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Abstract

Railway scheduling is based on the principle of the construction of a
conflict-free timetable. This leads to a strict definition of capacity: in
contrast with road transportation, it can be said in advance whether a
given railway infrastructure can accommodate – at least in theory – a
certain set of train requests. Consequently, auctions for railway capacity
are modeled as auctions of discrete goods – the train slots. We present
estimates for the efficiency gain that may be generated by slot auction-
ing in comparison with list price allocation. We introduce a new class
of allocation and auction problems, the feasible assignment problem, that
is a proper generalization of the well-known combinatorial auction prob-
lem. The feasible assignment class was designed to cover the needs for an
auction mechanism for railway slot auctions, but is of interest in its own
right. As a practical instance to state and solve the railway slot alloca-
tion problem, we present an integer programming formulation, briefly the
ACP , which turns out to be an instance of the feasible assignment prob-
lem and whose dual problem yields prices that can be applied to define
a useful activity rule for the linearized version of the Ausubel Milgrom
Proxy auction. We perform a simulation aiming to measure the impact
on efficiency and convergence rate.

1 Introduction

Railway scheduling is based on the principle of the construction of a conflict-free
timetable. This leads to a strict definition of capacity: in contrast with road
transportation, it can be said in advance whether a given railway infrastructure
can accommodate – at least in theory – a certain set of train requests. Conse-
quently, auctions for railway capacity are modeled as auctions of discrete goods
– the train slots. These slots can be understood as the right to use a certain
set of infrastructure segments at a given time. Brewer and Plott [6] suggest a
model where feasibility of a schedule is based on the binary exclusion property,
which says that a schedule of trains is feasible if any two trains are conflict-free.
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Parkes and Ungar [11] present an auction-based track allocation mechanism for
the case that single-track, double-track, and yard segments have to be concate-
nated to form a single line. They suggest a hybrid mechanism that combines
elements of the simultaneous and the combinatorial auction formats.

Our approach is more general and is applicable to arbitrary infrastructure
networks where a discrete allocation has to be found. Airport landing slots
allocation, for instance, has long been thought of as a possible allocation problem
that could be solved by auctioning [2]. In fact, we take an abstract look on
scheduling conflicts by defining a general feasibility predicate that is thought to
express the absence of scheduling conflicts for arbitrary sets of train slots.

It is obvious that the valuations of slots are not independent from each other.
Both complementary and substitutional relationships are seen in practice and
are modeled in some detail in [4]. However, in this paper, we consider linear
valuation functions, that is, the network value is modeled as the sum of the
values of all implemented slots. We formulate the feasible assignment problem
in Section 2 and describe its relationship to the combinatorial auction problem.

Borndörfer and Schlechte [5] introduce the ACP , an integer programming
formulation of the train timetabling problem with nice computational properties
for large-scale problem instances. In Section 2.2, we present the ACP as an
example of the feasible assignment problem. In Section 4, we present an iterative
auction format derived from the Ausubel Milgrom ascending auction [1] that
uses linear prices. We then show how the dual prices of the ACP can be used
to define an activity rule that tolerates late introduction of new bids and still
has acceptable convergence properties.

2 The feasible assignment problem

In the most general sense, feasibility is just a predicate applied to a schedule,
or set of train slots with a very natural monotonicity property:

Definition 1. Let S be a set of slots. A feasibility predicate is a predicate on
℘(S) which is monotonous, that is,

feas(S) and S′ ⊆ S =⇒ feas(S′) (1)

Following auction-theoretic convention, the traffic operating companies are
represented by agents l ∈ L with valuations vl(S) for bundles S ⊆ S of slot
requests. An assignment is a vector χ = (χl : l ∈ L) of mappings χl : S 7→
{0, 1}, where χl(s) = 1 means that agent l receives item s. We also write
χ(l) = {s ∈ S : χl(s) = 1}.

Definition 2. The feasible assignment problem then is defined to be the fol-
lowing optimization problem:

max
χ:χl:S 7→{0,1}

∑
l∈L

vl(χ(l)) (2)
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such that

(∀s ∈ S)
∑
l∈L

χl(s) ≤ 1 (3)

feas

{
s ∈ S :

∑
l∈L

χl(s) = 1

}
(4)

The objective function (2) expresses the aim of maximizing total value. Con-
dition (3) states that every slot can be assigned only once. The assumption that
all slot requests are unique can be done without loss of generality – if there are
two identical slot requests, we could simply tag them with different IDs in order
to make them different.

Condition (4) ascertains that the set of assigned slots is feasible. The feasible
assignment problem searches for those assignment of slots that maximizes total
revenue while maintaining that the set of all assigned slots is feasible.

2.1 Relationship to the Combinatorial Allocation Prob-
lem

We use the terminology of an allocation problem as the optimization problem
of finding an optimal with respect to some target function allocation subject to
a set of constraints, and the corresponding auction problem of designing an as
efficient as possible auction scheme for bidders with private valuations who may
behave strategically and possibly collude.

The following example shows that the feasible assignment problem is a gen-
eralization of the combinatorial allocation problem, the allocation problem that
is underlying the well-known combinatorial auction problem.

