maximum number of variables in each form, in accordance with Table 4. Series B and C containing 

reduced numbers of variables will be presented in Table 12. 

 
B. A statistically preferred 4-traffic U-GBC model: the rows and the last column of Table 8 
 

Looking from left to right: an optimal form in the last column. The pattern seen in Table 5, 
symbolically expressed as [LIN] < [LL ≡ TL] < [R-GBC] < [U-GBC], is present in all three parts of 
Table 8 and on all lines. For instance, the pattern arising from the comparison of doubly framed 
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Log-likelihood values of the first line 4-traffic model under Z-1 is representative of what is found 
on other lines and can be described in the following words:  
 

(i) the Linear form is dominated by all non linear forms in terms of Log Likelihood. As shown in 
Appendix 3 (Part III, Line 3), it is also the only form with a positive probability of limit 
observations: in all non linear cases, the use of Likelihood function (1-B) is justified ex post; 

 

(ii) the Trans-Log model form is roughly equivalent to the Log-Log model because 36 degrees of 
freedom are involved in the comparison, for a gain of only 36,375 Log Likelihood points;  

 

 (iii) the U-GBC form dominates all. It is out of reach of the models based on logarithms (Log-Log 
and Trans-Log), both of which perform much less well, and even of the R-GBC40 because the 
additional 9 BCT allow for a gain of some 40 Log Likelihood points, i.e. well above the 99% 
significance level of the χ2/2 distribution.  

 
As this pattern, consistent with (H0-1), is repeated on all lines41 independently from the degree of 
aggregation or from the way in which the zero values are handled, the selection of a preferred 
model must involve a choice among the (triply framed) Log-Likelihood values found in Column E.  
 
Looking up and down the last column: optimal aggregation on the first line. Choosing among 
Column E outcomes to determine whether (H0-2) is also supported involves the other dimensions.  
 
Concerning aggregation, simple non-nested tests are easy to perform within each part of the table 
because the number of observations is constant for all tests performed under a given Z-rule. Such 
tests involve the construction of hypothetical models made up of the union of the sets of all 
regressors, say XI and XII, found in the models of the pair considered (I and II) where the individual 
members differ only by the traffic aggregates. Consequently, the imposition of 0 restrictions on 
either subset yields the other member of the pair: such nesting amounts to a test of the level of 
aggregation because the restrictions pertain only to the variables representing traffic aggregates. 
 
Performing this exercise for each given Z-rule among the Column E results of Table 8 supports the 
most disaggregate 4-traffic model, as opposed to more aggregate models. However, before taking 
this as a clear establishment of the U-GBC model of line 1 and as a confirmation of (H0-2), we must 
be sure that an examination across Z-rules also validates the same choice. 
 
To probe this important issue further, we consider in Table 9 more detailed information on all 
models from Column E. This table presents only the BCT values of (first order) traffic variables and 
their indicators of reliability under the different aggregation and zero value handling conditions of 
Column E: the other parameters are neglected. Many points pertain directly to (H0-2): 
 

i) Aggregation. As number of traffics decreases from 4 to 1, holding the Z-rule constant, the 
adjustment is not the only worsening indicator: the range of estimated traffic power values also 
decreases along with their reliability, as indicated by collapsing (unconditional) t-statistics42. At 
the 1-traffic limit of aggregation, the power estimate of 0,779 differs neither from 0 nor from 1: 

                                                           
40 A number of other studies (Andersson, 2009a, 2009b; Marti et al., 2009; Link, 2009) have found Box-Cox 
transformations applied to own terms to dominate the Log-Log forms, but as none have used full R-GBC specifications 
with interaction variables, strict comparisons are difficult to make. 
41 Due account taken of missing cases. Naturally, the Log-Likelihood gains differ within each zero handling regime and 
according to the level of aggregation. For instance, as one aggregates from 4 to 1 traffic under Z-1, the number of points 
gained per degree of freedom sacrificed is consistently low [1,02; 1,84 and 1,38] if one compares the TL with the LL 
and fall gradually [8,22; 13,00 and 15,17] if one compares the U-GBC with the LL, but these fluctuations do not argue 
against our preferred model choice.  
42 Correctly interpreted by keeping in mind that one is calculated with respect to 0,000 and the other with respect to 
1,000 using the formula t = [(βh – β0)/ σ(βh )]. 
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one can reject neither the logarithmic nor the linear forms ─anything will do! Aggregation 
clearly kills the power issue;  

 

ii) Z-rules. The impact of using Z-2 instead of Z-1 for the preferred model is related to the 
proportion of zero values in the transformed variables: little effect on the BCT of the Freight 
traffic variable (no zeroes), a small impact on the Intercity traffic variable (1% of zeroes) and a 
very large impact on the Regional train variable (36% of zeroes for both types of trains 
considered together), as is indicated in the doubly framed cells. This exact Z-2 remedy requires 9 
associated dummy variables but the resulting increase in the number of parameters causes a gain 
of only 16,92 Log Likelihood points and poorer t-values with respect to both 0 and to 1, thereby 
indicating a much greater uncertainty43 of estimates than under Z-1;  

 

Z-1 not a bad compromise. If the removal of all zero replacements (here equal to 0,00001) 
yields a poor payback in Z-2 when the proportion of zeroes is important, what happens in the 
opposite case of removal of all zero values in accordance with Z-3? As a reliable 4-traffic model 
is not feasible due to sample shrinkage, we are left in Column 5 of Table 9 with results for 2 
traffics that are fully consistent with Jansson’s comment to be quoted below: near linearity. To 
the best of our knowledge, however, such comments are not based on analyses made with more 
than 2 kinds of traffic (passenger and freight) as we found none in the literature.  

 
Table 9. Preferred model traffic power values under different aggregation and zero handling rules 

 Aggregation 4 Traffics 2 Traffics 1 Traffic 
 Z-rule Z-1 Z-2 Z-1 Z-2 Z-3 Z-1 
Traffic T Box-Cox transformations and their unconditional t-statistics with respect to 0 and 1 
Intercity trains  
(GL) 

λλλλ estimate 0,377 0,445 

0,83 
[0,83] 
[-9,13] 

0,704 
[1,80] 
[-0.76] 

1,008 
[0,55] 
[0,04] 

0,779 
[0,10] 
[-0,03] 

 

t-stat. w.r.t. 0 [1,39] [1,86] 
t-stat. w.r.t. 1 [-2,31] [-2,32] 

Regional trains  
(TER) & (IdF) 

λλλλ estimate 1,114 6,194 
t-stat. w.r.t. 0 [4,12] [1,94] 
t-stat. w.r.t. 1 [0,42] [1,63] 

Freight trains 
 (F) 

λλλλ estimate 3,458 3,589 0,486 -0,479 1,260 
t-stat. w.r.t. 0 [1,68] [1,21] [0,475] [-0,64] [1,09] 
t-stat. w.r.t. 1 [1,20] [0,87] [-0,49] [-0,99] [0,22] 

 Log Lik. value (not rounded) -12 866,3 -12849,5 -12903,6 -12 900,9 -12 396,4 -12 921,4 
Estimated parameter total 51 60 35 37 35 29 

Ordinary βk coefficients 41 41 26 26 26 21 
Associated dummy coefficients 0 9 0 2 0 0 

Box-Cox powers 10 10 9 9 9 8 
Pseudo R2 (E )adjusted for D.F. 0,813 0,836 0,744 0,754 0,756 0,733 
Pseudo R2 (L )adjusted for D.F. 0,928 0,930 0,923 0,924 0,923 0,921 

Number of observations 967 967 967 967 928 967 
Column number 1 2 3 4 5 6 

Note: although the unconditional t-statistics presented here do not suffer from invariance problems, they are computed 
from first partial derivatives of the maximized Log Likelihood in accordance with Berndt et al. (1974) and are 
therefore less precise than they would be if they had been calculated from second derivatives. Likelihood ratio 
tests remain strictly precise. The pseudo R2 measures of goodness-of-fit are calculated according to Equation 
(10) and Equation (11). 

 

                                                           
43 If 1,114 is the true value of the BCT, it is quite normal that the t-statistic with respect to 1,000 indicate that 1,114 is 
not very different from 1,000 in view of the fact that t-tests have low power if the values of H0 and H1 are close; 
however, if the true value is 6,194, one would expect much greater certainty that it differs from 1,000 than the 
indication of 1,63 provided. Clearly, the Log Likelihood surface is quite flat around the BCT value of 6,194 but quite 
peaked around that of 1,114. Something of the same nature also occurs with the BCT for freight trains. Hence our 
preference for the result obtained under Z-1. 
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Choice of a preferred 4-traffic model under Z-1. Form, aggregation and zero value handling rule 
dimensions therefore all point to the (greyed) U-GBC case of Column E of Table 8 as most 
performing model for our problem. 
 
In view of the rough equivalence between LL and TL forms, written symbolically [LL ≡ TL] above, 
it might then be thought that the real contest is not between the TL and U-GBC forms but between 
the latter and Log-Log forms. Note again that, in the first line of Table 8, the comparison between 
them indicates a difference of 262,9 Log Likelihood points (for 32 degrees of freedom, on average 
more than 8,22 points per additional parameter!), a number extraordinarily, not to say infinitely44, 
favourable to the U-GBC. 
 
Further work on this preferred U-GBC model involved three different sets of probes. First, the 
sample for France was split into Île-de-France and Province: one could reject the hypothesis that 
Île-de-France results differed significantly from those for the rest of the country, but not the 
converse view. It was also found, as before with the simpler models of Table 5, that a case could be 
made for some remaining small regional administrative differences. Finally, the construction of an 
Equivalent Traffic Load variable, obtained by weighing train types by segment as specifically 
recommended by the UIC maintenance manual (UIC, 1989)45, provided a far less convincing46 
explanation of the maintenance cost than that provided by the preferred U-GBC form. 
 
C. The preferred 4-traffic U-GBC model and the specificity of damages by train category 
 

Estimated BCT and the bowels of the chosen U-GBC model. Detailed results for the 5 
competing forms of line 1 of Table 8 can be found in Appendix 3 which is easy to read except for 
BCT indicators found in Part I of the table, in the two GBC columns, below the t-statistic of 
transformed variables. The presence of a variable-specific λk is denoted by LAM and, if the same λk 

is used for many variables, their group number appears, e.g. LAM 2. As this is per force 
complicated, it may be useful in Table 10 to extract the detailed structure and values of the BCT for 
the preferred case, because there were numerous possible ways to specify the U-GBC form. We 
note in Table 10 that: 
 

i) Interactions as product or ratios of variables? none of the Q*T or T*T interactions is 
logarithmic except between Q2 and all traffics, where the BCT equals 0,00 [0,004 in fact]. In 
particular, ratio interactions between Q3 or Q4 (see Appendix 1) and all traffics are well 
identified, because the relevant BCT, respectively equal to 2,13 and 1,59, strongly differ from the 
logarithmic case where such identification would not be feasible;  

 

                                                           
44 Of course, if one degree of freedom were involved, a gain of 8,22 Log Likelihood points would be acceptable at the 
99,9999% level. As additional lost degrees of freedom require proportionately lower gains per degree to maintain the 
same level of certainty, the U-GBC model effectively dominates the TL model with 100% certainty. 
45 The formula for Equivalent traffic load in tons { ETr } weighs total gross passenger train tons Tp and total gross 
freight train tons Tf as follows: { ETr } = {sp [(1+k • ep) Tp + sf [(kf + k • ef) Tf]}, where the coefficients represent the 
relative damage of freight axles (kf = 1,20), engine-specific damage (k = 1,40), the proportion of train tons accounted 
for by engines (ep = 0,20 for passenger trains and ef = 0,10 for freight trains) and the two remaining speed coefficients, 
defined by segment, vary with the maximum allowed speed on the segment. For passenger trains, sp increases in 
unequal steps from a reference level of 1,00 at speeds up to 60 km/h. until 1,50 for speeds greater than 250 km/h.; for 
freight trains, sf increases in the same way as sp up to a maximum of 1,15 because freight train speeds do not exceed 100 
km/h. 
46 In a representative test with the LARGE database, the Equivalent traffic variable and its corresponding interaction 
variables were added to a U-GBC variant based on 4 traffics in order to form an artificial joint model of 71 parameters. 
Removal of the 5 variables linked to Equivalent traffic reduced the joint Log Likelihood value (of -15240) by 4 points 
(to -15244, with a difference of 10 degrees of freedom) and removal of the 30 variables linked to standard traffics 
reduced it by 119 points (to -15321, with a difference of 40 degrees of freedom).  
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iii) Own power terms: in so far as T terms are concerned, it is difficult to be surprised that their 
estimated BCT are all above the logarithmic value, unless one had TL expectations, because the 
real issue is rather whether there is here a “power law” comparable to that relating road vehicle 
axle weights to road damages. We find that the power is lower than 1 (at 0,38) for intercity trains 
T1, slightly above 1 (at 1,11) for the regional and suburban trains T2 and T3,  and strongly above 
3 (at 3,46) for freight traffic T4.  

 

In addition to the own-power effect, the total effect of gross train weight depends also on that 
arising from the interaction terms. Among the 16 terms corresponding to Q*T, the 5 terms that 
have t-statistics above 2,00 all have positive signs ─which implies additional damages arising 
from the interaction─ and 3 out of those 5 belong to freight trains (they are doubly framed in 
Table 9). The interactions arising from T*T interactions are not to be entirely neglected, but are 
much less significant than the Q*T ones. 

 
Table 10. Values of the 10 Box-Cox transformations estimated in the preferred U-GBC form 

                   

  C   S   Q   Q*T  

        Q1 Q2 Q3 Q4   T1 T2 T3 T4  

       Q1 0,11     Q1 0,57 0,57 0,57 0,57  

 
y 0,31 

 S1 0,11  Q2  0,11    Q2 0,00 0,00 0,00 0,00  

  S2 0,11  Q3   0,11   Q3 2,13 2,13 2,13 2,13  

       Q4    0,11  Q4 1,59 1,59 1,59 1,59  

                   

 S1= Switches 
LEGEND 

 T*T   T  

 S2= Length segment  T1 T2 T3 T4   T1 T2 T3 T4  

 Q1= Rail age T1 = GL T1  0,74 0,74 0,74  T1 0,38     

 Q2= Sleeper age T2 = TER T2   0,74 0,74  T2  1,11    

 Q3= Maxim. speed T3 =  IdF T3    0,74  T3   1,11   

 Q4= % concr. sleep. T4 =  F T4      T4    3,46  

                 

Source: Appendix 3, Part II, Column U-GBC, Lines 0-10. 

 
There is therefore strong evidence of a power above 1 for freight trains, but we will see below that 
their marginal costs, which take all (first order and interaction) effects into account, are low. We 
will try to make sense of marginal costs that are low while (first-order) damages are strongly rising, 
in our discussion of marginal costs (calculated with first and second order terms) by train type. 
 
Is there a rail axle load damage power function? At face value, the results of Table 10 argue at 
least for traffic-specific effects and the presence of a (first-order term) power much greater that 1,00 
for freight trains, as did results found in the pared down exploratory model47. This differs markedly 
from some published views, for instance by Jansson (2002): 
 

“Those studies which have tried to establish a direct link between maintenance cost and axle load have 
arrived at an almost linear, or slightly progressive, relationship. Although it is not possible to draw any 

                                                           
47 In the exploratory model with 5 traffics, we compared specifications where traffic in measured in train-tons, as it is 
here, with other specifications splitting train-tons between the number of trains and their average weight. Assigning a 
first and common BCT to passenger train average weights and a second one common to freight and maintenance train 
average weights yielded a value equal to 1,04 for the former and equal to 7,80 for the latter parameter  ─and powers 
smaller than 1,00 for the 5 BCT associated to number of trains by category. 
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firm conclusions about how reconstruction and maintenance costs increase with axle load, it is clear that 
the relationship is far less progressive than the so-called “fourth power law” in the road sector.”  

 

who refers directly to the famous “fourth power” axle weight damage law first formulated in the 
official analysis (HRB, 1962) of the American Association of Highway State Officials (AASHO) 
Road Test conducted48 in Illinois between 1958 and 1962. Since then, the prevailing measure of 
this deterioration is the relative pavement damage of different axle loads. In consequence, the 
equivalent single axle load rating (“ESAL”) or load equivalent factor (“LEF”) of an axle or axle 
group configuration x is defined as the number of passes of the standard (reference) axle load 
required to create the same amount of damage as one pass of candidate axle load x: 
 

4

( )
Axle load (x)

ESAL x   
Reference axle load

 
=  
 

      (17) 

 
The seminal but rather simple LL form AASHO analysis was later redone with the same data and 
two sophisticated estimation procedures: for fixed Log form models, a one-limit Tobit statistical 
formulation49 to account for the censoring of vehicle passes (upwards, at 1 114 000) implied by the 
limited 2-year duration of the experiment; and, for the authors’ strongly preferred Box-Tidwell 
models, a non linear maximum likelihood procedure implemented in TSP software50. In these latter 
Box-Tidwell tests, the re-estimated optimal load power51 was closer to 3 for rigid pavements made 
of Portland cement concrete (Small & Zhang, 1988) and varied between 3,3 (for light loads) and 4,6 
(for heavy loads) for flexible pavements (Zhang, 1990). 
 
There is to-day an important literature on appropriate powers for pavements that takes into account 
varying traffic conditions (e.g. traffic mixes ignored in the ASSHO tests, “stop-and-go”  traffic52), 
tire width (Lloyd & Addis, 2000), and exacerbating climatic conditions53. Climate interacts with 
heavy traffic54 in the absence of which significant aging does not occur: to-day, pavement 
deterioration prediction models cannot separate the load-associated deterioration from the 
environment deterioration causes. Naturally, national highway construction manuals incorporate 
explicit values of the axle weight powers. In the Anglo-Saxon world, the AASHO fourth power is 

                                                           
48 In the main portion of the tests and at a cost then of more than $ 250 million, trucks of 10 distinct types and loads 
made over 2 years some 1 114 000 passes over 274 sections of road, each constructed to a different specification, The 
official analysis relates resulting pavement condition to the load, axle configuration and pavement structure but also 
contains some seasonal weights. 
49 In effect a special case of the RHS of Equation (8).  
50 To the extent we could determine, TSP’s maximum likelihood procedure used (VAX version 4.1) automatically 
calculates asymptotic unconditional values of standard errors of all parameters without due regard to whether some 
parameters are BCT powers, which implies resulting unconditional t-statistics for the two BCT estimated in both 
papers, i.e. values dependent on units of measurement of the transformed pavement and traffic variables. Log likelihood 
values produced by TSP are straightforward and there is little doubt here that the optimal powers are correct, even in the 
absence of guarantees of a global maximum, because local maxima are rare, if not unknown, with only two BCT. A 
formal two-dimensional grid search (on λ1 and λ2) would have provided both that certainty, with a plot of likelihood 
contours, and invariant conditional standard errors or t-tests. 
51 These authors also attempted a TL specification but the “wildly varying results for pavement structure and light 
loads” led them to conclude that this specification was “unreliable” (Small & Zhang, p. 17). 
52 A professor at the Technical University of the German army next to Munich considers that, in stop-go traffic, the 
power is close to 20 and that it is closer to 3,8 in free-flow steady traffic on a good highway. 
53 As stated by Small (1990) in a summary paper, “In the case of rigid pavements, there is no evidence of significant 
aging effects, and there are examples of auto-only roads in severe climates that have lasted well beyond 25 years 
without resurfacing. […] Time and weather exacerbate ─rather than duplicate─ the effects of heavy traffic.” 
54 Models where the climate intervenes additively to explain deterioration are not credible, as was admitted on 
September 26, 1991, by Bruce Hutchinson upon questioning by the Canadian Royal Commission on National Passenger 
Transportation during the discussion of a model by Jung et al. (1975) that treated climatic factors additively (in 
Hutchinson, 1991). The treatment of weather and traffic effects as additively separable is now outdated, hopefully. 
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still the practical reference55. In France, the power 5 is recommended for flexible pavements and 12 
for rigid and concrete pavements (LCPC & SETRA, 1994). All such values56 are now derived from 
laboratory tests rather than the great outdoors.  
 
There is also a derived literature on joint optimization of pavement construction and maintenance, 
called life-cycle cost analysis, where pavement thickness and maintenance can be jointly 
determined optimally (e.g. Small et al., 1989). Optimization is critical because, as pointed out by 
Heggie (1991a)57, “while the structural damaging effect of traffic rises with the fourth power of axle 
loadings, pavement strength rises with a typically ninth power of thickness and cost (a power of 
about 5 to 13, depending on materials)”. The demonstrated existence of power laws for rail tracks 
could therefore modify current belief and practice apparently reflected in Jansson’s summary view. 
 
Conditions needed to detect rail axle load power functions. We therefore have indications that 
the establishment of power functions for the rail mode may just require more than 2 traffics but 
would prefer data on individual train weights and suspension characteristics to pursue the issue. It is 
also the case that, as demonstrated in Appendix 1, it is critical to determine damages for given 
quality of track, as done in the AASHO tests for different pavement qualities but yet to be effected 
convincingly in rail studies. 
 
The demonstration of the presence of power laws should be facilitated by the flexibility of BCT: 
simple power parameters are not good substitutes because terms such as yγ can lead to the 
degenerate solution γ = 0 as one approaches power values that matter but differ from the logarithm; 
and, in any case the simple power transformation does not maintain the ordering of the data58: a 
BCT solves these problems and avoids being obliged to use for the dependent variable y an priori 
form such as the logarithm, as was done in the re-estimations of the AASHO tests.  
 
The analysis of the behaviour of the preferred model under aggregation therefore provides strong 
evidence of train-specific weight damage effects in accordance with (H0-2) and even of the presence 
of rail “power laws” analogous to (17) requiring further confirmation, preferably with data on 
individual trains and their composition. 
 
D. The preferred 4-traffic U-GBC model and cost recovery: other non linear cases of Table 8 
 

Our preferred model has been chosen primarily on the basis of an analysis of Log-Likelihood values 
analysed by line and for all lines of Table 8 and of a detailed comparison among all U-GBC model 
values from Column E. Will this preference be maintained as we consider cross-cases from the rest 
of Table 8 columns except for the first (neglecting linearity for obvious reasons), and shift the 
emphasis from statistical to economic considerations, notably with respect to maintained hypothesis 
(H0-3) on cost recovery from hypothetical marginal cost charges? 
 
Cost recovery and form when zero values are treated. The influence on cost recovery from 
hypothetical marginal cost pricing regimes of form and Z-rules is best summarized in Figures 1 and 
2 where the X axis shows the number of traffic categories used and the three lines indicate 
hypothetical cost recovery from marginal cost charges determined by each model form.  
 