Example 1. Let G be a set of goods, and L a set of agents.
Define S = ℘(G), and the predicate feas ca on ℘(S) by

feas ca(S)⇔ ((∀s, s′ ∈ S) s ∩ s′ = ∅) (5)

Then the combinatorial allocation problem for G and the feasible assignment
problem for feas ca are equivalent in the following sense:

If χ : L 7→ ℘(G), then χ satisfies constraints (3) and (4) if and only if χ is
a valid allocation for G.

Now we show that every assignment problem can be embedded into some
combinatorial allocation problem.

Definition 3. A token system for a set S of slots is a multiset1 T of tokens
t ∈ T together with a map

φ : S 3 s 7→ φ(s) ⊆ T (6)

1The notion of multiset generalizes the notion of a set by allowing and accounting for
multiple copies of identical elements. The usual set-theoretical operations and relations (union,
intersection, subset-relation) all have their natural generalization to multisets.
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We say that for s ∈ S, φ(s) is the set of tokens required for s.
We say that a token system (T , φ) implements the feasibility predicate feas

if

feas(S) ⇐⇒
⋃
s∈S

∗
φ(s) ⊆∗ T (7)

where
⋃∗

and ⊆∗ are operations and relations of multisets.

Proposition 1. Let feas be a feasibility predicate for a set S of slots. Then
there is a token system (T , φ) that implements feas.

Proposition 1 implies that to every monotonous slot assignment problem
(S, feas), there is a combinatorial auction problem (T , φ) that (S, feas) can be
embedded into. In particular, there is an integer program (IP) implementing the
problem.

Corollary 2. To any feasible assignment problem, there is an IP implementing
the problem.

Proof. Let (T , φ) be a token system implementing the feasible assignment pred-
icate feas.

Define

φ∗s(t) =

{
1 if t ∈ φ(s)

0 otherwise.
(8)

The feasible assignment problem then is equivalent to the following IP:

(IP(T , φ))
max

∑
l∈L

∑
S⊆S

vl(S)χl(S) (i)

s.t.
∑
S

χl(S) ≤ 1, ∀l ∈ L (ii)∑
S⊆S

∑
s∈S

χl(S)φ∗s(t)− yl(t) ≤ 0, ∀l ∈ L, t ∈ T (iii)∑
l∈L

yl(t) ≤ 1, ∀t ∈ T (iv)

χl(S), yl(t) ∈ {0, 1} ∀l ∈ L, t ∈ T , S ∈ S (v)

The target function in (i) maximizes the total valuation realized by the
allocated bundles. Constraint (ii) expresses that to every agent, at most one
bundle is allocated. The binary decision variables yl(t) express if a token t is
acquired by agent l, and constraint (iii) expresses that if a bundle is awarded
to l, then l has to acquire all necessary tokens. Constraint (iv) yields that
every token can be acquired only once, and constraint (v) are the integrality
constraints which guarantee that neither tokens nor bundles are split.
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2.2 The ACP model for the train scheduling problem

In this section we recapitulate the track allocation problem, a network formula-
tion, and a track configuration based integer programming model, for details we
refer to [5] and a recent survey [10]. It is interesting that this formulation yields
dual information, which can nicely be interpreted as shadow prices for using
resources. This is something standard packing models for the train timetabling
problem can not provide that easily as introduced in [8].

The problem to construct a feasible railway track allocation can be formu-
lated in terms of an acyclic digraph D = (V,A), the train scheduling network.
Its nodes represent events, such as arrival, departure or passing of trains, at
a set S of stations at discrete times T ⊆ Z, its arcs model activities, primar-
ily runs of trains between stations. By δin we denote the set of incoming arcs
a ∈ A for v ∈ V , by δout(v) the set of outgoing arcs, respectively. Denote by
s(v) ∈ S the station associated with event v ∈ V , and by t(v) ∈ T the time
of this event; we can assume t(u) < t(v) for each arc uv ∈ A such that D is
acyclic. Let J = {s(u)s(v) : uv ∈ A, s(u) 6= s(v)} be the set of all railway
tracks.2 We are further given a set I of requests to route trains through D.
More precisely, train i ∈ I can be routed on a path through some induced sub-
digraph Di = (Vi, Ai) ⊆ D from an artificial source node si ∈ Vi to a sink node
ti ∈ Vi. Given arc weights wa, a ∈ A and considering each train individually,
the problem of finding a best allocation for request i is to construct a longest
(si, ti)-path in Di w.r.t. w. But due to the fact that trains are potentially using
the same infrastructure resources, we have to guarantee that the set of chosen
train routes is conflict-free.

We distinguish between two types of conflicts. The first cause are invalid
occupation times on tracks. In the ACP integer programming formulation,
conflicts on the same track j ∈ J are handled by another subgraph structures
Dj = (Vj , Aj) of D. These are induced by all running arcs in Di and coupled
in the integer programming formulation. In [5] a construction was introduced
such that each feasible flow from an artificial source node sj ∈ Vj to the sink
node tj ∈ Vj can be mapped unique to an allocation on track j that is feasible
w.r.t. the safety block occupation or headway times3. Let Ajc = {uv ∈ A :
s(u)s(v) = j} be the set of all running arcs associated with some track j ∈ J .
By Ac =

⋃
j∈J A

j
c, we denote the set of all “coupling” arcs. For each arc a ∈ Ac

the subset Aac ⊆ Ac contains all conflicting coupling arcs w.r.t. the headway
times on that track.