                                                           
55 Wyn Lloyd of the United Kingdom Highways Agency thinks that the fourth power law is viewed in the U.K. as a 
« reasonable compromise » between estimates ranging from the power 3 to the power 8 (Lloyd & Addis, 2000). 
56 For bridges, the power 3 of Gross Vehicle Weight, not of axle weight, is often deemed appropriate (Fekpe, 1996). 
57 In his Annex 4, not found in the shortened version (Heggie, 1991b). 
58 For graphs illustrating how the ordering of observations is affected by the simple power transformation but not by the 
BCT, the reader might consult Johnston (1984, p. 63). 
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In Figure 1, the adjustments are drawn from Part I results of Table 8 (Log-Log, Trans-Log and U-
GBC): the recovery ratio drops dramatically with the number of traffics if pricing is derived from 
Log-log and Trans-log forms. This does not happen with the Box-Cox transform which is 
insensitive to the zero values of variables provided that the powers of the transform be positive, 
which is always the case for our sample. This may be due to segments where some traffic is null as 
occurs for 39 segments with the 2-traffic specification, much more with the 4-traffic specification 
(for instance on many segments there is no Île-de-France traffic) and never with the 1-traffic 
specification. Our tests performed on both the SNCF sample and on simulations drawn from 
random numerical samples have shown that cost coverage for LL and TL forms is very sensitive to 
the small arbitrary 0 replacement value. 
 

Figure 1. Cost recovery under marginal cost pricing with models from Table 8, Part I (Z-1 rule) 
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Figure 2 confirms this hypothesis by using Part III results (Log-Log, Trans-Log and R-GBC) 
derived from strictly positive observations: the set of observations is slightly reduced from 967 to 
928 to exclude the 39 observations for which there are some zero value traffic. It is clear in this case 
that using one or two traffics makes much less difference to cost recovery rates. 
 
Cost recovery and form in the absence of zero values. The Figure 2 results also favour Box-Cox 
specifications in other ways. We have just noted that BCT are more robust to the range of traffic 
values than Log-log or Trans-Log specifications and to the exact replacement value used for the 
output values equal to zero. Now we note that there may be a third reason for maintaining our 
preference for the Box-Cox models that generally support higher numbers of traffics (less 
aggregation): as we look again in Figure 2 (where zeroes do not interfere), we find that cost 
recovery is higher for Box-Cox adjustments irrespective of the number of traffics. This result was 
also found by Link (2009) for Austrian railways with a single-output model comparison between a 
LL form and its BCT generalization. 
 
Preference for U-GBC (or eventually for R-GBC) models is thereby reinforced: they favour 
disaggregation by user class in accordance with (H0-2), are more stable than other models in the 
presence of zeroes and, concerning (H0-3), yield higher cost recovery levels than other forms.  
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Aggregation and cost recovery. Is this last result to be expected? Considering also the 
unproblematic Box-Cox adjustments in Figure 1, it appears that the cost coverage is higher for the 4 
traffics variant than for the 1 or 2 traffic ones, thereby implying again that the Box-Cox models 
imply higher recovery rates. This double result makes sense, as we presently argue.  
 

Figure 2. Cost recovery under marginal cost pricing with models from Table 8, Part III (Z-3 rule) 
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Should the cost be explained just by traffics (or should the other variables be uncorrelated with 
traffics) and should the relation be linear, the adjustments would be written, successively for the 
“one-traffic” and the “two-traffic” models as:  
 

C = b1 + a1*(T1 + T2) + e1       (17) 
 

C = c2 + a2*T1 + b2*T2+ e2      (18) 
 

where T1 and T2 denote traffic types. It is clear that the multiple R2 correlation coefficients 
necessarily verify r2>r1 because of the restriction a2=b2 imposed in the first model, as compared 
with the second. It is also clear that, as both expressions are positive, we have by the properties of 
Least Squares ∑(a2*T1 + b2*T2) > ∑a1*(T1+T2), which implies that the recovery rate with 2 traffics 
is higher than with 1 traffic and, similarly, is also higher with 4 traffics than with 2 traffics.  
 

The differences between this simple case and those of Table 8 are that the latter relations are not 
linear and that their other variables are somewhat correlated with their traffics. Nevertheless, the 
result holds as long as the relation is not “too” non linear and the other variables are not “too” 
correlated with the traffics: it gives a hint that recovery rates are presumably larger with 4 than with 
2, and with 2 than with 1, traffic. 
 

This ordering is similar to that suggested by a comparison of Box-Cox model goodness of fit 
statistics across levels of traffic aggregation. First, the Pseudo-R2-L values (greyed in Table 9) duly 
increase with the number of traffics considered under the Z-1 rule; second, even if the marginal 
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gains somewhat decrease with increased numbers of traffics, the absolute gains in Log likelihood 
are still important: 17,8 points from Column 6 to Column 3 [with 3 degrees of freedom lost] and 
37,3 points from Column 3 to Column 1 [with 16 degrees of freedom lost]. 
 

Full models and the three maintained hypotheses from exploratory work. All results of Table 8 
considered, our preferred model choice confirms maintained hypotheses concerning form (H0-1), 
damages varying by user class (H0-2) and differentiated cost recovery under a marginal 
maintenance cost recovery pricing régime (H0-3). Very detailed full models do not modify the 
overall bearing of the results obtained with exploratory pared down models. 
 
5.3. Quality-Traffic interactions and model performance: products, but not of logarithms 
 

But the extreme generality of the U-GBC form makes it difficult to intuit the reasons for its 
performance relative to that of other forms, and notably relative to the TL form, long-established as 
the workhorse of total and maintenance cost studies in rail transport and for other modes as well.  
 
Simply put, if the TL, which contains interaction terms, is no better than the LL, which contains 
none, the source of the advantage of the two GBC variants over all fixed form specifications must 
be in the flexibility of the BCT, i.e. in modelling the interactions better than in the TL, a diagnostic 
confirmed by the further superiority of the U-GBC over the R-GBC. 
 
To understand this better, we carefully examine the role of technical variables K ≡ (S, Q) 
considered by themselves (for first order effects) and considered also in their interaction roles. We 
isolate the role of Q*T interactions and demonstrate that their presence does not guarantee their 
having a role unless they are introduced with the correct form. This can be seen if we study Q*T 
interactions in the 4-traffic models under Z-1 or if we take some of these models and systematically 
remove interactions from them in step-wise fashion. In both cases, Q*T interactions matter only if 
they are inserted in the correct form and not as products of logarithms. 
 
A. Studying variables, including interactions, in the 4-traffic models under Z-1 
 

State variables. The State variables are very significant, as can be seen in Table 11 where segment 
length may reveal the presence of unexploited economies of scale because the explained cost is 
defined per kilometre. Interesting enough, but our concern is with the interacting variables. 
 

Table 11. Results for selected State variables (reference model series) 
Cost elasticities with respect to Switches and Segment Length (I.4 Series A: [4 Traffics] in Table 8) 

Form LIN LL TL R-GBC U-GBC 
Number of switches 
Elasticity evaluated at sample means according to Eq. (13) 0,45 0,28 0,26 0,28 0,24 
Conditional t-statistic of βk coefficient (18,12) (10,42) (8,92) (12,63) (10,51) 
Segment length 
Elasticity evaluated at sample means according to Eq. (13) -0,29 -0,30 -0,29 -0,28 -0,26 
Conditional t-statistic of βk coefficient (-9,98) (-11,93) (-11,00) (-11,69) (-12,57) 
Source: Appendix 3, Part I, Line 1 (variable apdv) and Line 4 (variable long). 

 
Own terms : negligible Q*Q interactions, moderate T*T interactions. Quality variables are a 
more complicated problem than State variables because of their potential interactions among 
themselves (Q*Q) and with Traffic variables (Q*T). We mentioned above that Q*Q interactions 
had been removed from Box-Cox specifications because they were never significant in these forms: 
the same result is found in the TL form where they were retained in principle, as may be readily 
verified in Appendix 3 where it is also possible to see that T*T interactions are much more 
significant, notably between T3 and T4 than the Q*Q interactions. In the Box-Cox forms, the most 
important interactions by far are the Q*T interactions. 



 30

 
Q*T interaction in Appendix 3. However, testing the role of interactions in the U-GBC form is 
not straightforward because this format allows many refinements excluded by the R-GBC 
restrictions. For instance, redefining the Q*T interactions, characterized by 4 horizontally 
constrained BCT in Table 10, by 4 vertical restrictions gave much less good results: Q*T 
interactions are therefore better defined by making them vary by quality independently from train 
categories rather than by train type independently from the nature of qualities. As flexible 
horizontal interaction constraints are much better than flexible vertical ones, the imposition of TL 
logarithmic symmetry in Appendix 3 yields a predictably mediocre outcome: wrong in its symmetry 
assumption and wrong in the value of the imposed uniqueness of the implied power term. 
 
Fair enough, but we did not explore the most general specifications that would allow 16 distinct 
interactions by (λq , λp) pair in (U-GBC) as this would have increased by 12 [= 16 - 4] the number 
of estimated BCT (symmetry of the matrix is not meaningful here) and forced time consuming tests 
to guarantee global maxima of the Log Likelihood function: we had already found 2 or 3 examples 
of local maxima with 9 to 11 BCT parameters. It is a matter of time before algorithms compute 
meta-statistics on the probability of having obtained a global maximum, but our L-1.4 algorithm 
required that the raw data for such robustness statistics be derived by tedious manual modifications 
of the starting values of the vector of BCT parameters, a non trivial problem with say 21 to 23 BCT. 
 
B. The role of quality traffic Q*T interactions identified by step-wise addition of groups 
 

Another reasonable way to understand the importance of the interactions involving the quality 
variables is to add them in progressively, as done in the following Table 12 where, in TL and R-
GBC forms: one starts, in Case C, with only Traffic and State variables59 and successively adds, in 
Case B, the four Quality variables (and the weaker T*T interactions) before finally adding, in case 
A (drawn from Table 8), all interactions among Quality and Traffic variables. 
 

Table 12. Effect of Quality, Traffic-Traffic and Quality-Traffic variables 

 
TL(1) R-GBC 

Log 
Likelihood 

Parameters 
estimated 

Elasticity 
of cost 

Log 
Likelihood 

Parameters 
estimated 

Elasticity 
of cost 

4 traffics (Rule Z-1, 967 observations) 
Case C T, S n.a. -- -- -12978 16 0,37 
Case B T, S, Q, T*T -13104 39 0,18 n.c.(3) -- 
Case A(2) T, S, Q, T*T, Q*T -13093 55 0,19 -12906 42 0,38 
2 traffics (Rule Z-3, 928 observations) 
Case C T, S n.a. -- -- -12475 14 0,23 
Case B T, S, Q, T*T -12598 30 0,32 -12433 18 0,37 
Case A(2) T, S, Q, T*T, Q*T -12593 38 0,32 -12421 29 0,34 
1 traffic (Rule Z-3, 928 observations) 
Case C T, S n.a. -- -- -12468 13 0,24 
Case B T, S, Q, T*T -12595 27 0,34 -12433 17 0,34 
Case A(2) T, S, Q, T*T, Q*T -12592 31 0,34 -12421 22 0,36 

 Parameters estimated include both regressors and Box-Cox transformations. For Series A, see Appendix 3, Part III, Line 5. 
Elasticity : mean elasticity of the cost with respect to traffic, according to Equation (15), weighted by traffic shares. Note that higher 

elasticities generally imply, by Equation (16), higher marginal costs. 
 (1) In all A cases, the TL form includes Q*Q interactions but the GBC does not, as pre-specified in Table 4. 

(2) Case A results in bold italics contain new information not presented in Table 8 (Part I and Part III) but found in Appendix 3. 
(3) Does not converge. 

 

                                                           
59 Case C of the R-GBC specification is the closest we have to the tests made by Andersson (2009a, 2009b), Link 
(2009) and Marti et al. (2009) on single-BCT models containing qualities Q but no interaction terms. In three of the 
four cases considered by these authors, the Box-Cox model was preferred to the LL model. 
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These additions present interesting features for the understanding of the role of Q*T interactions: 
 

▪ Any Q*T interaction will not do. Comparing B and C cases, Quality-Traffic interaction variables 
Q*T improve the quality of the adjustments only slightly in the Trans-Log case but considerably 
in the Box-Cox cases, which suggests again that the proper form of interaction matters and that a 
simple product of logarithms will not do. Clearly, many interactions specified a priori in the 
Trans-Log are unrealistic in a physical model of track deterioration, such as those among 
qualities Q*Q that never seem to matter here, irrespective of form, and those that may be 
relevant but not in a logarithmic shape. The GBC, preferably in U-GBC garb, is the only 
adequate specification: imposing a TL form even worsens the adjustment, as compared to a LL. 

 

▪ Q*T interactions included in short-run cost function. Reading the table upwards from the 
bottom A lines, which show the most complete adjustments in terms of groups of variables, the 
cost elasticity with respect to traffic decreases when the quality-traffic variables are dropped. 
This point would deserve more thorough investigation along the following lines: the A and B 
adjustments with Traffics, State and Quality-Traffic variables together can be seen as 
representing the short run cost function, while the C adjustments neglecting qualities Q and Q*T 
interactions can be seen as closer to the medium run cost function. The fact that short run 
elasticity (and whence the implied marginal cost) in A and B cases is higher than the medium run 
elasticity (and implied marginal cost) in C cases supports the Rivier & Putallaz (2005) diagnostic 
that SNCF track renewal policy is under-optimized.  

 

▪ Q*T and other statistically significant interaction terms and cost recovery. Fourth, taking 
interactions into account in the Trans-Log cases makes no difference to the elasticities. This 
makes sense: if the Trans-Log is insufficiently parsimonious, in the sense that it includes too 
many second degree interaction terms (of fixed and incorrect form) and that removing those 
makes little difference to the quality of adjustment, then we do not expect terms with coefficients 
barely different from zero to have much impact on derived calculations of elasticities (or of 
marginal costs). By contrast, in the Box-Cox cases where (flexible) interactions have a more 
statistically significant role, the elasticities do change. 

 
We conclude studying the role of interactions, and in particular of Q*T interactions, across model 
forms, that having the wrong form of interaction is no better than having none and that the right 
interaction form cannot be determined a priori. The point is of interest because the effective choice 
in many papers is between fixed parsimonious LL forms and fixed profligate TL forms (e.g. Link et 
al., 2008): we are effectively arguing that this is the wrong choice due to the lack of flexibility of 
the TL fixed form in handling interactions terms, rather than due to its generous parametrization. 
 

5.4. Solving a European cost recovery puzzle 
 

Solving a European cost recovery puzzle. These analyses throw some light on the oddness of cost 
recovery results for France (around 35%, as indicated in Figures 1 and 2) in contrast with average 
European results (between 15 and 20%, as reported in Wheat & Smith (2008)). 
 
We have seen that Box-Cox forms tend to yield higher recovery rates than those found with other 
mathematical forms, as does the break-down of traffic variables into four traffic services (most 
European studies use only one). It is also the case that multiple quality indicators (most European 
studies have fewer, if any) are relevant because cost recovery falls when they are dropped from the 
regression. These combined effects explain the “French exception” as they imply a range where the 
lowest value reaches the higher values of the acknowledged European range, as shown in Table 13. 
 
There is less to learn immediately from the system-wide elasticities and corresponding marginal 
costs listed in Table 12: they will be analyzed further below to understand their components across 
traffic categories and their values elsewhere than at the means. 
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Table 13. Range of recovery rates in our non linear results 

 LL TL R-GBC 
Case A. 4 traffics with Q*T variables 0,05* 0,19 0,39 
Case A. 1 traffic with Q*T variables 0,26* 0,33 0,34 
Case C. 1 traffic without Q*T variables 0,18** 0,24 n. a. 

Source *Figure 1 **Other Table 12 Table 12 

 
6. Detailed elasticities and marginal costs derived from the preferred model 
 
Up to this point, only mean system-wide values of elasticities, marginal costs and implied cost 
recovery ratios have been used in our comparison of non linear cases in Table 8 (e.g. Figure 1, 
Figure 2 and Table 13)60. But mean values by user class are also of interest, as are evaluations at 
loci other than sample point values: in the case of monotonically changing relationships, a mean 
evaluation, for the system or a user class, is fine as it goes but becomes misleading if the underlying 
relationship is U-shaped. We therefore extend our analysis of the impact of traffic on cost beyond 
mean system-side measures: first towards mean values by user class and second towards values by 
user class, considered one at the time and jointly, obtained by simulating, ceteris paribus, traffic 
loci situated in representative domains61 of the four traffics, other variables held at sample means. 
 
6.1. Average value by service, at traffic sample points 
 

Table 14 presents the averaged cost elasticities and marginal costs with respect to traffic calculated 
by traffic type and for the system, respectively. 
 

Table 14. Averaged marginal cost and cost elasticity with respect to sample traffic service points 
Averaged point marginal cost (in Euro per 100 ton-km per year) and elasticity with respect to traffic 

 T1 Intercity T2 Regional T3 Ile-de-France T4 Freight System 
Marginal cost 0,172 0,458 0,174 0,069 0,139(1) 
Elasticity 0,118 0,122 0,033 0,114 0,387(2) 
(1) Average of “averaged” values obtained according to Equation (16). 
(2) Sum of values for the four individual traffic categories, each obtained according to Equation (15). 

 
Unexpectedly low marginal freight costs. A noticeable feature of this set of results is that the 
marginal cost of freight is lower than the marginal cost of all passenger traffics. This point, 
paradoxical to the extent that engineering approaches conclude that freight trains are more 
damageable than passenger trains, might be reasonable if maintenance costs depended not only on 
the damages but also on the cost of maintenance works, on the required level of quality, and on 
available funds. We discuss these points for France and extend their scope to other European 
countries where comparable results have been found. Successively: 
 

▪ Maintenance work conditions. The first reason is the “track possession” time allowed for 
repairs. Works are more expensive when track possessions are short, and this is the case in 
France in day periods for passenger trains whose timetable cannot easily be adapted to needs of 
maintenance while freight train time–tables are easier to change: this point is specially relevant 
in France where very short track possessions are traditionally accepted, a policy that is currently 
changing. Of course, track possession are specially short on segments with a large numbers of 
trains (which is the case of tracks with regional trains) and induce more expensive maintenance, 
except when the maintenance is achieved during the night, which is rarely the case in France.  

 

                                                           
60 An exception is Table 11 where elasticities are calculated at sample means and are not mean elasticities. 
61 This amounts to a manual modification of one or more traffic variable Xk in (13). 
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▪Maintaining quality. The maintenance cost depends not only on the damages caused by the trains 
but also on the quality level objective; in that respect it is clear that segments with a large 
proportion of freight trains do not require a high level of quality while segments with a large 
proportion of passenger trains require a high quality level. A model of social optimization of 
maintenance shows that, when the traffic is composed of trains of type A demanding no quality 
but damaging the track (the case of freight trains) and trains of type B demanding a high quality 
but giving little damage to the track (the case of passenger trains), type B trains can have a 
marginal cost higher than type A trains, as shown in Appendix 2.  

 

▪ Maintenance postponed. This quality effect is enhanced when there is a shortage of funds, a fact 
which leads to favour, in terms of prevention and renewals, the most circulated tracks and 
increases the marginal costs on other tracks because they are then more subject to curative 
maintenance, as opposed to cheaper preventive maintenance. But the resulting increases in 
marginal freight costs appear here to be dominated by the reduced need for maintenance on low 
quality lines, a factor working in the opposite direction. The net result found in Table 14 implies 
that the cost minimization assumption is distorted by short run considerations that make the 
maintenance expenditures more dependent on the traffic “standing” of lines than expected from 
optimal planning considerations. Clearly, the different quality factors in our models are then 
insufficient to account for “standing”, thereby causing passenger costs to depend more on traffic 
than they should. This prevalence of standing amounts to a missing variable in the models. 

 

The ratio of passenger to freight marginal costs in other countries. If the problem is as just 
described, low marginal costs for freight trains are perfectly consistent with higher power damage 
functions for these trains. And not only in France, or in “top-down” econometric models. 
 

It is found in other system-wide studies made with strictly comparable data (i.e. on track sections, 
not on regional aggregates) for other countries, namely Sweden (Andersson, 2009a or 2009b) and 
Switzerland (Marti et al., 2009), as demonstrated by Wheat et al. (2009, Table 4.6). Using a 
common definition62 of marginal cost across countries and Purchasing Power Parity (PPP) exchange 
rates to adjust for different sample years and national prices, they found that the results of Table 14 
implied a ratio of Passenger to Freight marginal (gross tons) costs of 3,04 for France, mid-way 
between that of Switzerland (1,44) and that of Sweden (7,56), all measured in French Euro PPP 
units. As demonstrated in Appendix 2, the maintenance of quality is sufficient to explain this result 
even in the absence of postponed maintenance or passenger track repair slot length and time-of-day 
constraints. 
 

But it is also found in “bottom-up” detailed engineering studies made on lines “dedicated” to 
different traffic classes, where dedication, an indicator of standing, implies that the traffic mix is 
predominantly passenger or freight. In a study of track and ballast damages combined with damages 
to bridges and culverts accounting for the majority of maintenance expenditures in Sweden, Ongaro 
& Iwnicki (2009) compare two such lines, the first (from Stockholm to Uppsala) dedicated to 
passengers and the second (from Luleå, to Narvik in Norway) to freight. Using detailed information 
on the physical infrastructure and on train composition, they calculate that, given train type and 
composition, the level of damages by train is always lower on the higher quality than on the lower 
quality line, but that the damages are always higher for passenger than for laden63 freight trains. 
Their calculation transforms various physical damages, including those due to line geometry and 
tracé, into Equivalent Gross Tonne Miles (EGTM) units favoured by the United Kingdom Office of 
Rail Regulation. 
 

                                                           
62 To compare results for passenger traffic to results for freight traffic for France, Sweden and Switzerland, the authors 
weigh the average of point values obtained for each user class in each study by the ton-kilometres of that class.  
63 If the freight wagons are empty, the damages are equal. 
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6.2. Beyond mean values: U-shaped or not? 
 

Remember that variables other than Traffic include State and Quality variables at their sample 
means: this will be left unchanged in the first construct and changed forthwith in the second. 
 
Marginal cost by traffic type. The first case is considered in Table 15 where, interestingly, the 
marginal cost for long distance passenger trains (Intercity) indicated in the greyed column exhibits a 
textbook-like U shape with a minimum roughly at mid-point of the traffic level, i.e. not too far from 
the actual mean level of 1 116 095 indicated in Table 3. However, as the own coefficient of the 
Intercity traffic variable itself is positive (see Appendix 3), this net turning effect seems entirely due 
to the (additional) interaction terms, somewhat worrying if one expects own effects to dominate. 
 
On this point, Andersson (2006, Table 6) has estimated a 1-trafic maintenance cost model with a 
strict quadratic form term very significant in the logarithms of his traffic variable (gross tons). By 
contrast, in a similar model, Marti et al. (2009) exclude from their reference model the added 
quadratic traffic term found to be of marginal statistical significance. The presence of U-shaped 
effects is therefore far from a standard feature of current models. 
 