Second type of conflicts is station capacity, which cannot be exceeded at any
discrete time. Let κs,t be the upper bound of trains that can be handled in
station s ∈ S at time t ∈ {0, T}. By As,t = {uv ∈ A : s(u) 6= s, s(v) = s, t(v) =
t} ∪ {uv ∈ A : s(u) = s(v) = s, t(u) ≤ t ≤ t(v)} we denote the set of all arcs,
which correspond to active train events in station s at time t, that are arriving

2For notational reasons, we assume that no parallel tracks exists in J , otherwise the pro-
jection s(u)s(v) would not be unique.

3The same construction works if and only if the triangle inequality holds for the headway
matrix.
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trains or already waiting trains at time t.
A track allocation or timetable is a set of conflict-free routes, satisfying each

request at most once. The track allocation problem or train timetabling problem
is to find a track allocation of maximum weight.

Variables xa, a ∈ Ai, i ∈ I control the use of trip a in Di and ya, a ∈ Aj ,
j ∈ J in Dj , respectively. Note that each arc in set Ac corresponds to two
variables xa and ya.

(ACP)
max

∑
a∈A

waxa (i)

s.t.
∑

a∈δout(v)
xa −

∑
a∈δin(v)

xa = 0, ∀i ∈ I, v ∈ Vi\{si, ti} (ii)∑
a∈δout(si)

xa ≤ 1, ∀i ∈ I, si ∈ Vi (iii)∑
a∈δout(v)

ya −
∑

a∈δin(v)
ya = 0, ∀j ∈ J, v ∈ Vj\{sj , tj} (iv)∑

a∈δout(sj)
ya ≤ 1, ∀j ∈ J, sj ∈ Vj (v)

xa − ya ≤ 0, ∀a ∈ Ac (vi)∑
a∈As,t

xa ≤ κs,t ∀s ∈ S, t ∈ {0, T} (vii)

xa, ya ≥ 0, ∀a ∈ A (viii)

xa, ya ∈ {0, 1}, ∀a ∈ A (ix)

The objective, denoted in (ACP) (i), is to maximize the weight of the track
allocation. Equalities (ii) and (iv) are well-known flow conservation constraints
at intermediate nodes for all trains flows i ∈ I and for all flows on tracks j ∈ J ,
(iii) and (v) state that at most one flow unit is realized. Inequalities (vi) link arcs
used by train routes and track configurations to ensure a conflict-free allocation
on each track. Constraints (vi) ensure that at each time no station capacity
is exceeded. Finally (viii) and (ix) are the non-negativity and the integrality
constraints. Note that, all variables are implicitly 0/1.

Proposition 3. Let S = I and suppose that agents l ∈ L have additive valua-
tions vl(S) =

∑
s∈S vl(s) for subsets S ⊆ S. Define

wa =

{
vl(i) for a = (si, v) ∈ Ai
0 otherwise.

(9)

Define the feasibility predicate

feasACP(S)if and only if (10)

There is a mapping a 7→ xa such that

constraints (ii) to (ix) of (ACP) hold.
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Then (ACP) is equivalent to the feasible assignment problem with predicate
feasACP.

Consider the dual DLP of the LP-relaxation of ACP, i.e. neglecting con-
straints ACP (ix):

(DLP)
min

∑
s∈S

∑
t∈{0,T}

κs,tµs,t +
∑
i∈I

αsi +
∑
j∈J

βsj (i)

s.t. αu − αv + λuv +
∑
s∈S

t∈{0,T}
a∈As,t

µs,t ≥ wuv ∀uv ∈ Ai ∩Ac, i ∈ I (iia)

αu − αv +
∑
s∈S

t∈{0,T}
a∈As,t

µs,t ≥ wuv ∀uv ∈ Ai\Ac, i ∈ I (iib)

βu − βv − λuv ≥ 0 ∀uv ∈ Aj ∩Ac, j ∈ J (iiib)
βu − βv ≥ 0 ∀uv ∈ Aj\Ac, j ∈ J (iiib)

αsi ≥ 0 ∀i ∈ I (iv)
αti = 0 ∀i ∈ I (v)
βsj ≥ 0 ∀j ∈ J (vi)
βtj = 0 ∀j ∈ J (vii)
λa ≥ 0 ∀a ∈ Ac (viii)
µs,t ≥ 0 ∀s ∈, t ∈ {0, T} (ix)

Here, αv, v ∈ V , βw, w ∈W = ∪j∈JVj , λa, a ∈ Ac, and µs,t, s ∈ S, t ∈ {0, T}
are the dual variables associated with constraints ACP (ii) to (vii), respectively.
Note that we introduce artificial variables αtj to get a compact notation of
constraints (DLP)(iib) and (DLP)(iiib), respectively.

3 The surplus of slot auctioning

The aim of this section is to give an estimation of the surplus that an auction
generates, compared to the value generated by an allocation based on list prices.
Let slot requests be triples (s, u(s), l(s)), where s is a slot from a set of possible
slots S with some consistency predicate feas, and u(s) > 0, l(s) > 0 are the
private valuation and the list price associated with s. Furthermore we assume
that there is a cost-function c that associates with every slot request s, a cost
c(s) ≥ 0. This cost is to be understood as marginal cost to the infrastructure
provider and not as the cost of operation to the train operating company. The
latter cost are assumed to be internalized into the private value function u.

For a schedule S ⊂ S, the value of S is defined to be

v(S) =
∑
s∈S

u(s)− c(s) (11)
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Note that the value is always defined with respect to the private utility function
u. The auction value is the value of the schedule maximizing u − c subject to
feasibility:

vauction = v

(
arg max{

∑
s∈T

u(s)− c(s) : feas(T )}

)
(12)

= max{
∑
s∈T

u(s)− c(s) : feas(T )} (13)

The list value is the value (with u used as valuation function!) of the schedule
maximizing l subject to feasibility, and assuming that the list price also serves
as minimum price (that is, if u(s) < l(s), then the slot request is not submitted):
With

Iu(s)≥l(s)(s) =

{
1 if u(s) ≥ l(s)
0 if u(s) < l(s)

(14)

we define

vlist = v

(
arg max{

∑
s∈T

l(s) · Iu(s)≥l(s)(s) : feas(T )}

)
(15)

Note that we always have vlist ≤ vauction (since the schedule maximizing the list
price is also feasible when maximizing private value, and the value of a schedule
is always computed based on the private value function u). Obviously for all
non-trivial cases we can assume vlist > 0 and can interpret the fraction

θ =
vauction − vlist

vlist
(16)

as relative surplus of a perfect auction versus a list price allocation.

3.1 A simple one-track model

We now derive an estimation of ρ for a simple model, giving an upper bound on
the potential auctioning surplus. We elaborate two cases which differ in terms
of the marginal costs of infrastructure provision. We first consider the case
where marginal costs vanish – this is justified when the train operator carries
all costs associated with the train run (energy, charge for wear and tear). We
then consider the case of c = l, that is, that the list price reflects exactly the
marginal cost. This is the approach officially taken by EU legislative, without
specifying the exact price components to be included into calculation.

Let there be a sample of slot requests S = {(s1, u1, l1), . . . , (sn, un, ln)}.
Furthermore, we assume

feas(S) if and only if |S| ≤ m (17)

This means that any m of the n slot requests may be scheduled.
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3.1.1 Zero marginal costs

Now we assume that c(s) = 0 and li = l for all i and some constants l > 0 and
m > 0. This could be the case, for instance, if the slot requests all compete over
usage of a single track and the list price does not differ in time. For the private
valuations, we assume that they are independently and normally distributed
with parameters (µ, σ). For a given sample, the auction value then is just the
sum of the m largest values of the ui: Let (i1, . . . , in) be indexed such that
ui1 ≤ . . . ≤ uin . Then

vauction(S) =

m−1∑
j=0

uin−j (18)

The distribution of the random variable vauction(S) is given explicitly in [13];
however, the term derived there becomes quite complex if n−m grows, and we
rely on expected values from a numerical simulation. To derive the list price
allocation, note that any allocation that uses the capacity m to the most possible
extent maximizes the generated revenue und thus maximizes the target function
in equation (15). Let S′ = {(s, u, l) ∈ S : u ≥ l}. Since the list prices of all slot
requests are equal and the feasibility constraint in our model just implements
a cardinality restriction, the list price allocation randomly chooses a subset
T ⊆ S′ of cardinality max{m, |S′|}. Thus, the list value can be represented by
the random variable

vlist(T ) =
∑

(s,u,l)∈T

u (19)

Let

vauction = E
(
vauction(S)

)
(20)

vlist = E
(
vlist(S)

)
(21)

For the list value mean, we derive with φ(µ,σ) the distribution function of the
normal distribution with parameters µ and σ, and µ∗ = µ∗(l) = µ

1−φ(µ,σ)(l)

vlist = µ∗ ·

(
m∑
k=0

k

(
n

k

)
(1− φ(µ,σ)(l))kφ(µ,σ)(l)n−k (22)

+

n∑
k=m+1

m

(
n

k

)
(1− φ(µ,σ)(l))kφ(µ,σ)(l)n−k

)
(23)

The term

ρ(l, µ, σ, n,m) =
1

m

n∑
k=0

k

(
n

k

)
(1− φ(µ,σ)(l))kφ(µ,σ)(l)n−k (24)

=
n(1− φ(µ,σ)(l))

m
(25)
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(c) Relative auction surplus θ for µ = 16, σ = 0.9

Figure 1: vauction (upper curve), vauctionmin=10 (middle), and vlist (lower curve) for l = 10,m = 10
and 0.5 ≤ ρ ≤ 2

is called the overdemand ratio. Assuming that slot requests with a will-
ingness to pay below the list price are not submitted, the overdemand ratio
expresses by how much, on average, the demand on the given track supersedes
capacity.

Figure (1a) (upper and lower curve) shows a comparison of auction and list
value for a track with capacity m = 10 and overdemand ratio between 0.5 and 2.
The ascend of both curves approximately equals the mean private value µ = 11
until a critical point that can be seen as ”saturation point”. For the auction
value, this is the point for which total demand equals capacity, that is, where
10 = n = mρ

1−φ(µ,σ) or ρ = 0.84. For the list value, the critical point is at ρ = 1

or n = 11.8. As long as capacity saturation is not reached, the superiority of the
auction is due to the fact that all slot requests are honored while the list price
allocation discards the slot requests with values below list price. Once capacity
is reached, the value of the list price allocation converges to l · m, while the
auction allocation benefits from selection of the slot requests with the highest
private value.
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3.1.2 List prices as marginal costs

Let us now consider the case of c(s) = l(s) = l for all s. The list price allocation
is unaffected by this change. Formula (18) transforms to

vauctionmin=l (S) =

m−1∑
j=0

uin−jIuin−j≥l (26)

The middle curve in figure (1) shows the value of auctioning with minimum
price equal to the list price. We observe that while spare capacity is available
(ρ ≤ 1), performance of auctioning and list price coincide. For ρ > 1, we have
overdemand, the minimum price looses impact and performance of auctioning
with and without minimum price converge.