Table 15. Average marginal cost and cost elasticity with respect to simulated traffic service points 
Simulated traffic Marginal cost (€/ 100 t-km/year) Elasticity 

Intercity Regional IdF Freight Intercity Regional IdF Freight Intercity Regional IdF Freight 
41 921 16 384 11 695 30 000 0,50 1,03 0,49 0,46 0,04 0,03 0,01 0,02 

419 207 163 844 116 950 300 000 0,15 0,35 0,20 0,13 0,08 0,07 0,03 0,05 
2 096 035 819 218 584 748 1 500 000 0,07 0,43 0,11 0,07 0,11 0,26 0,05 0,08 
4 192 070 1 638 435 1 169 495 3 000 000 0,07 0,52 0,05 0,06 0,15 0,42 0,03 0,09 
8 384 139 3 276 870 2 338 991 6 000 000 0,14 0,61 -0,09 0,03 0,34 0,56 -0,06 0,05 

16 768 278 6 553 741 4 677 981 12 000 000 0,46 0,36 -0,44 -0,27 1,17 0,35 -0,31 -0,49 

 
Simulated total cost elasticity and marginal cost and by track quality. Results in Figure 3 for 
the second case pertain to three simulations of the effects of joint traffic variations based on 
different values of State and Quality indicators: average quality, defined by the average values of S 
and Q, and low or high quality, defined by values of S and Q some 30% lower or higher than the 
mean ones. Again, the joint effect differs from the effects of traffic considered one at the time. 
Elasticity results shown in Figure 4 are constructed in the same way with different values of State 
and Quality indicators. Together, these two figures complement the system-wide results found in 
Table 14. 
 
U shapes an issue. U shapes are therefore quite delicate a topic. In models containing only 
monotonic terms, the presence of a real, but hidden, quadratic effect can imply very low coefficients 
of the traffic variables because fitting a straight line, or of a simple monotonic curve, through a U 
can easily lead to a misleading slope coefficient not too different from zero, and even of the 
“wrong” sign: it is therefore important to look for quadratic effects by testing explicitly for the 
presence of turns as part of the core search. But such tests have their own complexities because an 
asymmetric U is obtained if one generalizes the specification (y = f (Xk, Xk

2) by using a BCT for the 
squared term64, allowing the estimated power to differs from 2. It is sometimes possible to reject a 
symmetric form (λ = 2), when tested against its removal, and to accept an asymmetric form (λ ≠ 2), 
essentially because a symmetric quadratic is a rigid and limited special case of turning functions. 
 
Overall, it seems that the issue of the presence of U-shaped effects in the analysis of maintenance 
cost should be the object of a distinct analysis, preferably with data on individual trains. In this 

                                                           
64 For a discussion of the conditions for a maximum or a minimum, the reader may consult Gaudry et al. (2000) where 
the formulation is more general still and allows for two BCT on the two terms found in (y = f (Xk, Xk

2), a generalization 
that gives great flexibility to the shape of the turning curve. 
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study, the Linear and Log-Log forms exclude it from the start and, in the Trans-Log form, the 
predominance of first order terms is considerable; overall, we found the presence of U-shaped 
effects demonstrably rare. 
 

Figure 3. Marginal traffic cost as a function infrastructure quality 
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Figure 4. Cost elasticity with respect to jointly changing traffic as a function of infrastructure quality 
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7. Conclusion: letting the data, not the analyst, decide the form 
 
Unfortunately, we have no models of maintenance costs to test our GBC results against, and no 
analyst’s “theory” is yet strong enough to predict parameter and form values. In this applied case, 
the Unrestricted Generalized Box-Cox form gives the best results, provides strong evidence of the 
existence of power function by train type and, consequently, of user-specific marginal costs.  
 
But, if our primary concern is with the reasonableness of an ad hoc specification, it is also with 
whether the results (e.g. on marginal costs) make sense. On this point, we were satisfied with the 
economic values implied by the “optimal” results and draw some methodological conclusions:  
 

Trans-Log and Log-Log specifications are not convenient if some traffic variables are sometimes 
null: they do not represent well the behaviour of cost functions drawn from engineering 
knowledge. From this point of view, the Box-Cox form is innocuous, as is the linear one.  

 

Technical (both Quality and State) variables are highly significant. It is important to use them in 
the adjustments in order to properly estimate the short run cost function: without them, the 
function would be more akin to a long run cost function, assuming an optimal capital level.  

 

It appears that interactions among Quality variables and Traffics are significant only in the 
Generalized Box-Cox cases and especially in the most flexible unrestricted U-GBC case. This 
point is a bit worrying as these interactions should incorporate the substance of the track, 
which is acknowledged by the engineers as an important factor of maintenance costs: when 
the age of the track approaches a level expressed in cumulated ton-km, damages and 
maintenance costs increase sharply. Unfortunately, the present estimates fail to reproduce this 
point in the Trans-Log case. Further research is needed on this point, and generally on links 
between maintenance and renewal.  

 
We conclude that the Unrestricted Generalized Box-Cox form should be decisive in two sets of 
circumstances between which most real world situations are found: at one extreme, when one has a 
clear engineering (or other) model of maintenance costs and one is interested in testing the 
compatibility of data with it; at the other extreme, when one has no clear maintenance cost model 
form and the primary concern of the analysis is the reasonableness of an ad hoc specification in 
terms of fitting the data and yielding convincing results. In both cases, of course, we allow the data 
to decide on the proper form in the hope that the associated results will be convincing in the sense 
that they do not imply too strong a conflict with a priori expectations however derived. 



 37

8. References 
 
Abrantes, P., Wheat P. E., Iwnicki, S., Nash, C. and A. Smith (2007). CATRIN (Cost Allocation of 

TRansport INfrastructure cost), Review of rail track cost allocation studies for Deliverable 1 of 
CATRIN. Funded by Sixth Framework Programme. VTI, Stockholm. 

Aigner, D. J. (1971). Basic Econometrics. Prentice-Hall, Englewood Cliffs, N. J. 
Amemiya, T. and J. L. Powell (1980). A comparison of the Box-Cox maximum likelihood 

estimator and the nonlinear two stage least squares estimator. Technical Report No. 322, 
Stanford University. 

Andersson, M. (2006). Marginal railway infrastructure cost estimates in the presence of 
unobserved effects. Manuscript, VTI, Stockholm, 11th September 2006. 

Andersson, M. (2009a). CATRIN (Cost Allocation of TRansport INfrastructure cost), Deliverable 
8, Rail Cost Allocation for Europe – Annex 1A – Marginal Costs of Railway Infrastructure 
Wear and Tear for Freight and Passenger Trains in Sweden. Funded by Sixth Framework 
Programme. VTI, Stockholm. 33 pages, February. 

Andersson, M. (2009b). Marginal cost of railway infrastructure wear and tear for freight and 
passenger trains in Sweden. Department of transport economics, VTI, Borlänge, 29 pages, 31 
March. Presented at the Fourth International Transport Economics Conference, Minneapolis, 
June.  

Baumgartner, J. P. (1978). The Production Function of a Railway. International Journal of 
Transport Economics 5, 2, 145-159. 

Berndt, E. R., Hall, B. H., Hall, R. E. and J. A. Hausman (1974). Estimation and Inference in 
Nonlinear Models. Annals of Economic and Social Measurement, 3, 653-665. 

Berndt, E. R. and M. S. Khaled (1979). Parametric Productivity Measurement and Choice among 
Flexible Functional Forms. Journal of Political Economy 87, 6, 1220-1245, December. 

Bereskin, C. G. (2000). Estimating Maintenance-of-Way Costs for U.S. Railroads After 
Deregulation, Transportation Research Record 1707, 13-21. 

Bickel, P. J. and K. A. Doksum (1981). An analysis of transformations revisited. Journal of the 
American Statistical Association 76, 374, 296-311. 

Bierlaire, M. (2003). BIOGEME: a free package for the estimation of discrete choice models. 
Proceedings of the 3rd Swiss Transportation Research Conference, Ascona, Switzerland.  

Bierlaire, M. (2008). An introduction to BIOGEME Version 1.6. www.biogeme.epfl.ch.  
Blackorby, C., Primont, D. and R. R. Russell (1977). On Testing Separability Restrictions with 

Flexible Functional Forms. Journal of Econometrics 5, 195-209. 
Borger, B. de (1991). Hedonic versus homogeneous output specifications of railroad technology: 

Belgian railroads 1950-1986, Transportation Research 25A, June, 227-238.  
Borger, B. de (1992). Estimating a Multiple-Output Generalized Box-Cox Cost Function: Cost 

Structure and Productivity Growth in Belgian Railroad Operations, 1950-86. European 
Economic Review 36, pp. 1379-1398. 

Borts, G. H. (1960). The estimation of rail cost functions. Econometrica 28, 1, January, 108-131. 
Box, G. E. P. and D. R. Cox (1964). An Analysis of Transformations. Journal of the Royal 

Statistical Society, Series B, 26, 211-243. 
Box, G. E. P. and P. W. Tidwell (1962). Transformation of the Independent Variables. 

Technometrics 4, 531-550. 
Brown, R. S., Caves, D. W. and L. R. Christensen (1979). Modeling the Structure and Cost of 

Production for Multiproduct Firms. Southern Economic Journal 46, 256-273, July. 
Burgess, D. F. (1974). A Cost Minimization Approach to Import Demand Equations. Review of 

Economics and Statistics 56, 225-234. 
Caves, D. W., Christensen, L. R. and J. A. Swanson (1980b). Productivity in U.S. Railroads, 1951-

1974. Bell Journal of Economics 11, 1, 168-181.  



 38

Caves, D. W., Christensen, L. R. and M. W. Tretheway (1980a). Flexible Cost Functions for 
Multiproduct Firms. Review of Economics and Statistics, 477-481 (Notes Section). 

Caves, D. W., Christensen, L. R., Tretheway, M. W. and J. Windle (1985). Network effects and the 
measurement of returns to scale and density for U.S. railroads. Ch. 4 in A. F. Daughety (ed.), 
Analytical Studies in Transport Economics, 97-120, Cambridge University Press, Cambridge. 

Christensen, L. R., Jorgenson, D. W. and L. J. Lau (1971). Conjugate Duality and the 
Transcendental Logarithmic Function. Econometrica 39, 4, 255-256, July. 

Dagenais, M., Gaudry, M. and T. C. Liem (1987). Urban Travel Demand: the Impact of Box-Cox 
Transformations with Nonspherical Residual Errors. Transportation Research B 21, 6, 443-477.  

Davidson, R. and J. G. MacKinnon (1985). Testing Linear and Loglinear Regressions against Box-
Cox alternatives, Canadian Journal of Economics/Revue canadienne d’Économique 18, 3, 
499-517. 

Denny, M. and M. Fuss (1977). The Use of Approximation Analysis to Test for Separability and the 
Existence of Consistent Aggregates. America Economic Review 67, 3, 404-418, June. 

Denny, M. and C. Pinto (1978). An Aggregate Model with Multi-Product Technologies. Ch V.1, in 
Fuss, M. and D. McFadden (eds), Production Economics: A Dual Approach to Theory and 
Applications, Vol. 2, 249-267, North Holland, 1978. 

Diewert, W. E. (1971). An Application of the Shephard Duality Theorem: A Generalized Leontief 
Cost Function. Journal of Political Economy 79, 481-507. 