3.1.3 Estimating the private valuations and relative auction surplus

The auction surplus depends on the relationship between the list price and the
private valuations. If they coincide, or demand is below capacity, both allocation
schemes perform similar. If there is variance in the private valuations which is
not reflected in the list price, auctioning leads to more efficient allocation.

Data on private valuations is hard to come by as it generally considered to
be sensitive information. We have performed some interviews with representa-
tives from different freight-train operating companies and have received cautious
word that the margin for a freight service could be somewhere between 2 and
6 percent. Furthermore, a rough estimate on costs results in the share of the
infrastructure charge (at the list price system currently in place in Germany)
amounts to about 25% of the total cost (infrastructure charges, energy, locomo-
tive maintenance, wages). This leads as to estimate the additional willingness to
pay over the list price at between 8 and 24%. In order to estimate the variance,
we assume that the given bounds – both upper and lower ones – apply in 80%
of the cases. Reading from the CDF of the normal distribution, we get

u ∼ NormalDistribution(µ, σ) (27)

with

µ = 0.16l (28)

σ = 0.09l (29)

Figure (1b) shows auction values with and without minimum price, and list
price value, for the parameters for µ and σ given above. Since valuations are well
above list price (the probability that a private valuation is below the list price is
P (u < 10) ∼ 1.310−11), vauctionmin=l (S) and vauction(S) coincide. From Figure (1c)
one can read that the potential gain from auctioning is between 1 and 4%.
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(a) Hanover-Kassel-Fulda sub-net (b) Request set with 370 slot requests in
space and time

Figure 2: Visualization of scenario with TraVis

3.2 An auction surplus estimation based on empirical de-
mand data

In the previous section we derived an estimation of the auction surplus in a
model where the graph structure of the railway network was omitted and, be-
sides the approximation of the willingness to pay in relation to the list price,
no empirical data on slot demand was used. Now we present an alternative
way that uses both these information. Again we compare the two allocation
schemes – list price and auction. For both allocation schemes, we base the
schedule construction on combinatorial optimization so that the maximizations
in equations (12) and (15) are really computed. We are aware of the fact that
currently, a ”fully automatic” construction of timetables based on combinatorial
optimization is not in fact implemented anywhere currently. There is no doubt
that if this was possible for real railways, this would be an very welcome inno-
vation and enhance the efficiency of railway infrastructure usage. For our study,
however, we wish to separate the effect of mathematical optimization from the
effect of auctioning and therefore, choose the approach to estimate the auction
surplus as pointed out above.

3.2.1 Data source and model construction

We work with a sub-net of the German railway network that covers the area
between Hanover, Kassel, and Fulda, see Figure (2a). This is a central segment
of the German network, and even as of 2008, there is reportedly a scarcity of
slots.
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The Federal office for statistical data (Statistisches Bundesamt) publishes
data [7] concerning goods transported by railway. We used their tables that give
yearly (we used data for 2008) quantities of transported goods, for national and
international transport, as origin-destination pairs of traffic districts (Verkehrs-
bezirke), grouped according to the category of goods (Gueterhauptgruppen).
The federal state of Hessia, for instance, is divided into 6 traffic districts of
between, and there is a total of 101 traffic districts in Germany. Concerning
international transportation, of the countries relevant for traffic through our
sub-net, Austria, Czech republic, Denmark and Luxembourg are represented
by one traffic district, while Italy and France are subdivided into 14 resp. 15
traffic districts. For goods being carried in transit through our subnet, we relied
on expert knowledge4 regarding the nodes where traffic on a given OD pair is
entering and leaving the sub-net. Internal traffic and traffic originating from or
with destination to the sub-net was assumed to be distributed among freight
terminals according to our own estimations. Thus, a three-dimensional ma-
trix yt(or, dest, gtype) was produced that for pairs of nodes of the sub-net and
a freight category, gives the quantity of freight of this category that is being
transported yearly on paths between these nodes.

Next, we estimate the yearly number of trains used for implementing this
matrix. Unfortunately, the classification of goods that the statistics is built upon
leaves much to be desired. About 20% of the goods quantity – the largest among
all shares – is being categorized as ”other goods”. For this position, we assumed
that these goods were container freight. For the remaining categories, expert
knowledge5 was used to come up with an estimation of the weight w(gtype)
of a train homogeneously loaded with goods of this category could carry at
maximum.