Diewert, W. E. (1973). Separability and a Generalization of the Cobb-Douglas Cost, Production 
and Indirect Utility Functions. Research Branch, Department of Manpower and Immigration, 
Ottawa, January. 

Diewert, W. E. (1974). Functional Forms for Revenue and Factor Requirements Functions. 
International Economic Review 15, 199-130. 

Draper, N. R. and D. R. Cox (1969). On distributions and their transformations to normality. 
Journal of the Royal Statistical Society B31, 472-476. 

Fekpe, E. (1996). Bridge Cost Allocation Issues. Canadian Transportation Research Forum 1996 
Proceedings, Volume 2, 883-892, May. 

Fuss, M., McFadden, D. and Y, Mundlak (1978). A Survey of Functional Forms in the Economic 
Analysis of Production. In M. Fuss and D. McFadden, eds., Production Economics: a Dual 
Approach to Theory and Applications, Ch. II.1, 219-268. New York: North Holland Publishing. 

Gaudry, M. et al. (2002). TRIO, Version 2.0. Agora Jules Dupuit, Université de Montréal. www.e-
ajd.net. 

Gaudry, M., Blum, U. and T. Liem (2000). Turning Box-Cox, including Quadratic Forms in 
Regression. Ch. 14 in Gaudry, M. and S. Lassarre (eds). Structural Road Accident Models: The 
International DRAG Family, Pergamon, Elsevier Science, Oxford, 335-346.  

Gaudry, M. and R. Laferrière (1989). The Box-Cox Transformation: Power Invariance and a New 
Interpretation. Economics Letters 30, 27-29. 

Gaudry, M. and M. J. Wills (1978). Estimating the Functional Form of Travel Demand Models. 
Transportation Research 12, 4, 257-289. 

Gaudry, M., and E. Quinet (2003). Rail track wear-and-tear costs by traffic class in France. 
Publication AJD-66, Agora Jules Dupuit, Université de Montréal, www.e-ajd.net, et W.P. 04-02, 
Centre d’Enseignement et de Recherche en Analyse Socio-économique, École nationale des 
Ponts et Chaussées (ENPC-CERAS), www.enpc.fr/ceras/labo/accueil.html, 26 pages, November. 

Gaudry, M. and E. Quinet (2009). CATRIN (Cost Allocation of TRansport INfrastructure cost), 
Deliverable 8, Rail Cost Allocation for Europe – Annex 1Di – Track Maintenance Costs in 
France. Funded by Sixth Framework Programme. VTI, Stockholm. 30 pages, February. 

Gosset, W. S. [“Student”] (1908). The probable error of a mean. Biometrica 6, 1, 1-25. 
Griffin, R. C., Montgomery, J. M. and M. E. Rister (1987). Selecting Functional Form in 

Production Function Analysis. Western Journal of Agricultural Economics 12, 2, 216-227. 



 39

Hariton, G. (1984). Railway Costing: A Review. WP 60-64-17, Research Branch, Canadian 
Transport Commission, 112 pages, October. 

Heggie, I. (1991a). User Charging and Accountability for Roads: An Agenda for Reform. The 
World Bank, 119 pages, September.  

Heggie, I. (1991b). Improving Management and Charging Policies for Roads: An Agenda for 
Reform. Report INU 92, The World Bank, 81 pages, December.  

Highway Research Board (HRB), (1962). The AASHO Road Test, Report 5: Pavement Research. 
Special Report 61E. 

Hutchinson, B. G. (1991). Some Technical Issues in Implementing Road User Pavement Damage 
Charges. 18 pages, Infrastructure Pricing, Investment Decisions and Financing, Royal 
Commission on National Passenger Transportation, Technical Seminar Documentation, Ottawa, 
26-27 September.  

Jansson, J. O. (2002). An Analysis of the Rail Transport System. In Nash, C., Wardman, M., 
Button, K. and P. Nijkamp (eds), Classics in Transport Analysis: Railways, 135-181, Edward 
Elgar Publishing Limited, Cheltenham. 

Jara-Díaz, S. (1982). The estimation of transport cost functions: a methodological review. 
Transport Reviews 2, 3, pp. 257-278. 

Johansson, P. and J.-E. Nilsson (2004). An Economic Analysis of Track Maintenance Costs. 
Transport Policy 11, 277–286.  

Johnston, J. (1984). Econometric Methods, Third Edition, McGraw-Hill Book Company. 
Jung, F. W., Kher, R. and W. A. Phang (1975). Ontario Pavement Analysis of Costs: A 

Performance Prediction System. Research Report 200, Ministry of Transportation and 
Communications of Ontario, Downsview, Ontario. 

Khaled, M. S. (1978). Productivity Analysis and Functional Specification. A Parametric 
Approach. Ph. D. Thesis, Department of Economics, University of British Columbia, April.  

Laferrière, R. (1999). L’usage du coefficient de Pearson comme mesure du R2 dans les modèles 
non linéaires. Publication AJD-57, Agora Jules Dupuit, Université de Montréal, 2 pages, 
www.e-ajd.net. 

LCPC and SETRA (1994). Conception et Dimensionnement des Structures de Chaussée: Guide 
Technique. Laboratoire Central des Ponts et Chaussées et Service d’Études Techniques des 
Routes et Autoroutes, Ministère de l’Équipement, des Transports et du Tourisme. 

Liem. T. C., Dagenais, M. and M. Gaudry (1987). The L-1.4 program for BC-GAUHESEQ (Box-
Cox Generalized AUtoregressive HEteroskedastic Single EQuation) models. Publication CRT-
510, Centre de recherche sur les transports, Université de Montréal, 41 p., www.e-ajd.net.  

Liem, T. C., Gaudry, M., Dagenais, M. and U. Blum (2000). LEVEL: The L-1.5 program for BC-
GAUHESEQ (Box-Cox Generalized AUtoregressive HEteroskedastic Single EQuation) 
regression and multimoment analysis. In Gaudry, M. and S. Lassarre (eds), Structural Road 
Accident Models: The International DRAG Family, Elsevier Science Publishers, Oxford, Ch. 
12, 263-324. www.e-ajd.net.  

Link, H. (2009). CATRIN (Cost Allocation of TRansport INfrastructure cost), Deliverable 8, Rail 
Cost Allocation for Europe – Annex 1C – Marginal costs of rail maintenance in Austria. 
Funded by Sixth Framework Programme. VTI, Stockholm. 23 pages, February. 

Link, H., Stuhlemmer, A. Haraldsson, M., Abrantes, P., Wheat, P., Iwnicki, S., Nash, C., and A. 
Smith (2008). CATRIN (Cost Allocation of TRansport INfrastructure cost), Deliverable D 1, 
Cost allocation Practices in the European Transport Sector. Funded by Sixth Framework 
Programme. VTI, Stockholm. 93 pages, March.  

Lloyd, W. and R. Addis (2000). Current Road-Vehicle Interaction Research in the UK. Paper 
presented at the International Seminar on Heavy Vehicle Weights and Dimensions, June 18-22, 
Saskatoon, 12 pages, June. 

Marti, M., Neuenschwander, R. and P. Walker (2009). CATRIN (Cost Allocation of TRansport 
INfrastructure cost) Deliverable 8, Rail Cost Allocation for Europe – Annex 1B – Track 



 40

maintenance and renewal costs in Switzerland. Funded by Sixth Framework Programme. VTI, 
Stockholm. 38 pages, February. 

Martland, C. D. (2001). Allocating the Costs of Railroad Infrastructure to Specific Traffic 
Classes. Publication AJD-36, Agora Jules Dupuit, Université de Montréal, 20 pages, January 19, 
2001. www.e-ajd.net.  

Nördling, W. von (1886). Prix de revient des transports par chemin de fer. Annales des Ponts et 
Chaussées 11, 10, 292-303. 

Olsen, R. J. (1978). The method of Box and Cox, a pitfall. Institution for Social and Policy Studies, 
Yale University, Working Paper No 804. 

Ongaro, D. and S. Iwnicki (2009). CATRIN (Cost Allocation of TRansport INfrastructure cost), 
Deliverable 8, Rail Cost Allocation for Europe – Annex 2 – Railway Infrastructure Wear and 
Tear for Freight and Passenger Trains in Sweden. Funded by Sixth Framework Programme. 
VTI, Stockholm. 21 pages, February. 

Oum, T. H. and W. G. Waters II (1996). A Survey of Recent Developments in Transportation Cost 
Function Research. Logistics and Transportation Review 32, 4, 423-463. 

Oum, T. H. and W. G. Waters II (1997). Recent developments in cost function research in 
transportation. In De Rus, G. and C. Nash (eds.), Recent developments in transport economics, 
pp. 33–73, Ashgate Publishing, Aldershot, Hampshire. 

Poirier, D. J. (1978). The use of the Box-cox transformation in limited dependent variable models. 
Journal of the American Statistical Association 73, 284-287. 

Quinet, E. (2002). Détermination des coûts marginaux sociaux du rail. Manuscrit, 38 pages, mars. 
Rivier, R. and Y. Putallaz (2005). Audit sur l’état du réseau ferré national français. Laboratoire 

d’Intermodalité des Transports et de Planification, École Polytechnique fédérale de Lausanne, 30 
pages, 7 septembre. 

Robert, W. E., Chapman, J. D. and C. D. Martland (1997). Effects of Axle Loads and Train 
Capacity on Heavy Haul Network Performance. Proceedings of the 39th Meeting of the 
Transportation Research Forum, Volume 2, 24 pages, October. 

Rosett, R. N. and F. D. Nelson (1975). Estimation of the two-limit Probit regression model. 
Econometrica 43, 141-146. 

Sánchez, P. C. (2000). Vertical Relationships between Railway Operations and the Infrastructure 
for the European Case. In Nash C. and E. Niskanen (eds), Helsinki Workshop on Infrastructure 
Charging on Railways, VATT Discussion Papers 245, Government Institute for Economic 
Research, Helsinki. Pages 71-94. 

Schlesselman, J. (1971). Power families: a note on the Box and Cox transformation. Journal of the 
Royal Statistical Society Series B 33, 307-31. 

Shephard, R. W. (1953). Cost and Production Functions. Princeton University Press. 
Small, K. A. (1990). Highway Infrastructure: Crisis in finance or Crisis in Management? ITS 

Review 13, 2, 4-8. 
Small, K. A., Winston, C. and C. A. Evans (1989). Road Works. The Brookings Institution, 128 p., 

Washington. 
Small, K. A. and F. Zhang (1988). A Reanalysis of the AASHO Road Test Data: Rigid Pavements. 

Department of Economics and Institute of Transportation Studies, University of California, 
Irvine, 34 pages.  

Spitzer, J. J. (1976). The demand for money, the liquidity trap and functional forms. International 
Economic Review 17, 220-227. 

Spitzer, J. J. (1984). Variance estimates in models with the Box-Cox transformations: Implications 
for estimation and hypothesis testing. Review of Economics and Statistics 66, 645-652. 

Thomas, J. (2002). EU Task Force on Rail Infrastructure charging: summary findings on best 
practice in marginal cost pricing. 16 p. IMPRINT–EUROPE Thematic Network (2001-2004), 
www.imprint-eu.org/public/Papers/IMPRINT3_Thomas.pdf. 



 41

Tobin, J. (1958). Estimation of Relationships for Limited Dependent Variables. Econometrica 25, 
24-36. 

Tovar, B., Jara-Díaz, S. and L. Trujillo (2003). Production and cost functions and their 
application to the port sector: a literature survey. World Bank Policy Research Working Paper 
3123, 32 pages, August. 