We expressed the train density, for any OD-pair and goods category, in trains
per hour and divided the 24h hour period into segments of 1hour with constant
train density. To get the train density for some hourly segment, we used the
formula

tph(or, dest, gtype, k) =
yt(or, dest, gtype)

w(gtype) · lf(gtype) · d · w(k)
(30)

4Thanks to Martin Balser for providing this information.
5Thanks again to Martin Balser.
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where

or is the node of origin,

dest is the node of destination,

gtype is the type of good,

k is the hour under consideration(0 ≤ k ≤ 23),

yt(or, dest, gtype) is the tons gtype transported from or to dest per year,

w(gtype) is the weight of a train fully loaded with gtype,

lf(qtype) is the load factor for trains carrying type gtype,

d is the number of working days per year(d = 250),

w(k) is the relative load share of the hour k,

with w(k) ≥ 0 and
∑

w(k) = 1.

Our demand model has a relatively fine-granulated structure and thus the
single entries in the table (tph(or, dest, gtype, k) : or, dest traffic regions, gtype, k)
are quite small: between 10−6 and 0.1. This reflects the probability that at any
given hour a freight train with specific origin, destination and load type enters
the sub-net is small. In sum, nevertheless, the model yields around 600 daily
freight trains for that area, grouped into departure time segments of 1 hour each.
The precise requested departure times are generated by a Poisson process with
fitting parameter. List-prices approximate the system of slot prices currently in
place at the Deutsche Bahn, and private valuations are generated stochastically
with normal distribution as pointed out in the previous section. For the pas-
senger traffic we relied on published time-table data for a three-hour interval in
the morning. Passenger trains do not participate in the auction, instead they
receive slots (which may be elastic in time) before slots for the freight trains are
auctioned.6

Extrapolated to a whole 24h day, we get around 1000 trains traveling in total
through the sub-net. This seems to be a realistic number. We are interested in
different economic scenarios that reflect different prognosis of freight demand
and thus include sets of requests with the number of trains varying between
800 and 2000. For computational purposes, we trim these request sets to time
windows of size 1 hour. Figure (2b) shows the time extended slot request for a
request set with 118 slot request.

3.2.2 Simulation

Now we use the demand model in order to give an alternative estimation of
auction surplus. As in the previous section we compare the economical value

6The reason for this is that passenger service in Germany is subsidized by the state (at
least for local transit), and the Deutsche Bahn, and thus at least indirectly the railway infras-
tructure, is state-owned at the same time. Lastly, passenger slots are highly interdependent
due to connection and regular service requests, and these interdependencies are not considered
in our auction design.
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of the allocation generated by (perfect) auctions with the list price allocation.
All allocations were computed by solving model ACP on a standard PC using
TS-OPT and CPLEX 10.0, see [3, 9]. In order to do that, we implemented a
simplified version of the Deutsche Bahn slot pricing system7. We then computed
list price and auction allocation for a range of request sets with varying factors
of demand scaling, each covering a 24h period of traffic in the Hanover Kassel
Fulda sub-net. For every demand scaling factor we generated 100 slot requests.
To accommodate computational challenge we trimmed these slot requests to an
excerpt of 1 hour and a subset of our sub-net extending from Fulda to Kassel.
This sub-sub-net comprises 6 station nodes and 12 tracks. After trimming, the
number of slots requested per set is between 15 and 150.

Table 1 gives the results. One can see that the surplus is between 0 and 10%
and that it tends to be increasing with the demand scaling factor. For a scaling
factor of 1.5, which seems realistic, the surplus is 4%. However there is a large
statistical uncertainty that reflects the dependency of scheduling on the com-
binatorial structure of the time-extended network-request-graph. Nevertheless
are the results consistent with those from the one track model.

scaling factor slots requested
(min-av-max)

slots scheduled
(min-av-max)

ratio auction surplus
list price surplus

(min-av-max)

0.8 14-19.2-26 9-12.2-14 1-1.009-1.047
1 17-24.3-29 13-15.5-17 1-1.010-1.033
1.5 28-37.6-45 18-20.5-28 1-1.041-1.096
2 34-48.3-63 18-24.8-34 1.002-1.031-1.072
2.5 44-60-72 31-30.3-44 1.000-1.036-1.189
4 68-86.6-105 38-38.7-68 1.031-1.071-1.105
6 121-138.3-152 45-48.6-121 1.053-1.098-1.140

Table 1: Demand characteristics and auction surplus for the Hanover Kassel Fulda demand
model

3.3 Interpretation

The authors were surprised – and admittedly somewhat disappointed – by the
relative modest efficiency gains that can be contributed to slot auctioning. While
a 4% efficiency gain seems a respectable result, one has to caution the reader that
this is for the case that we are able to implement a perfect auction, that is, one
that incites bidders to truthful bidding such that the most efficient allocation
can be computed bases on the true valuations. We will see in the next section
that the auctioning problem, from an auction-theoretical point of view, is not
perfectly solvable if bidders behave strategically and may collude, and one has
to relay on suboptimal auction schemes. Thus, we have to expect bid shading,

7omitting such peculiarities as the Regionalfaktoren
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that is, bidders bid less than there true valuations, and the efficiency gains will
shrink.

On the other hand our estimation uses conservatively chosen parameters.
Most notably, the variance σ of the distribution of the private valuations has
a large impact on the auction surplus and our choice is solely based on the
assumption that the margin for a train operating company is between 2 and
6%. While managers naturally tend to understate the profitability of their
business, the auction surplus increases with growing σ.