UIC, Union Internationale des Chemins de Fer (1989). Classification des voies des lignes au point 
de vue de la maintenance de la voie. Fiche no 714 R, 7 pages, Paris, 3ème édition, 1er janvier. 

Wheat, P. and S. J. Smith (2008). Assessing the Marginal Infrastructure Maintenance Wear and 
Tear Costs for Britains’s Railway Network. Journal of Transport Economics and Policy 42, 2, 
189-224. 

Wheat, P., Smith, A. and C. Nash (2009). CATRIN (Cost Allocation of TRansport INfrastructure 
cost), Deliverable 8 – Rail Cost Allocation for Europe. Funded by Sixth Framework 
Programme. VTI, Stockholm. 70 pages, March. 

Wilson, G. W. (1980). Economic Analysis of Intercity Freight Transportation. Indiana University 
Press, Bloomington, Indiana. 

Winston, C. (1985). Conceptual Developments in the Economics of Transportation: An 
Interpretative Survey. Journal of Economic Litterature 23, pp. 57-94, March. 

Zhang, F. (1989). A Reanalysis of the AASHO Road Test Data: Flexible Pavements. Manuscript, 
Department of Economics and Institute of Transportation Studies, University of California, 
Irvine, 34 pages. 



 42

9. Appendix 1. Interactions among Qualities and Traffics 
 
In the framework of maintenance cost function which is the subject of this study, quality parameters 
appear as longer term decision parameters, and play a role similar to the role played by capital in 
cost functions of economic textbooks where the representative function is written: 
 

C(T) = f(T,K).      (1) 
 
Usual properties of f(T, K) are that this function is increasing in T, i.e. (f’T > 0), but U-shaped in K, 
namely decreasing in K (f’K < 0) for low values of T and increasing in K (f’K > 0) for high values of 
T. It is easy to deduce that the optimal level of K is such that f’K = 0. Furthermore, it is also often 
assumed that the marginal short run cost f’T decreases with K, formally stated as f’’TK < 0 whereby 
the short run marginal cost decreases with higher capital and equipment levels. 
 
We transpose this property to the case of quality parameters in the maintenance cost function, and 
assume that:  
 

f’’TQ < 0.      (2) 
 
Let us introduce this assumption in a GBC specification of the maintenance cost function similar to 
the one presented in the second section, but assuming for simplicity that there is just one traffic and 
one quality: 
 

( )C a b *T c*Q d *T *Qλ α β γ δ= + + +    (3) 
 
What conditions can be derived for the parameters from the assumption that f’’TK < 0 ? If λ ≠ 1, no 
clear condition can be drawn, but if λ=1, it is easy to see from straightforward calculation that this 
assumption implies that γδ < 0. 
 
This prompts us to introduce the interaction terms between traffics T and qualities Q through ratios 
T/Q, the simplest specification ensuring the above result. We therefore use this ratio form for 
Maximum allowed speed and for Proportion of concrete sleepers which are parameter directly 
related to quality, and we use the product for parameters which are inversely correlated to quality: 
Age of rails and Age of sleepers. 
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10. Appendix 2. Effect of quality adjustment on marginal costs 
 
Consider a track on which 2 types of traffic are running and define: 
 

C (Q1, Q2, q) as the maintenance cost of such a track with two traffics (1 and 2) and the 
quality of which is measured by the variable q; 

 

F (Q1, Q2, q) as the transport cost of these traffics 1 and 2, including monetary, time and 
quality of track. 

 
Assume that the first derivatives of C and F with respect to Q1 and Q2 and of C with respect to q 
are positive, but that the derivative of F with respect to q is negative. Assume further that the 
Infrastructure Manager aims at achieving a social optimum, a sensible assumption for a public 
agency, which implies a minimization of the total cost with respect to the quality level q, namely: 
 

Minimize, with respect to q, total cost equal to (C+F). 
 

The first order conditions may then be written as:  
 

C’q+F’q=0,       (1) 
 

and solved for the optimal value of q for given values of Q1 and Q2, yielding a function: 
 

q=q (Q1, Q2).        (2) 
 
Then the marginal cost of traffic 1 is: 
 

C’ (Q1) = C’Q1 + (C’q)*(dq/dQ1)    (3) 
 

and similarly for traffic 2. 
 
It turns out that the ratio of marginal costs (dC/dQ1)/(dC/dQ2) generally differs from the ratio of 
technical equivalence coefficients (∂C1/∂Q1)/(∂C/∂Q2), which is the ratio of costs to repair 
damages just ex-ante, i.e. resetting quality at its ex-ante level. This result implies some paradoxical 
results such as the possibility for a traffic to be very damaging from a technical point of view but 
have a low marginal cost. 
 
To see it in an extreme case, write simple functions satisfying the above assumptions: 
 

C=C0+C1*Q1+0,5*C2*Q1*q² 
 

F=F1*Q1+F2*Q2-F3*Q2*q² 
 

which have the built-in property that traffic 1 is damaging but not sensitive to quality, while traffic 
2 is not damaging but sensitive to quality, as one expects from freight and passenger traffics. Trivial 
calculations lead to the following results: q= (F3/C2)*(Q2/Q1) and, from (3), to the marginal costs: 
 

C’ (Q1) =C1-C2 (F3*Q2/C2*Q1)² 
 

C’ (Q2) =C2*(Q1/Q2)*(F3*Q2/C2*Q1)² 
 

It is clear that, depending on the values of the parameters C1, C2 and F3, C’ (Q1) and C’ (Q2) can 
take any value; and it may happen that C’ (Q1) <C’ (Q2) though traffic 2 causes no damage to the 
track. The above simple model assumes that the Infrastructure Manager aims at maximising social 
welfare, but other objectives are possible such as maintaining a given quality level, or making the 
quality proportionate to the traffic level, or any other option. In those cases, the marginal costs 
would exhibit different relationships from those derived here. 
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11. Appendix 3. Results: 5-Form, 4-Quality, 4-Traffic Full models under Rule Z-1 
 

Appendix 3. Beginning (page 1 of 3) 

Series I.4.A from Table 8 Linear Log-Log Trans-Log R-GBC U-GBC 
 
PART I. ELASTICITIES, CONDITIONAL t-STATISTICS (ββββ    = 0) and BOX-COX LAMBDA GROUPS 

S: STATE OF LINE SEGMENTS [X] [X] [X] [X] [X] 
1 Number of switches .451 .284 λ1λ1λ1λ1 .259 λ1λ1λ1λ1 .283 λ1λ1λ1λ1 .244 λ1λ1λ1λ1 
  (18.12) (10.42)  (8.92)  (12.63)  (10.51)  
2 Electrified line Dummy .031 .296  .205  .086  .104  
  (0.49) (4.91)  (3.09)  (1.57)  (1.98)  
3 Automatic switch control Dummy .169 .135  .096  .067  .072  
  (2.57) (2.03)  (1.40)  (1.17)  (1.33)  
4 Segment length -.291 -.298 λ1λ1λ1λ1 -.290 λ1λ1λ1λ1 -.270 λ1λ1λ1λ1 -.255 λ1λ1λ1λ1 
  (-9.98) (-11.93)  (-11.00)  (-11.69)  (-12.57)  
5 Number of tracks = 1 (vs 2) Dummy -.055 -.134  -.058  .083  -.003  
  (-0.79) (-1.92)  (-0.77)  (1.29)  (-0.06)  
6 Number of tracks = 3 (vs 2) Dummy -.118 .263  .080  .055  .116  
  (-0.60) (1.40)  (0.42)  (0.33)  (0.85)  
7 Number of tracks = 4 (vs 2) Dummy .259 .573  .370  .289  .279  
  (2.20) (5.81)  (3.45)  (3.06)  (2.89)  
8 Number of tracks = 5 (vs 2) Dummy -1.237 .155  -.112  .003  -.157  
  (-3.48) (0.47)  (-0.34)  (0.01)  (-0.40)  
9 Number of tracks = 6 (vs 2) Dummy .385 .751  .494  .541  .636  
  (1.44) (3.50)  (2.20)  (1.87)  (2.85)  
10 Number of tracks = 10,18 (vs 2) D. .054 1.051  .816  .463  .627  
  (0.10) (2.28)  (1.73)  (0.43)  (0.02)  
Q: QUALITIES OF SEGMENTS [X] [X] [X] [X] [X] 
11 Age of rails .056 .063 λ1λ1λ1λ1 4.598 λ1λ1λ1λ1 .482 λ1λ1λ1λ1 .100 λ1λ1λ1λ1 
  (0.65) (0.73)  (2.01)  (1.84)  (1.19)  
12 Age of sleepers .036 .024 λ1λ1λ1λ1 -4,321 λ1λ1λ1λ1 -.360 λ1λ1λ1λ1 .052 λ1λ1λ1λ1 
  (0.41) (0.25)  (-1.83)  (-1.28)  (0.66)  
13 Maximum speed allowed -1.017 -.459 λ1λ1λ1λ1 -3.652 λ1λ1λ1λ1 -.050 λ1λ1λ1λ1 -.482 λ1λ1λ1λ1 
  (-8.24) (-3.88)  (-0.91)  (-0.19)  (-4.42)  
14 Proportion of concrete sleepers -.126 .002 λ1λ1λ1λ1 -.050 λ1λ1λ1λ1 .002 λ1λ1λ1λ1 .017 λ1λ1λ1λ1 
  (-2.46) (0.36)  (-1.09)  (0.08)  (1.53)  
Q*Q: QUALITY INTERACTIONS   [ln(X)]*[ln(X)]   
15 (Age of rails)*(Age of rails)    -2.292      
     (-1.47)      
16 (Age of sleepers)*(Age of sleepers)    .622      
     (0.36)      
17 (Max. speed)*(Max. speed)    4.689      
     (0.53)      
18 (% concr.sleepers)*(% concr. sleep.)    -.056      
     (-1.18)      
19 (Age of rails)*(Age of sleepers)    .765      
     (0.29)      
20 (Age of rails)*(Max. speed)    -8.39      
     (-1.22)      
21 (Age of rails)*(% concr. sleepers)    .028      
     (0.63)      
22 (Age of sleepers)*(Max. speed)    11.561      
     (1.65)      
23 (Age of sleep.)*(% concr. sleepers)    -.026      
     (-0.56)      
24 (Max. speed)*(% concr. sleepers)    -.003      
     (-0.17)      

Continued… 
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Appendix 3. Continuation (page 2 of 3) 

Series I.4.A from Table 8 Linear Log-Log Trans-Log R-GBC U-GBC 
 
PART I. ELASTICITIES, CONDITIONAL t-STATISTICS (ββββ    = 0) and BOX-COX LAMBDA GROUPS 

Q*T : QUALITY-TRAFFIC INTER.   [ln(X)]*[ln(X)] [X]*[X] [X]*[X]65 
25 (Age of rails)*(Intercity train t.)    .068  -.056 λ1λ1λ1λ1 -.026 λ2λ2λ2λ2 
     (0.05)  (-0.20)  (-0.43)  
26 (Age of rails)*(Regional train t.)    .122  -.345 λ1λ1λ1λ1 -.016 λ2λ2λ2λ2 
     (0.09)  (-1.10)  (-0.35)  
27 (Age of rails)*(Ile-de-Fr. train t.)    -.013  -.243 λ1λ1λ1λ1 .071 λ2λ2λ2λ2 
     (-0.10)  (-1.15)  (1.95)  
28 (Age of rails)*(Freight train t.)    -2.386  .053 λ1λ1λ1λ1 .109 λ2λ2λ2λ2 
     (-2.37)  (0.22)  (3.13)  
29 (Age of sleepers)*(Intercity train t.)    -.176  .127 λ1λ1λ1λ1 -.004 λ3λ3λ3λ3 
     (-0.13)  (0.42)  (-0.56)  
30 (Age of sleepers)*(Regional train t.)    .622  .470 λ1λ1λ1λ1 .019 λ3λ3λ3λ3 
     (0.47)  (1.42)  (3.08)  
31 (Age of sleepers)*(Ile-de-Fr. train t.)    .005  .440 λ1λ1λ1λ1 .002 λ3λ3λ3λ3 
     (0.04)  (2.15)  (0.55)  
32 (Age of sleepers)*(Freight train t.)    -.040  -.120 λ1λ1λ1λ1 .009 λ3λ3λ3λ3 
     (-0.04)  (-0.45)  (2.32)  
33 (Max. speed)*(Intercity train t.)    .319  -.022 λ1λ1λ1λ1 .010 λ4λ4λ4λ4 
     (0.38)  (-0.11)  (1.70)  
34 (Max. speed)*(Regional train t.)    -.812  .011 λ1λ1λ1λ1 -.008 λ4λ4λ4λ4 
     (-0.90)  (0.06)  (-0.76)  
35 (Max. speed)*(Ile-de-Fr. train t.)    .089  .279 λ1λ1λ1λ1 -.001 λ4λ4λ4λ4 
     (0.65)  (2.72)  (-1.10)  
36 (Max. speed)*(Freight train t.)    2.811  .713 λ1λ1λ1λ1 .025 λ4λ4λ4λ4 
     (3.36)  (3.02)  (3.79)  
37 (% concr. sleep.)*(Intercity train t.)    -.008  .043 λ1λ1λ1λ1 .001 λ5λ5λ5λ5 
     (-0.82)  (1.75)  (2.40)  
38 (% concr. sleep.)*(Regional train t.)    -.002  .005 λ1λ1λ1λ1 .001 λ5λ5λ5λ5 
     (-0.21)  (0.21)  (1.67)  
39 (% concr. sleep.)*(Ile-de-Fr. train t.)    -.017  .009 λ1λ1λ1λ1 .000 λ5λ5λ5λ5 
     (-0.76)  (0.34)  (0.02)  
40 (% concr. sleep.)*(Freight train t.)    .003  -.032 λ1λ1λ1λ1 -.000 λ5λ5λ5λ5 
     (0.39)  (-1.34)  (-1.19)  
T*T : TRAFFIC INTERACTIONS   [ln(X)]*[ln(X)] [X]*[X] [X]*[X] 
41 (Intercity train t.)*(Intercity train t.)    .181      
     (0.77)      
42 (Regional train t.)*(Regional train t.)    .317      
     (1.86)      
43 (Ile-de-Fr. train t.)*(Ile-de-Fr. train t.)    .208      
     (2.75)      
44 (Freight train t.)*(Freight train t.)    .291      
     (1.71)      
45 (Intercity train t.)*(Regional train t.)    -.084  .070 λ1λ1λ1λ1 -.013 λ6λ6λ6λ6 
     (-0.34)  (1.79)  (-0.38)  
46 (Intercity train t.)*(Ile-de-Fr. train t.)    .099  .017 λ1λ1λ1λ1 -.058 λ6λ6λ6λ6 
     (1.66)  (0.49)  (-2.86)  
47 (Intercity train t.)*(Freight train t.)    -.065  .071 λ1λ1λ1λ1 .019 λ6λ6λ6λ6 
     (-0.24)  (1.31)  (0.65)  
48 (Regional train t.)*(Ile-de-Fr. train t.)    -.007  .005 λ1λ1λ1λ1 .003 λ6λ6λ6λ6 
     (-0.12)  (0.19)  (0.26)  
49 (Regional train t.)*(Freight train t.)    .061  -.071 λ1λ1λ1λ1 -.014 λ6λ6λ6λ6 
     (0.22)  (-1.54)  (-0.53)  
50 (Ile-de-Fr. train t.)*(Freight train t.)    -.168  -.085 λ1λ1λ1λ1 -.030 λ6λ6λ6λ6 
     (-2.41)  (-3.48)  (-3.00)  

Continued… 

                                                           
65 Except for Maximum allowed speed (lines 33-36) and Percent of concrete sleepers (lines 37-40) which are the 
denominators of ratio forms, not of products. 
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Appendix 3. End (p. 3 of 3) 

Series I.4.A from Table 8 Linear Log-Log Trans-Log R-GBC U-GBC 
 
PART I. ELASTICITIES, CONDITIONAL t-STATISTICS (ββββ    = 0) and BOX-COX LAMBDA GROUPS 

T: TRAFFIC CLASSES [X] [X] [X] [X] [X] 
51 Intercity train tons .162 .013 λ1λ1λ1λ1 -.006 λ1λ1λ1λ1 -.048 λ1λ1λ1λ1 .111 λ8λ8λ8λ8 
  (8.26) (1.53)  (-0.34)  (-0.22)  (1.59)  
52 Regional train tons .176 .019 λ1λ1λ1λ1 .016 λ1λ1λ1λ1 -.003 λ1λ1λ1λ1 .130 λ7λ7λ7λ7 
  (8.36) (2.79)  (1.26)  (-0.01)  (2.15)  
53 Ile-de-France train tons .084 .012 λ1λ1λ1λ1 .011 λ1λ1λ1λ1 -.307 λ1λ1λ1λ1 .059 λ7λ7λ7λ7 
  (10.06) (4.47)  (3.14)  (-2.01)  (2.89)  
54 Freight train tons .069 .016 λ1λ1λ1λ1 .011 λ1λ1λ1λ1 -.495 λ1λ1λ1λ1                 -.004 λ9λ9λ9λ9                 
  (3.18) (3.14)  (1.08)  (-1.69)  (-2.58)  
 55 REGRESSION CONSTANT --- ---  ---  ---  ---  
  (7.28) (27.16)  (2.13)  (3.27)  (10.22)  
 

PART II. BOX-COX TRANSFORMATIONS, UNCONDITIONAL t-STATISTICS [ββββ = 0],[ββββ = 1] 
0 LAMBDA on Cost per km (λλλλy)  1.000 .000 .000 .298 .308 
  FIXED FIXED FIXED [23.55],[-55.37] [19.90],[-44.75] 
1 LAMBDA (Group λλλλX1)  .000 .000 .298 .112 
   FIXED FIXED [23.55],[-55.37] [1.39],[-11.06] 
2 LAMBDA (Group λλλλX2)     .574 
      [2.55],[-1.90] 
3 LAMBDA (Group λλλλX3)     .004 
      [0.03],[-9.39] 
4 LAMBDA (Group λλλλX4)     2.129 
      [3.29],[1.75] 
5 LAMBDA (Group λλλλX5)     1.594 
      [2.00],[0.75] 
6 LAMBDA (Group λλλλX6)     .743 
      [3.24],[-1.12] 
7 LAMBDA (Group λλλλX7)     1.114 
      [4.12],[0.42] 
8 LAMBDA (Group λλλλX8)     .377 
      [1.39],[-2.31] 
9 LAMBDA (Group λλλλX9)     3.458 
      [1.68],[1.20] 

 
PART III. GENERAL STATISTICS 

 1 LOG-LIKELIHOOD -13547.6 -13129.3 -13092.5 -12906.4 -12866.4 
 2 PSEUDO-R2 –(E) .727 .651 .676 .752 .823 

                       –(L) .720 .882 .891 .926 .932 
                       –(E) ADJ. for D.F. .722 .644 .657 .741 .813 
                       –(L) ADJ. for D.F. .715 .880 .884 .922 .928 

 3 AVER. PROB. (y = LIMIT OBS.)66 .161 .000 .000 .000 .000 
 4 NUMBER OF OBSERVATIONS 967 967 967 967 967 
 5 PARAMETERS ESTIMATED 19 19 55 42 51 

BETA Coefficients 0 0 55 41 41 
BOX-COX Transformations 0 0 0 1 10 

End.  

                                                           
66 The average value of the first and third right-hand side terms of Equation (8) is calculated. 
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12. Appendix 4. Dummies associated with variables containing observed zeroes 
 
To understand the role of dummy variables associated to variables that contain zero values but 
are subjected to a BCT, start with a simple linear regression model with dependent variable y 
regressed on a constant C, on a variable Q that is not strictly positive, e.g. snowfall, and on its 
associated binary variable D (where Dt = 1 if Qt ≠ 0 and Dt = 0 otherwise):  
 

t 0 t t d t ty C Q D u=β +β +β + .      (1) 

 
In (1), the variable Dt can be understood as a variable of interaction capturing the qualitative 
effect of a state-of-the world (there is snow) on yt beyond the quantitative effect of Qt (how 
much snow), or as a test of whether the “first” unit of snowfall has the same impact as the 
next units. Replacing the state variable by its complement (Dt = 0 if Qt ≠ 0 and Dt = 1 
otherwise) simply reverses the sign of βd and adding a state variable consumes a degree of 
freedom, modifies the meaning of the model and might improve the adjustment, or not. 
 
But, if the model is instead: 
 

( )
t 0 t t d t ty C Q D uλ=β +β +β + ,     (2) 

 

where the BCT is applied only to the positive values of Qt (to avoid numerical problems with 
0 observations when λ → 0), the associated binary variable will play an additional role: it will 
preserve the invariance of the λλλλ estimate to changes in the units (scale) of measurement of Qt. 
The analytic proof of this affirmation is beyond our reach but a numerical proof is accessible 
if we have OLS regression software: (i) set λλλλ in (2) equal to an arbitrary value, such as 2, 
apply the OLS estimator while conserving Qt in original units and obtain the vector of 

coefficients [ � , � , �β β β0 d ]; (ii) apply scale factor s to Qt and re-estimate with t tQ sQ=�  to obtain 

[
~

,
~

,
~

β β β0 d ]; (iii) observe that ( )
0 0 d d

ˆ ˆ ˆ( ), ( s ), ( s )λ λβ = β β = β β = β + β� � � �  and that the error sum of 
squares is invariant. The model (2) is invariant because the coefficient of the constant Ct does 
not change, the coefficient of Qt adjusts in inverse proportion to the factor sλλλλ and the scale 
change compensation (needed by the absence of transformation applied to the zero 
observations of rescaled Qt) is effected by the coefficient of the associated Boolean dummy 
variable which has acquired a second role: it still represents a state-of-the world, as in (1), but 
also functions as a scale compensation buffer that makes λλλλ invariant to the rescaling of Qt. 
 

We must not confuse this numerical proof of the invariance of λλλλ in (2) with the invariance of 
the λλλλ of a BCT applied to a strictly positive Q variable, demonstrated by Schlesselman (1971) 
to hold only if the regression has a constant C. In that case, the coefficient of the required 
constant C provides the necessary adjustment, after a change of scale s of the transformed 
variable Q, as demonstrated in the following simple before and after sequence: 
 

0C (Q 1) )λβ +β − λ        (3-1) 
 

( )0C s Q s
λλβ +β λ −β λ       (3-2) 

 

0C Qλβ +β λ −β λ + β λ −β λ� � ��      (3-3) 
 

0C (Q 1)λβ +β − λ −β λ + β λ� ��      (3-4) 
 

0C (Q 1)λβ +β − λ� � �        (3-5) 
 

where, after the rescaling of Q, its new coefficient sλβ = β� , the same as in (2), and the new 

coefficient of the required constant 0 0( )β = β −β λ + β λ� � , have been analytically derived. 