Even more important is the following argument: we assume that the effect
of slot auctioning is just a re-allocation of slot requests that are present already
now. But the auction allocation scheme has the potential to create new business
opportunities for train operating companies (or enterprises from the logistic
sector, or whoever wants to take the challenge) to offer high-quality services
that may not be feasible presently. Such back-coupling effects are not present
in our model and need more empirical research to be quantified.

4 The Linearized proxy auction with dual prices

We define an iterative auction with linear prices that generalizes the Ausubel
Milgrom Proxy Auction. The result lies in the core. The generalization of the
assignment problem leads to the possibility of prices lying above the bidder-
optimal core frontier, in contrast to the Ausubel Milgrom Proxy auction. We
give some examples for that.

We then turn to the use of dual prices to enforce activity in the iterative
auction. We propose an activity rule that is based on dual prices for minimum
bids for new bids introduced during the auction. We give a numerical simulation
that measures efficiency, and compares the number of required rounds until
auction termination, with and without the new activity rule.

4.1 Ausubel Milgrom Proxy Auction

Ausubel and Milgrom [1] propose an iterative auction (AMP) with results that
lie in the core of the assignment problem game, thus being immune to collusion.

Ausubel and Milgrom formulate their proxy auction for agents bidding for
contracts which are partially ordered by a preference-relation. We can apply
their results immediately to the feasible assignment simultaneous proxy auction:

The auction is performed in a sequence of rounds. At every round i , a price
vector (pi,l(S) : S ⊆ S) is maintained, and bidder l submits a set Di,l ⊆ ℘(S)
of most preferred bundles at given prices (to be understood as XOR-connected
bid).

The provisional allocation at round i is then computed as

χi ∈ arg max
{χ:feas(∪lχ(l))}

∑
l

pi,l(χ(l)) (31)
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At round 0, the auction starts with price vector p0,l ≡ 0. At round i + 1,
prices pi+1,l(S) are computed by

pi+1,l(S) =

{
pi,l(S) if χi(l) ∈ Di,l

pi,l(S) + ε otherwise.
(32)

The auction terminates at round i if for all bidders l, χi(l) ∈ Di,l. The
outcome is the allocation χi and payments pl,i(χ(l)) of bidder l to the seller.

The AMP auction converges to a core outcome if agents bid truthfully at
every round. In fact, the outcome lies within distance ε from the bidder-optimal
frontier of the core. For substitute valuations, resulting prices are ε-minimal core
prices.

4.2 An auction format for Railway slot auctioning: The
linearized proxy auction

The AMP relies on the XOR bidding language. In particular, the indifference
sets submitted by the bidders are dependent on package prices. It is trivial that
in the case of a combinatorial auction, if bidder’s valuations are linear, the usage
of nonlinear prices is unnecessary.

Bidders for the assignment problem are assumed to have linear valuations.
It is therefore natural to consider a restricted bidding language in which only
linear valuations can be expressed, by interpreting replacing the set Di,l of most
preferred bundles by set di,l of most preferred items.

The provisional allocation rule (31) remains unchanged with

pi,l(S) =
∑
s∈S

pi,l(s), (33)

while the price update rule (32) changes to

pi+1,l(s) =

{
pi,l(s) if s ∈ dl,i but s /∈ χi(l)
pi,l(s) + ε otherwise.

(34)

Pricing rule (34) can be understood of generalizing CC pricing [12] to feasible
assignment auctions: a slot is in overdemand if it is in the set of most preferred
slots of some bidder but not allocated.

Definition 4. The auction mechanism with the modified price update rule (34)
is called Linearized Proxy Auction (LPA).

It can be shown that the LPA terminates with a core outcome. However,
even with linear valuations, prices need not be minimal in the core.
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4.3 Using dual prices for late introduction of bids

AMP maintains bundle prices only on bundles that bidders have bidden for.
A new bundle starts always at price zero. For combinatorial auctions, mono-
tonicity of the bidder’s valuation functions ensures that the sequence (Di,l :
i = 1, 2, . . .) of most-preferred bundle sets contains no increasing sequence of
bundles.

In contrast, there is no obvious such monotonicity for train slot auctions.
If at any round, a bidder may introduce a bid to a new slot starting at price
zero, the auction will still converge as long as the set of train slots is finite, but
only after exhausting the complete solution space. For example, a bidder could
bid again and again on some slight variation of a slot request that was already
rejected earlier, but the variation would still not have an inherent ask price.

If the computation of the provisional allocation is based on corollary 2, prices
for token bundles can be used to compute ask prices for arbitrary slots. Because
of the computational advantages of the ACP formulation, we used the prices
from DLP to define an activity rule.

ACP-based minimum price rule for LPA. Let λa and µs,t be part of
the solution to the DLP of the provisional allocation produced by ACP for
some auction round n. λa can be understood as a price for usage of a certain
arc a in the time-extended request graph, and µs,t as price for using a station
s at time t. Now let p = {x1, x2, . . . xm} be some implementation path of some
request Pi. There may not be dual price information for the exact arcs that p
makes usage of, but there may be prices for arcs that are relevant for p by being
in conflict with p. Our dual price for path p then sums up, for every track and
station, the average the dual prices of all arcs that are in conflict with path p.

w(p) =
∑
x∈p

(
1

|Aac |
∑

a∈Ac,x∈Aac

λa +
1

|As,t|
∑

s∈S,t∈{0,T},x∈As,t

µs,t) (35)

For any slot request i, which can be interpreted as set of implementing paths
Pi, the path with the lowest cost provides a minimal price:

w(i) = min
p∈Pi

w(p) (36)

4.3.1 Example for dual prices

Consider a path with just 4 nodes A, B, C and D, connected with 3 tracks
AB,BC,CD, respectively. Let the running time be 1 for every track and suppose
that track AB has a headway time of 10 and track BC and BD a headway
time of 6, as shown in Figure 3. Now assume that there are 3 bidders and slot
requests as given in the following table 2.

Note that bid 2 2 is the only one requesting track CD and therefore there is
no scarcity on that track. The possible inclusion-maximal allocations for bids
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Table 2: Definition of slot requests

departure
bidder bidnr source destination AB BC CD private value

0 1 B C - 1 - 4
1 1 A C 9 10 - 10
1 2 B C - 1 - 5
2 1 A C 0 1 - 9

( 2 2 B D - 4 5 * )

A B C D
1 1 1

10 6 6

Figure 3: Example network

0 1 . . . 2 1 are

X = {{1 1, 0 1}, {1 1, 1 2}, {1 1, 2 2}, {2 1, 0 1}, {2 1, 1 2}, {2 1, 2 2}}

and the excluded bid 2 2 is in conflict with 0 1, 1 2 and 2 1.
Now assume that bidder 2 discovers the option of bidding on 2 2 only after

his potential profit on 2 1 has shrieked below a certain threshold. The auction
starts without that bid and after some rounds, the following bids could be
submitted:

departure
bidder bidnr source destination AB BC CD bid amount

0 1 B C - 1 - 4
1 1 A C 9 10 - 5
1 2 B C - 1 - 5
2 1 A C 0 1 - 4

Bidder 1 would win both his bids, and without the option of bid 2 2, the
auction would stop now. Bid 2 2 is a new bid (since no bid to destination D was
submitted so far), so there is no canonical minimum price for it so far. However,
using DLP, the following dual arc prices can be computed:

track departure shadow price

AB 9 5
BC 1 5

Bid 2 2 conflicts with the arc on track BC, so the computed minimum price
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according to equation (35) would be 5. Indeed, bid 2 2 has impact on the auction
only if the bid amount exceeds 5, and the minimum bid saves the auction rounds
that would otherwise be necessary to discover this.

4.3.2 Performance measurement simulation

We now report on a simulation that measures the performance of the dual prices
generated by the ACP formulation. On the one hand, it is hoped that using
these prices as minimal prices for newly introduced bids, the auction is sped up.
On the other hand, there is a risk that these prices may be too high and may
prevent bidders from submitting bids that would contribute to welfare.

Starting with demand sets from Section 3.2 – 10 for each scaling factor as
shown in Table 3 – we run two versions of the LPA auction (with minimum
increment 50). We assume that bidder bid myopically except that after any 10
rounds, every bid is randomly perturbed with probability 0.25, by translating
the slot request’s starting time by a random between -10 and +10.

The first version of the LPA does not know any minimum price rule for newly
introduced slots, so bidders start bidding for perturbed slots from price 0. The
second version of LPA uses the ACP-based minimum price rule. We compare
the results in efficiency and convergence rate. The first columns of Table 3 show
the efficiency for both LPA versions: one can see that the minimum price rule
does not essentially affect efficiency. However, the last columns demonstrate
that the number of rounds is significantly lower with the ACP-dual minimum
price rule. We conclude that using dual prices as minimum prices may speedup
the auction while the efficiency loss is moderate.

Scaling
factor

incr.
profit

dual
profit

dual effi-
ciency

incr.
auction
rounds

dual
auction
rounds

speedup

0.8 2983 2932 0.983 17.65 13.61 25%
1 3658 3597 0.984 19.43 14.11 27%
1.5 4941 4843 0.980 20.06 15.4 23%
2 6144 5967 0.971 21.53 17.2 20%
2.5 7272 7065 0.972 21.77 18.23 16%
4 9720 9374 0.964 22.96 19.84 14%
6 12233 11879 0.971 23.12 19.59 15%

Table 3: Incremental auction with and without dual prices: profit and number of rounds
until termination

4.4 Conclusion and outlook

In this paper we provided an estimate of the potential social gain the could be
generated by auctioning railway slots instead of allocating them by a list price
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schema. In both our models, a simple one-track model and an empirical real-
world-data model, the efficiency gains is moderate, until 4% depending on the
magnitude of overdemand and the spread of the private valuations of the train
operating companies. Further research should illuminate the dependencies in
more detail in order to produce well-founded prognosis for specific auctioning
scenarios. Our model does not explicitly address the question of innovative use
of the railway network that could be triggered by the auctioning, and we think
that it would be interesting to investigate this point.

We then presented a possible auction design that built in the Ausubel Mil-
grom proxy auction but uses linear prices for slots and allows late introduction
of bids. We demonstrated that using minimal prices derived from the dual of
the ACP formulation of the scheduling problem may speed up the auction while
suffering only moderate efficiency losses. It would be interesting to compare
the dual prices used here with other linear pricing schemes for combinatorial
auctions that are discussed in the literature. We leave this for future work.
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Switzerland, 2009.

[4] Ralf Borndörfer, Martin Grötschel, Sascha Lukac, Kay Mitusch, Thomas
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